• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 35
  • 20
  • 10
  • 6
  • Tagged with
  • 276
  • 276
  • 276
  • 103
  • 49
  • 38
  • 36
  • 35
  • 31
  • 30
  • 24
  • 24
  • 22
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Non-Linear FE-Analysis of a Composite Action Girder with Coiled Spring Pins as Shear Connectors

Stahlin, Simon January 2019 (has links)
For bridges to cope with increased requirements such as increased loads, strengthening work can be carried out. In cases where older steel-concrete bridges do not have a composite action, an alternative is to create composite-action to achieve a higher flexural strength. It is introduced by post-installing shear connectors. There are many different alternatives of shear connectors that can be used, hence a number that can be installed from below the bridge to minimize the impact on the traffic. Coiled Spring Pins are of the interference fit type connector and are put in place from below the bridge by first drilling a hole upward through the upper steel flange and then into the concrete slab. Then, the spiral bolt is pushed up into the drilled hole by means of a hydraulic hammer. Using data from push-out tests and non-linear material models for steel and concrete, a non-linear finite element analysis was created using the commercial finite element software Abaqus. The analysis is based on dimensions and load cases that will mimic a planned full-scale beam test that will be carried out later in 2019. To verify that the material and the model behave in a realistic manner, an analysis was initially performed on a beam without composite-action, and a full-composite action beam with infinitely rigid connectors. These were then compared with hand calculations according to Eurocode. When the material models were verified, it is seen that the materials steel and concrete work for themselves in the analysis without composite-action and together in the analysis with full composite-action. The data for the spiral bolts is than defined instead of infinitely rigid connectors and new analyzes were performed to see the effect of the coiled spring pins properties. The results show that a significant increase in the point load in the middle of the beam can take place before failure occurs after installation of this type of shear connector. Already at a low number of connectors and a low shear connection-ratio, a significant increase in the flexural strength is seen in the beam. By using partial-composite action, with a lower number of spiral bolts, a significant higher flexural strength can be achieved in an economical way. / När kraven på att broar ska klara av ökade laster, kan förstärkningsarbeten utföras. I de fall där äldre stål-betongbroar saknar samverkanseffekt, är det ett alternativ att inför samverkan för att uppnå en högre böj-hållfastighet. Det införs genom att man installerar skjuvförbindare i efterhand. Det finns många olika alternativ av skjuvförbindare som kan användas, därav ett antal som går att installera underifrån bron för att minimera påverkan på trafiken. Spiralbultar (Coiled Spring Pins) är av typen presspassnings-förbindare och sätts på plats underifrån bron genom att det först borras ett hål uppåt genom övre stålflänsen och sedan upp i betongplattan. Därefter pressas spiralbulten upp i det borrade hålet med hjälp av en hydraulisk hammare. Med hjälp av data ifrån push-out-tester samt icke-linjära material modeller för stål och betong, skapades en icke-linjär analys i det finita element metods programmet Abaqus. Analysen är uppbyggd med dimensioner och lastfall som ska efterlikna ett planerat full-skaligt balktest som kommer utföras under 2019. För att verifiera att materialet och modellen beter sig realistiskt, utförs en analys på en balk utan samverkan, samt en full-samverkans balk med oändligt styva förbindare. Dessa jämförs sedan med handberäkningar enligt Eurokod. När materialmodellerna var verifierade sågs det att materialen stål och betong arbetar för sig själva i analysen utan samverkan och tillsammans i analysen med full-samverkan. Data för spiralbultarna lades sedan in istället för oändligt styva förbindare och nya analyser utförs för att se påverkan av spiralbultarnas egenskaper. Resultaten visade att en betydande ökning av punklasten i mitten av balken kan ske innan brott uppstår vid installation i efterhand av denna typen skjuvförbindare. Redan vid ett lågt antal förbindare och ett lågt skjuv-förhållande ses en betydande ökning av böj-hållfastigheten i balken. Genom att använda delvis-samverkan med ett lägre antal spiralbultar kan man på ett ekonomiskt sätt uppnå en betydligt högre böj-hållfasthet.
182

Etude de l’interaction mécanique entre un dispositif médical implantable actif crânien et le crâne face à des sollicitations dynamiques / Analysis of the mechanical interaction between an active cranial implantable medical device and the skull subjected to impact loadings

