• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 120
  • 41
  • 17
  • 9
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 227
  • 227
  • 61
  • 36
  • 36
  • 35
  • 31
  • 27
  • 21
  • 19
  • 18
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Stochastic Modeling and Simulation of the TCP protocol

Olsén, Jörgen January 2003 (has links)
The success of the current Internet relies to a large extent on a cooperation between the users and the network. The network signals its current state to the users by marking or dropping packets. The users then strive to maximize the sending rate without causing network congestion. To achieve this, the users implement a flow-control algorithm that controls the rate at which data packets are sent into the Internet. More specifically, the Transmission Control Protocol (TCP) is used by the users to adjust the sending rate in response to changing network conditions. TCP uses the observation of packet loss events and estimates of the round trip time (RTT) to adjust its sending rate. In this thesis we investigate and propose stochastic models for TCP. The models are used to estimate network performance like throughput, link utilization, and packet loss rate. The first part of the thesis introduces the TCP protocol and contains an extensive TCP modeling survey that summarizes the most important TCP modeling work. Reviewed models are categorized as renewal theory models, fixed-point methods, fluid models, processor sharing models or control theoretic models. The merits of respective category is discussed and guidelines for which framework to use for future TCP modeling is given. The second part of the thesis contains six papers on TCP modeling. Within the renewal theory framework we propose single source TCP-Tahoe and TCP-NewReno models. We investigate the performance of these protocols in both a DropTail and a RED queuing environment. The aspects of TCP performance that are inherently depending on the actual implementation of the flow-control algorithm are singled out from what depends on the queuing environment. Using the fixed-point framework, we propose models that estimate packet loss rate and link utilization for a network with multiple TCP-Vegas, TCP-SACK and TCP-Reno on/off sources. The TCP-Vegas model is novel and is the first model capable of estimating the network's operating point for TCP-Vegas sources sending on/off traffic. All TCP and network models in the contributed research papers are validated via simulations with the network simulator ns-2. This thesis serves both as an introduction to TCP and as an extensive orientation about state of the art stochastic TCP models.
132