Siegel, Alice 05 April 2019 (has links)
Dans le cadre du développement accru d’implants crâniens actifs, l’étude de la résistance du complexe crâne-implant face à des chocs modérés est nécessaire afin d’assurer la sécurité du patient. Le but de cette thèse est de quantifier l’interaction mécanique entre le crâne et l’implant afin de développer un modèle éléments finis prédictif utilisable pour la conception des futurs dispositifs. Dans un premier temps, des essais matériaux sur titane et silicone ont permis d’extraire les paramètres élastiques, plastiques et de viscosité de leurs lois de comportement. Ces paramètres ont ensuite été implémentés dans un modèle éléments finis de l’implant sous sollicitations dynamiques, validé par des essais de choc de 2,5 J. L’implant dissipe une partie de l’énergie du choc et le modèle obtenu permet d’optimiser la conception de l’implant afin qu’il reste fonctionnel et étanche après l’impact. La troisième partie porte sur l’élaboration d’un modèle éléments finis du complexe crâne-implant sous sollicitations dynamiques. Des essais sur têtes cadavériques ovines ont permis d’optimiser les paramètres d’endommagement du crâne. Le modèle complet du complexe crâne-implant, corrélé à des essais de choc, apporte des éléments de réponses sur le comportement du crâne implanté face un choc mécanique, permettant ainsi d’optimiser la conception de l’implant afin de garantir l’intégrité du crâne.Ce modèle représente un premier outil pour l’analyse de l’interaction mécanique entre crâne et implant actif, et permet de dimensionner ce dernier de sorte à garantir son fonctionnement et son étanchéité, tout en assurant l’intégrité du crâne. / Active cranial implants are more and more developed to cure neurological diseases. In this context it is necessary to evaluate the mechanical resistance of the skull-implant complex under impact conditions as to ensure the patient’s security. The aim of this study is to quantify the mechanical interactions between the skull and the implant as to develop a finite element model for predictive purpose and for use in cranial implant design methodologies for future implants. First, material tests were necessary to identify the material law parameters of titanium and silicone. They were then used in a finite element model of the implant under dynamic loading, validated against 2.5 J-impact tests. The implant dissipates part of the impact energy and the model enables to optimize the design of implants for it to keep functional and hermetic after the impact. In the third part, a finite element model of the skull-implant complex is developed under dynamic loading. Impact tests on ovine cadaver heads are performed for model validation by enhancing the damage parameters of the three-layered skull and give insight into the behavior of the implanted skull under impact.This model is a primary tool for analyzing the mechanical interaction between the skull and an active implant and enables for an optimized design for functional and hermetic implants, while keeping the skull safe.
183

Corrosion sous contrainte intergranulaire du noyau de soudure par FSW de l'alliage Al-Li 2050 / Intergranular stress corrosion cracking of friction stir welded nugget of aluminum alloy 2050

Dhondt, Matthieu 18 December 2012 (has links)
Pour réduire le poids des structures aéronautiques, plusieurs voies ont été explorées. Parmi elles, l'utilisation des alliages d'aluminium légers et le remplacement des structures rivetées par des structures soudées par Friction Stir Welding (FSW) sont envisagées. La question de la durée de vie de ces structures préoccupe les industriels. Dans ce cadre, cette étude porte sur la sensibilité à la corrosion sous contrainte intergranulaire (CSC-IG) du noyau de soudure par FSW de l'alliage Al-Cu-Li 2050. Ce matériau est composé de grains équiaxes dont la taille diminue de 17 à 4 µm à mesure que l'on s'éloigne de la surface de soudage. Une variation de texture est révélée grâce à des cartographies EBSD formant la microstructure des « onion rings ». La périodicité de ces « onions rings » est égale à l'avancée du pion FSW sur un tour (500 µm pour notre matériau). Ces hétérogénéités microstructurales entraînent des gradients de champs mécaniques locaux quantifiés par corrélation d'images lors des essais mécaniques. Ces hétérogénéités microstructurales et mécaniques favorisent les phénomènes de corrosion localisée lorsque le matériau est soumis à un environnement agressif. Les effets des contraintes et de la microstructure sur la CSC-IG sont mis en évidence par des essais de corrosion et des essais de corrosion sous contrainte (CSC). Les essais de corrosion montrent une sensibilité du matériau à la piqûration alors que les essais de CSC révèlent l'amorçage de fissures intergranulaires. Les plus grosses fissures s'amorcent préférentiellement à la frontière des « onion rings ». Un modèle par éléments finis a été développé dans le but de simuler la propagation des fissures intergranulaires sur des agrégats réels générés par des cartographies EBSD. / To reduce the aircraft components weight, several solutions were explored. Among them, the using of light aluminum alloys and the substitution of riveting by friction stir welding (FSW) are investigated. Industry is concerned by the question of the life of such structures. For this, this study is focused on intergranular stress corrosion cracking (IGSCC) sensitivity of the 2050 Al-Li-Cu alloy friction stir weld nugget. This material consists of equiaxed grains whose size is decreasing with the distance from the weld surface between 17 µm at the top and 4 µm at the bottom. The “onion rings” microstructure is revealed by EBSD cartographies as a texture variation. They appear with a periodicity of 500 µm corresponding to the advance per revolution of the tool. Those microstructural heterogeneities cause local mechanical field gradients quantified by digital image correlation measurements during mechanical tests. Those microstructural and mechanical heterogeneities promote localized corrosion when the material is submitted to an aggressive environnement. Microstructure and stress effects on IGSCC are shown by corrosion tests and stress corrosion tests. The first ones show a sensitivity to pitting corrosion and a stress application reveal initiation of intergranular cracks. The biggest ones preferentially initiate at “onion rings” boundaries. A finite element model was developed in order to simulate intergranular cracks propagation on real aggregates obtained by EBSD cartographies.
184

Análise numérica e experimental das tensões residuais geradas durante o processo de têmpera de cilindros de aço AISI 1045, 4140 e 4340. / Numerical e experimental analysis of residual stresses generated during hardening of AISI 1045, 4140 and 4340 bars.

Ariza Echeverri, Edwan Anderson 30 May 2012 (has links)
O objetivo deste trabalho é analisar a distribuição das tensões residuais que resultam da combinação das variações volumétricas resultantes dos gradientes térmicos e das transformações de fase que ocorrem durante a têmpera de cilindros de aço AISI/SAE 1045, 4140 e 4340. O modelo matemático usado para este objetivo utiliza o programa AC3 de modelagem de tratamentos térmicos (curvas de transformação, curvas de resfriamento, microestrutura e a dureza do material), para alimentar um modelo de elementos finitos, considerando acoplamento termo-mecânico e comportamento não linear elasto-plástico, para previsão de tensões residuais em cilindros de aço AISI/SAE 1045, 4140 e 4340 temperados em água. São apresentados, também, os resultados de observações metalográficas e perfis de dureza que confirmam qualitativamente as previsões do programa AC3. A verificação do modelo numérico por elementos finitos foi efetuada através da medição das tensões residuais nos cilindros de aço com o emprego da técnica de difração de raios X. A simulação numérica, através do método dos elementos finitos comprova, nos três casos estudados, a existência de tensões residuais de compressão na região superficial após o processo de têmpera e indica de maneira quantitativa e qualitativa que as tensões mais significativas são as tangenciais. Os resultados obtidos a partir do modelo numérico mostraram uma aderência significativa em comparação com os resultados experimentais. / The aim of this work is to analyze the distribution of residual stresses resulting from combination of volumetric changes due to heat gradients and phase changes occurring during the quenching process of AISI/SAE 1045, 4140 and 4340 steel cylinders. The mathematical model used for this objective uses the AC3 program for modeling thermal treatments (transformation curves, cooling curves, microstructure and material hardness), whose results were fed into a finite element model, considering thermal-mechanical coupling and non-linear elastic-plastic behavior for forecasting of residual stresses in AISI/SAE 1045, 4140 and 4340 steel cylinders quenched in water. The observed microstructures and measured hardness confirmed qualitatively the previsions of the AC3 program. The results of finite element modeling were compared to experimental measurements of residual stresses measured at the surface, using X-Ray diffraction techniques. The finite element numerical simulation shows, for the three studied cases, the presence of compressive residual stresses in the surface region after a quenching process and indicates qualitatively and quantitatively that the most significant stresses are the tangential ones. The results obtained from the numerical model showed a significant adherence in comparison with the experimental results.
185

Desenvolvimento de uma metodologia computacional para determinar coeficientes efetivos de compósitos inteligentes / Development of a computational methodology for determining effective coefficients of the smart composites