Generalizations Of The Quantum Search Algorithm

Tulsi, Tathagat Avatar 27 April 2009 (has links)
Quantum computation has attracted a great deal of attention from the scientific community in recent years. By using the quantum mechanical phenomena of superposition and entanglement, a quantum computer can solve certain problems much faster than classical computers. Several quantum algorithms have been developed to demonstrate this quantum speedup. Two important examples are Shor’s algorithm for the factorization problem, and Grover’s algorithm for the search problem. Significant efforts are on to build a large scale quantum computer for implementing these quantum algorithms. This thesis deals with Grover’s search algorithm, and presents its several generalizations that perform better in specific contexts. While writing the thesis, we have assumed the familiarity of readers with the basics of quantum mechanics and computer science. For a general introduction to the subject of quantum computation, see [1]. In Chapter 1, we formally define the search problem as well as present Grover’s search algorithm [2]. This algorithm, or more generally the quantum amplitude amplification algorithm [3, 4], drives a quantum system from a prepared initial state (s) to a desired target state (t). It uses O(α-1 = | (t−|s)| -1) iterations of the operator g = IsIt on |s), where { IsIt} are selective phase inversions selective phase inversions of the corresponding states. That is a quadratic speedup over the simple scheme of O(α−2) preparations of |s) and subsequent projective measurements. Several generalizations of Grover’s algorithm exist. In Chapter 2, we study further generalizations of Grover’s algorithm. We analyse the iteration of the search operator S = DsI t on |s) where Ds is a more general transformation than Is, and I t is a selective phase rotation of |t) by angle . We find sufficient conditions for S to produce a successful quantum search algorithm. In Chapter 3, we demonstrate that our general framework encapsulates several previous generalizations of Grover’s algorithm. For example, the phase-matching condition for the search operator requires the angles and and to be almost equal for a successful quantum search. In Kato’s algorithm, the search operator is where Ks consists of only single-qubit gates, which are easier to implement physically than multi-qubit gates. The spatial search algorithms consider the search operator where is a spatially local operator and provides implementation advantages over Is. The analysis of Chapter 2 provides a simpler understanding of all these special cases. In Chapter 4, we present schemes to improve our general quantum search algorithm, by controlling the operators through an ancilla qubit. For the case of two dimensional spatial search problem, these schemes yield an algorithm with time complexity . Earlier algorithms solved this problem in time steps, and it was an open question to design a faster algorithm. The schemes can also be used to find, for a given unitary operator, an eigenstate corresponding to a specified eigenvalue. In Chapter 5, we extend the analysis of Chapter 2 to general adiabatic quantum search. It starts with the ground state |s) of an initial Hamiltonian Hs and evolves adiabatically to the target state |t) that is the ground state of the final Hamiltonian The evolution uses a time dependent Hamiltonian HT that varies linearly with time . We show that the minimum excitation gap of HT is proportional to α. Also, the ground state of HT changes significantly only within a very narrow interval of width around the transition point, where the excitation gap has its minimum. This feature can be used to reach the target state (t) using adiabatic evolution for time In Chapter 6, we present a robust quantum search algorithm that iterates the operator on |s) to successfully reach |t), whereas Grover’s algorithm fails if as per the phase-matching condition. The robust algorithm also works when is generalized to multiple target states. Moreover, the algorithm provides a new search Hamiltonian that is robust against certain systematic perturbations. In Chapter 7, we look beyond the widely studied scenario of iterative quantum search algorithms, and present a recursive quantum search algorithm that succeeds with transformations {Vs,Vt} sufficiently close to {Is,It.} Grover’s algorithm generally fails if while the recursive algorithm is nearly optimal as long as , improving the error tolerance of the transformations. The algorithms of Chapters 6-7 have applications in quantum error-correction, when systematic errors affect the transformations The algorithms are robust as long as the errors are small, reproducible and reversible. This type of errors arise often from imperfections in apparatus setup, and so the algorithms increase the flexibility in physical implementation of quantum search. In Chapter 8, we present a fixed-point quantum search algorithm. Its state evolution monotonically converges towards |t), unlike Grover’s algorithm where the evolution passes through |t) under iterations of the operator . In q steps, our algorithm monotonically reduces the failure probability, i.e. the probability of not getting |t), from . That is asymptotically optimal for monotonic convergence. Though the fixed-point algorithm is of not much use for , it is useful when and each oracle query is highly expensive. In Chapter 9, we conclude the thesis and present an overall outlook.
133

Digital lines, Sturmian words, and continued fractions

Uscka-Wehlou, Hanna January 2009 (has links)
In this thesis we present and solve selected problems arising from digital geometry and combinatorics on words. We consider digital straight lines and, equivalently, upper mechanical words with positive irrational slopes a<1 and intercept 0. We formulate a continued fraction (CF) based description of their run-hierarchical structure. Paper I gives a theoretical basis for the CF-description of digital lines. We define for each irrational positive slope less than 1 a sequence of digitization parameters which fully specifies the run-hierarchical construction. In Paper II we use the digitization parameters in order to get a description of runs using only integers. We show that the CF-elements of the slopes contain the complete information about the run-hierarchical structure of the line. The index jump function introduced by the author indicates for each positive integer k the index of the CF-element which determines the shape of the digitization runs on level k. In Paper III we present the results for upper mechanical words and compare our CF-based formula with two well-known methods, one of which was formulated by Johann III Bernoulli and proven by Markov, while the second one is known as the standard sequences method. Due to the special treatment of some CF-elements equal to 1 (essential 1's in Paper IV), our method is currently the only one which reflects the run-hierarchical structure of upper mechanical words by analogy to digital lines. In Paper IV we define two equivalence relations on the set of all digital lines with positive irrational slopes a<1. One of them groups into classes all the lines with the same run length on all digitization levels, the second one groups the lines according to the run construction in terms of long and short runs on all levels. We analyse the equivalence classes with respect to minimal and maximal elements. In Paper V we take another look at the equivalence relation defined by run construction, this time independently of the context, which makes the results more general. In Paper VI we define a run-construction encoding operator, by analogy with the well-known run-length encoding operator. We formulate and present a proof of a fixed-point theorem for Sturmian words. We show that in each equivalence class under the relation based on run length on all digitization levels (as defined in Paper IV), there exists exactly one fixed point of the run-construction encoding operator.
134