Medeiros, Ricardo de 15 February 2012 (has links)
O presente trabalho visa empregar uma metodologia numérica para determinar as propriedades macro mecânica de compósitos ativos (AFC - Active Fiber Composite ou MFC - Macro Fiber Composite), combinando o conceito de Volume Elementar Representativo (VER) com o Método dos Elementos Finitos (MEF). Inicialmente, apresenta-se a fundamentação teórica associada à abordagem numérica empregada. Posteriormente, os modelos numéricos desenvolvidos são aplicados na determinação dos coeficientes efetivos de materiais compósitos inteligentes transversalmente isotrópicos com fibras piezelétricas de seção com forma circular e quadrada, respectivamente. Finalmente, os resultados numéricos obtidos pela metodologia proposta são, então, comparados com resultados da literatura. Constata-se que os resultados obtidos são muito semelhantes aos resultados relatados pela literatura para arranjo quadrático e hexagonal com fibra de geometria circular, sendo que neste caso, compararam-se os resultados numéricos com analíticos obtidos através do Método de Homogeneização Assintótica. Em seguida, a metodologia é aplicada para determinação dos coeficientes efetivos para arranjo quadrático e hexagonal com fibra de geometria quadrada. Empregando diferentes frações volumétricas de fibras, os resultados via MEF foram comparados aos resultados analíticos obtidos através do Método dos Campos Uniformes (Uniform Field Method). Após a avaliação das limitações e potencialidades da metodologia, de forma direta, através de resultados analíticos, realizou-se a avaliação da mesma de forma indireta. Para tal, foram realizadas análises dinâmicas visando comparar as Funções de Resposta em Frequência (FRF) experimentais com as obtidas computacionalmente. Dessa forma, utilizou-se uma viga de alumínio estrutural engastada-livre, onde foram colados duas pastilhas piezelétricas, sendo uma para realizar a excitação da estrutura e, a outra para fazer a aquisição dos dados. Os modelos computacionais via MEF empregaram para o domínio das pastilhas, as propriedades efetivas determinadas através da metodologia desenvolvida. Os resultados obtidos demonstraram mais uma vez as potencialidades da metodologia proposta. Assim, conclui-se que a metodologia numérica não é somente uma boa alternativa para o cálculo de coeficientes efetivos de compósitos inteligentes, mas também uma ferramenta para o projeto de estruturas inteligentes monitoradas por materiais piezelétricos. / This work presents the development a numerical methodology to determine the mechanical properties of active macro composites (AFC - Active Fiber Composite, or MFC - Macro Fiber Composite), combining the concept of Representative Elementary Volume (REV) with the Finite Element Method (FEM). In the first instance, the theoretical framework associated with the numerical approach employed is presented. Later, numerical models based on unit cell are applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. Finally, numerical results obtained by the proposed methodology are compared to other methods reported in the literature. It appears that the results are very similar to the literature results for square and hexagonal arrangement of fibers with circular geometry, in which case, it was compared numerical with analytical results calculated by Asymptotic Homogenization Method (AHM). After that, the methodology is applied to determine the effective coefficients for square and hexagonal array with square fiber geometry. Employing different fiber volume fractions, it follows that the results obtained by the proposed methodology were compared to analytical results calculated by the Uniform Field Method (UFM). After assessing the potential and limitations of the methodology, either directly, through analytical results, the evaluation took place in the indirect approach. Then, dynamic analyses were performed in order to compare the Frequency Response Functions (FRFs) determined by experimental tests with computational results. Thus, it was used a cantilever beam aluminum structure, which were bonded two piezoelectric patches, one to carry the excitement of the structure and the second to perform the data acquisition. The effective properties determined by the proposed methodology were applied for the dominium established by the piezoelectric patches. The results showed, again, the potential of the proposed methodology. Therefore, the numerical methodology is not only a good alternative for the calculation of effective coefficients of smart composite, but also a tool for the design of smart structures monitored by piezoelectric materials.
186

Simulation 3D éléments-finis du muscle squelettique en temps-réel basée sur une approche multi-modèles / Real-time solid simulation of skeletal muscles

Berranen, Mohamed Yacine 17 December 2015 (has links)
Les résultats des chirurgies orthopédiques correctrices sont difficilement prévisibles et, malheureusement, parfois infructueux. D’autres maladies résultantes d’un handicap majeur tel que l’escarre sont encore très peu comprises. Malgré une prévalence dans la population conséquente, peu d’études ont été menées sur ces thèmes. L’étude volumétrique du muscle en tant que tissu mou actif manque d’informations détaillées. Particulièrement les déformations et raideurs subséquentes aux contractions de muscles à arrangement de fascicules complexes. La modélisation volumétrique des muscles, fournirait un outil puissant pour la simulation personnalisée des contraintes subies par le corps, durant des contactes prolongés ou récurrents avec des dispositifs médicaux standards et inadaptés à la morphologie, mais aussi la planification d’opérations chirurgicales ou de séquences de stimulation électrique fonctionnelle. Il n’existe actuellement aucun logiciel permettant la reconstruction automatique de l’architecture des fascicules, aponévroses et tendons à partir d’acquisitions IRM d’un patient spécifique. La méthode actuelle de modélisation volumétrique du muscle est coûteuse en temps de calcul, donc inefficaces pour des simulations temps-réel du comportement du système musculo-squelettique avec représentation des fonctions physiologiques. Cette thèse est dirigée par les contributions nombreuses qui restent encore à apporter dans le domaine. Les méthodes de modélisation actuelles basées sur la méthode des éléments finis classique sont complexes, manquent de flexibilité ou de précision en temps-réel. Nous proposons une approche multi-modèles basée sur le mapping barycentrique qui découple la fonction de densité d’énergie de déformations du muscle en un ensemble de modèles indépendants de moindre complexité, avec les objectifs suivants : - Améliorer la reconstruction de l’architecture musculaire à partir des acquisitions IRM en terme de complexité et flexibilité. - Séparer la modélisation du muscle en modèles simple et indépendants, de manière à offrir plus de flexibilité, en réduisant la complexité, qui permettront de découpler les résolutions des éléments déformables des éléments actifs du muscle. - En diminuant le nombre d’éléments finis garantissant la cohérence des résultats, nous diminuons le temps de calcul nécessaire à chaque pas de simulation .Nos méthodes s’inspirent des travaux précédents sur la représentation tri-dimensionnelle de la géométrie et l’architecture complexes des muscles de [Blemker and Delp, 2005]. De plus, la définition mathématique est étudiée [Chi et al., 2010] pour caractériser la densité d’énergie de déformations du muscle squelettique. En rapport avec les méthodes précédentes, nous revendiquons les avancées suivantes : - Amélioration de la représentation 3D des muscles de patients spécifiques avec architecture et géométrie complexes, à partir de mesures IRM. La méthode est plus flexible et rapide que les précédentes. - Une nouvelle méthode de modélisation des déformations musculaires via la modélisation découplée des différents tissus musculaires. Cette nouvelle approche permet une définition indépendante des fascicules musculaires, tissus conjonctifs, tendons et aponévroses en gardant une grande précision de déformations. Les performances sont confrontées au rendement de la méthode FEM classique. - Nous atteignons des vitesses de simulation élevées de muscles complexes sur des machines standards par rapport à la FEM. Les performances nous ont permis de simuler en temps-réel la force et les déformations d’un muscle d’individus spécifiques, avec une entrée d’activation actualisée en temps-réel à partir de mesures EMG. - La modélisation d’un muscle nécessite plus de compétence qu’une équipe de recherche peut envisager maitriser. L’approche multi-modèles permet un travail collaboratif, où chaque spécialiste se focalise uniquement sur son domaine de compétence. La modélisation en est extrêmement simplifiée. / Corrective orthopedic surgeries results are difficult to be predicted and, unfortunately, sometimes unsuccessful. Other diseases resulting from a motor disability as bedsores are still poorly understood, despite a significant prevalence in the population. However, studies on these topics still insufficient especially for the analysis considering the muscle as a soft tissue volumetric organ. Muscle fascicule architectures and their correlation with movement efficiency is poorly documented, it lack of the detailed information regarding its volumetric deformations and stiffness changes along with muscle contractions.Muscle volumetric modeling, would provide a powerful tool for the personalized accurate simulation of body stresses of disabled or SCI patients during prolonged or friction contacts with standard medical devices non-adapted to particular morphologies, but also the planning of surgeries or functional electrical stimulation sequences.There is currently no software for automatic reconstruction of the architecture of fascicles, aponeurosis and tendons from MRI acquisitions of a specific subject. Actual volumetric muscle modeling is expensive in computational time, and not effective for real-time simulations of musculoskeletal system behavior with representation of physiological functions. The objective of this thesis is directed by the many contributions that have yet to make in the area. The current modeling methods based on the conventional finite element method are complex, inflexible or inaccurate in real-time. We propose a multi-model based on barycentric mapping approach that decouples the muscle strain density energy function into a set of independent less complex models, with the following objectives:- Improve complex muscle architecture reconstruction from the MRI acquisitions in term of complexity and flexibility.- Split muscle modeling into simple independent models, to offer more flexibility and reducing complexity of modeling which allows to have independent resolutions between deformable elements and muscle fiber elements..- By reducing the number of finite elements ensuring consistency of results of force and deformations, we reduce the computation time required for each simulation.Our methods are inspired by the previous work on the three-dimensional representation of the geometry and the complex architecture of muscles [Blemker and Delp, 2005]. In addition, the mathematical definition is studied [Chi et al., 2010] to characterize the energy density of deformations of skeletal muscle.Related with the above methods, we demand the following advances:- Improved three-dimensional representation of specific patients with muscle architecture and complex geometry from MRI measurement for personalized modeling. The method is more flexible and faster than previous.- A novel modeling method for muscle deformation via decoupled modeling of solid and muscle fiber mechanics is established. This new modeling allowed independent definitions between deformable elements and fiber force generation elements while keeping its muscle deformation accuracy. The performance is compared to conventional FEM method. - We reach high computational speed on standard machines for muscle complex simulations compared to FEM. Real-time simulation of specific person’s muscle strain and force is performed with an activation input updated in real-time from surface EMG measures.- Muscle modeling requires interdisciplinary knowledge from different research team members. The multi-model approach allows collaborative work, where each specialist focuses only on its area of expertise thanks to the modular designed modeling.
187

Predicting the Response of Powder Metallurgy Steel Components to Heat Treatment.