Real Time Implementation of Map Aided Positioning Using a Bayesian Approach / Realtidsimplementation av kartstödd positionering med hjälp av Bayesianska estimeringsmetoder

Svenzén, Niklas January 2002 (has links)
With the simple means of a digitized map and the wheel speed signals, it is possible to position a vehicle with an accuracy comparable to GPS. The positioning problem is a non-linear filtering problem and a particle filter has been applied to solve it. Two new approaches studied are the Auxiliary Particle Filter (APF), that aims at lowerering the variance of the error, and Rao-Blackwellization that exploits the linearities in the model. The results show that these methods require problems of higher complexity to fully utilize their advantages. Another aspect in this thesis has been to handle off-road driving scenarios, using dead reckoning. An off road detection mechanism has been developed and the results show that off-road driving can be detected accurately. The algorithm has been successfully implemented on a hand-held computer by quantizing the particle filter while keeping good filter performance.
135

Projection Methods for Variational Inequalities Governed by Inverse Strongly Monotone Operators

Lin, Yen-Ru 26 June 2010 (has links)
Consider the variational inequality (VI) x* ∈C, ‹Fx*, x - x* ›≥0, x∈C (*) where C is a nonempty closed convex subset of a real Hilbert space H and F : C¡÷ H is a monotone operator form C into H. It is known that if F is strongly monotone and Lipschitzian, then VI (*) is equivalently turned into a fixed point problem of a contraction; hence Banach's contraction principle applies. However, in the case where F is inverse strongly monotone, VI (*) is equivalently transformed into a fixed point problem of a nonexpansive mapping. The purpose of this paper is to present some results which apply iterative methods for nonexpansive mappings to solve VI (*). We introduce Mann's algorithm and Halpern's algorithm and prove that the sequences generated by these algorithms converge weakly and respectively, strongly to a solution of VI (*), under appropriate conditions imposed on the parameter sequences in the algorithms.
136

Harnessing resilience: biased voltage overscaling for probabilistic signal processing

George, Jason 26 October 2011 (has links)
A central component of modern computing is the idea that computation requires determinism. Contrary to this belief, the primary contribution of this work shows that useful computation can be accomplished in an error-prone fashion. Focusing on low-power computing and the increasing push toward energy conservation, the work seeks to sacrifice accuracy in exchange for energy savings. Probabilistic computing forms the basis for this error-prone computation by diverging from the requirement of determinism and allowing for randomness within computing. Implemented as probabilistic CMOS (PCMOS), the approach realizes enormous energy sav- ings in applications that require probability at an algorithmic level. Extending probabilistic computing to applications that are inherently deterministic, the biased voltage overscaling (BIVOS) technique presented here constrains the randomness introduced through PCMOS. Doing so, BIVOS is able to limit the magnitude of any resulting deviations and realizes energy savings with minimal impact to application quality. Implemented for a ripple-carry adder, array multiplier, and finite-impulse-response (FIR) filter; a BIVOS solution substantially reduces energy consumption and does so with im- proved error rates compared to an energy equivalent reduced-precision solution. When applied to H.264 video decoding, a BIVOS solution is able to achieve a 33.9% reduction in energy consumption while maintaining a peak-signal-to-noise ratio of 35.0dB (compared to 14.3dB for a comparable reduced-precision solution). While the work presented here focuses on a specific technology, the technique realized through BIVOS has far broader implications. It is the departure from the conventional mindset that useful computation requires determinism that represents the primary innovation of this work. With applicability to emerging and yet to be discovered technologies, BIVOS has the potential to contribute to computing in a variety of fashions.
137