Warke, Virendra S 28 July 2008 (has links)
"The goal of heat treating manufactured steel components is to enhance the characteristics of the metal so that the components meet pre-specified quality assurance criteria. However, the heat treatment process often creates considerable distortion, dimensional change, and residual stresses in the components. These are caused mainly by thermal stresses generated by a non-uniform temperature distribution in the part, and/or by transformation stresses due to the volume mismatch between the parent phase and product phases that may form by phase transformation. With the increasing demand for tighter dimensional tolerances and better mechanical properties from heat treated components, it is important for the manufacturer to be able to predict the ability of a component to be heat treated to a desired hardness and strength without undergoing cracking, distortion, and excessive dimensional change. Several commercial softwares are available to accurately predict the heat treatment response of wrought steel components. However, these softwares cannot be used to predict the heat treatment response of steel components that are made by powder metallurgy (PM) processes since these components generally contain pores which affect the mechanical, thermal, and transformation behavior of the material. Accordingly, the primary objective of this research is to adapt commercially available simulation software, namely DANTE, so that it can accurately predict the response of PM steel components to heat treatment. Additional objectives of the research are to characterize the effect of porosity on (1) the mechanical properties, (2) the heat transfer characteristics, and (3) the kinetics of phase transformation during heat treatment of PM steels."
188

Desenvolvimento de uma metodologia computacional para determinar coeficientes efetivos de compósitos inteligentes / Development of a computational methodology for determining effective coefficients of the smart composites

Ricardo de Medeiros 15 February 2012 (has links)
O presente trabalho visa empregar uma metodologia numérica para determinar as propriedades macro mecânica de compósitos ativos (AFC - Active Fiber Composite ou MFC - Macro Fiber Composite), combinando o conceito de Volume Elementar Representativo (VER) com o Método dos Elementos Finitos (MEF). Inicialmente, apresenta-se a fundamentação teórica associada à abordagem numérica empregada. Posteriormente, os modelos numéricos desenvolvidos são aplicados na determinação dos coeficientes efetivos de materiais compósitos inteligentes transversalmente isotrópicos com fibras piezelétricas de seção com forma circular e quadrada, respectivamente. Finalmente, os resultados numéricos obtidos pela metodologia proposta são, então, comparados com resultados da literatura. Constata-se que os resultados obtidos são muito semelhantes aos resultados relatados pela literatura para arranjo quadrático e hexagonal com fibra de geometria circular, sendo que neste caso, compararam-se os resultados numéricos com analíticos obtidos através do Método de Homogeneização Assintótica. Em seguida, a metodologia é aplicada para determinação dos coeficientes efetivos para arranjo quadrático e hexagonal com fibra de geometria quadrada. Empregando diferentes frações volumétricas de fibras, os resultados via MEF foram comparados aos resultados analíticos obtidos através do Método dos Campos Uniformes (Uniform Field Method). Após a avaliação das limitações e potencialidades da metodologia, de forma direta, através de resultados analíticos, realizou-se a avaliação da mesma de forma indireta. Para tal, foram realizadas análises dinâmicas visando comparar as Funções de Resposta em Frequência (FRF) experimentais com as obtidas computacionalmente. Dessa forma, utilizou-se uma viga de alumínio estrutural engastada-livre, onde foram colados duas pastilhas piezelétricas, sendo uma para realizar a excitação da estrutura e, a outra para fazer a aquisição dos dados. Os modelos computacionais via MEF empregaram para o domínio das pastilhas, as propriedades efetivas determinadas através da metodologia desenvolvida. Os resultados obtidos demonstraram mais uma vez as potencialidades da metodologia proposta. Assim, conclui-se que a metodologia numérica não é somente uma boa alternativa para o cálculo de coeficientes efetivos de compósitos inteligentes, mas também uma ferramenta para o projeto de estruturas inteligentes monitoradas por materiais piezelétricos. / This work presents the development a numerical methodology to determine the mechanical properties of active macro composites (AFC - Active Fiber Composite, or MFC - Macro Fiber Composite), combining the concept of Representative Elementary Volume (REV) with the Finite Element Method (FEM). In the first instance, the theoretical framework associated with the numerical approach employed is presented. Later, numerical models based on unit cell are applied to predict the effective material coefficients of the transversely isotropic piezoelectric composite with circular cross section fibers. Finally, numerical results obtained by the proposed methodology are compared to other methods reported in the literature. It appears that the results are very similar to the literature results for square and hexagonal arrangement of fibers with circular geometry, in which case, it was compared numerical with analytical results calculated by Asymptotic Homogenization Method (AHM). After that, the methodology is applied to determine the effective coefficients for square and hexagonal array with square fiber geometry. Employing different fiber volume fractions, it follows that the results obtained by the proposed methodology were compared to analytical results calculated by the Uniform Field Method (UFM). After assessing the potential and limitations of the methodology, either directly, through analytical results, the evaluation took place in the indirect approach. Then, dynamic analyses were performed in order to compare the Frequency Response Functions (FRFs) determined by experimental tests with computational results. Thus, it was used a cantilever beam aluminum structure, which were bonded two piezoelectric patches, one to carry the excitement of the structure and the second to perform the data acquisition. The effective properties determined by the proposed methodology were applied for the dominium established by the piezoelectric patches. The results showed, again, the potential of the proposed methodology. Therefore, the numerical methodology is not only a good alternative for the calculation of effective coefficients of smart composite, but also a tool for the design of smart structures monitored by piezoelectric materials.
189

Etude du comportement mécanique de la glène pour la mise au point d'un nouvel implant scapulaire à fixation sans ciment / Study of the mechanical properties and behaviour of glenoid cancellous bone for the development of a new glenoid implant with cementless fixation

Kalouche, Ibrahim 19 September 2011 (has links)
Les prothèses totales d’épaule ont une survie limitée due essentiellement au descellement de l’implant scapulaire. Le but de ce travail de recherche est la contribution à la mise au point d’un nouvel implant scapulaire à fixation sans ciment.Une première partie a concerné la caractérisation de l’anisotropie et des hétérogénéités de l’os spongieux de la glène par une expérimentation en compression, cette partie a abouti à l’élaboration d’une loi de comportement de l’os spongieux de la glène. La seconde partie de ce travail s’est focalisée sur la modélisation par éléments finis des contraintes aux points d’ancrage de l’implant.Les résultats des tests de simulation montrent l’incapacité du spongieux à assurer un effet press-fit dans le plan transversal, car on observe le dépassement des contraintes maximales pour un déplacement minime. Ce résultat met en question les modes de fixation primaire utilisés ce jour dans les prothèses sans ciment. Nos résultats montrent que la modification de la direction de chargement serait susceptible d’améliorer la fixation primaire ce qui ouvre des perspectives nouvelles pour le dessin d’une prothèse sans ciment. / Total shoulder prostheses have a limited survival due mainly to the loosening of the glenoid implant. The purpose of this research is the contribution to the development of a new glenoid implant with cementless fixation.The first part concerned the characterization of the anisotropy and heterogeneity of cancellous bone of the glenoid by a compression experimental tests, this part has led to the drafting of a law of behavior of cancellous bone of the glenoid . The second part of this work has focused on finite element modeling of stress around the anchors of the glenoid implant.Simulation test results show the inability of the transversal plane of the glenoid to ensure effective press-fit fixation with stresses above strength properties of the cancellous bone with a minimal displacement. This calls into question the current modes of primary fixation of cementless implant. However, it appears that a change in the direction of loading would be beneficial for the primary fixation, which opens new perspectives for the design of a cementless prosthesis.
190

THE FORMATION MECHANISM OF α-PHASE DISPERSOIDS AND QUANTIFICATION OF FATIGUE CRACK INITIATION BY EXPERIMENTS AND THEORETICAL MODELING IN MODIFIED AA6061 (AL-MG-SI-CU) ALLOYS

Zhang, Gongwang 01 January 2018 (has links)
AA6061 Al alloys modified with addition of Mn, Cr and Cu were homogenized at temperatures between 350 ºC and 550 ºC after casting. STEM experiments revealed that the formation of α-Al(MnFeCr)Si dispersoids during homogenization were strongly affected by various factors such as heating rate, concentration of Mn, low temperature pre-nucleation treatment and homogenization temperature. Through analysis of the STEM results using an image software Image-Pro, the size distributions and number densities of the dispersoids formed during different annealing treatments were quantitatively measured. It was revealed that increasing the heating rate or homogenization temperature led to a reduction of the number density and an increase in size of the dispersoids. The number density of dispersoids could be markedly increased through a low temperature pre-nucleation treatment. A higher Mn level resulted in the larger number density, equivalent size and length/width ratio of the dispersoids in the alloy. Upsetting tests on two of these Mn and Cr-containing AA6061 (Al-Mg-Si-Cu) Al alloys with distinctive Mn contents were carried out at a speed of 15 mm s-1 under upsetting temperature of 450 ºC after casting and subsequent homogenization heat treatment using a 300-Tone hydraulic press. STEM experiments revealed that the finely distributed α-Al(MnFeCr)Si dispersoids formed during homogenization showed a strong pinning effect on dislocations and grain boundaries, which could effectively inhibit recovery and recrystallization during hot deformation in the two alloys. The fractions of recrystallization after hot deformation and following solution heat treatment were measured in the two alloys with EBSD. It was found that the recrystallization fractions of the two alloys were less than 30%. This implied that the finely distributed α-dispersoids were rather stable against coarsening and they stabilized the microstructure by inhibiting recovery and recrystallization by pinning dislocations during deformation and annealing at elevated temperatures. By increasing the content of Mn, the effect of retardation on recrystallization were further enhanced due to the formation of higher number density of the dispersoids. STEM and 3-D atom probe tomography experiments revealed that α-Al(MnFeCr)Si dispersoids were formed upon dissolution of lathe-shaped Q-AlMgSiCu phase during homogenization of the modified AA6061 Al alloy. It was, for the first time, observed that Mn segregated at the Q-phase/matrix interfaces in Mn-rich regions in the early stage of homogenization, triggering the transformation of Q-phase into strings of Mn-rich dispersoids afterwards. Meanwhile, in Mn-depleted regions the Q-phase remained unchanged without segregation of Mn at the Q-phase/matrix interfaces. Upon completion of α-phase transformation, the atomic ratio of Mn and Si was found to be 1:1 in the α-phase. The strengthening mechanisms in the alloy were also quantitatively interpreted, based on the measurements of chemical compositions, dispersoids density and size, alloy hardness and resistivity as a function of the annealing temperature. This study clarified the previous confusion about the formation mechanism of α-dispersoids in 6xxx series Al alloys. Four-point bend fatigue tests on two modified AA6061 Al alloys with different Si contents (0.80 and 1.24 wt%, respectively) were carried out at room temperature, f = 20 Hz, R = 0.1, and in ambient air. The stress-number of cycles to failure (S-N) curves of the two alloys were characterized. The alloys were solution heat treated, quenched in water, and peak aged. Optical microscopy and scanning electron microscopy were employed to capture a detailed view of the fatigue crack initiation behaviors of the alloys. Fatigue limits of the two alloys with the Si contents of 0.80 and 1.24 wt% were measured to be approximately 224 and 283.5 MPa, respectively. The number of cracks found on surface was very small (1~3) and barely increased with the applied stress, when the applied stress was below the yield strength. However, it was increased sharply with increase of the applied stress to approximately the ultimate tensile strength. Fatigue crack initiation was predominantly associated with the micro-pores in the alloys. SEM examination of the fracture surfaces of the fatigued samples showed that the crack initiation pores were always aspheric in shape with the larger dimension in depth from the sample surface. These tunnel-shaped pores might be formed along grain boundaries during solidification or due to overheating of the Si-containing particles during homogenization. A quantitative model, which took into account the 3-D effects of pores on the local stress/strain fields in surface, was applied to quantification of the fatigue crack population in a modified AA6061 Al alloy under cyclic loading. The pores used in the model were spherical in shape, for simplicity, with the same size of 7 μm in diameter. The total volume fraction of the pores in the model were same as the area fraction of the pores measured experimentally in the alloy. The stress and strain fields around each pore near the randomly selected surface in a reconstructed digital pore structure of the alloy were quantified as a function of pore position in depth from the surface using a 3-D finite element model under different stress levels. A micro-scale Manson-Coffin equation was used to estimate the fatigue crack incubation life at each of the pores in the surface and subsurface. The population of fatigue cracks initiated at an applied cyclic loading could be subsequently quantified. The simulated results were consistent with those experimentally measured, when the applied maximum cyclic stress was below the yield strength, but the model could not capture the sudden increase in crack population at UTS, as observed in the alloy. This discrepancy in crack population was likely to be due to the use of the spherical pores in the model, as these simplified pores could not show the effects of pore shape and their orientations on crack initiation at the pores near surface. Although it is presently very time-consuming to calculate the crack population as a function of pore size and shape in the alloy with the current model, it would still be desirable to incorporate the effects of shape and orientation of the tunnel-shaped pores into the model, in the future, in order to simulate the fatigue crack initiation more accurately in the alloy.

Page generated in 0.1221 seconds