Real Time Implementation of Map Aided Positioning Using a Bayesian Approach / Realtidsimplementation av kartstödd positionering med hjälp av Bayesianska estimeringsmetoder

Svenzén, Niklas January 2002 (has links)
<p>With the simple means of a digitized map and the wheel speed signals, it is possible to position a vehicle with an accuracy comparable to GPS. The positioning problem is a non-linear filtering problem and a particle filter has been applied to solve it. Two new approaches studied are the Auxiliary Particle Filter (APF), that aims at lowerering the variance of the error, and Rao-Blackwellization that exploits the linearities in the model. The results show that these methods require problems of higher complexity to fully utilize their advantages.</p><p>Another aspect in this thesis has been to handle off-road driving scenarios, using dead reckoning. An off road detection mechanism has been developed and the results show that off-road driving can be detected accurately. The algorithm has been successfully implemented on a hand-held computer by quantizing the particle filter while keeping good filter performance.</p>
138

Fundamentals of Heterogeneous Cellular Networks

Dhillon, Harpreet Singh 24 February 2014 (has links)
The increasing complexity of heterogeneous cellular networks (HetNets) due to the irregular deployment of small cells demands significant rethinking in the way cellular networks are perceived, modeled and analyzed. In addition to threatening the relevance of classical models, this new network paradigm also raises questions regarding the feasibility of state-of-the-art simulation-based approach for system design. This dissertation proposes a fundamentally new approach based on random spatial models that is not only tractable but also captures current deployment trends fairly accurately. First, this dissertation presents a general baseline model for HetNets consisting of K different types of base stations (BSs) that may differ in terms of transmit power, deployment density and target rate. Modeling the locations of each class of BSs as an independent Poisson Point Process (PPP) allows the derivation of surprisingly simple expressions for coverage probability and average rate. One interpretation of these results is that adding more BSs or tiers does not necessarily change the coverage probability, which indicates that fears of "interference overload" in HetNets are probably overblown. Second, a flexible notion of BS load is incorporated by introducing a new idea of conditionally thinning the interference field. For this generalized model, the coverage probability is shown to increase when lightly loaded small cells are added to the existing macrocellular networks. This is due to the fact that owing to the smaller loads, small cells typically transmit less often than macrocells, thus contributing less to the interference power. The same idea of conditional thinning is also shown to be useful in modeling the non-uniform user distributions, especially when the users lie closer to the BSs. Third, the baseline model is extended to study multi-antenna HetNets, where BSs across tiers may additionally differ in terms of the number of transmit antennas, number of users served and the multi-antenna transmission strategy. Using novel tools from stochastic orders, a tractable framework is developed to compare the performance of various multi-antenna transmission strategies for a fairly general spatial model, where the BSs may follow any general stationary distribution. The analysis shows that for a given total number of transmit antennas in the network, it is preferable to spread them across many single-antenna BSs vs. fewer multi-antenna BSs. Fourth, accounting for the load on the serving BS, downlink rate distribution is derived for a generalized cell selection model, where shadowing, following any general distribution, impacts cell selection while fading does not. This generalizes the baseline model and all its extensions, which either ignore the impact of channel randomness on cell selection or lumps all the sources of randomness into a single random variable. As an application of these results, it is shown that in certain regimes, shadowing naturally balances load across various tiers and hence reduces the need for artificial cell selection bias. Fifth and last, a slightly futuristic scenario of self-powered HetNets is considered, where each BS is powered solely by a self-contained energy harvesting module that may differ across tiers in terms of the energy harvesting rate and energy storage capacity. Since a BS may not always have sufficient energy, it may not always be available to serve users. This leads to a notion of availability region, which characterizes the fraction of time each type of BS can be made available under variety of strategies. One interpretation of this result is that the self-powered BSs do not suffer performance degradation due to the unreliability associated with energy harvesting if the availability vector corresponding to the optimal system performance lies in the availability region. / text
139

Μελέτη εξάπλωσης ιών σε δίκτυα

Ράπτη, Αγγελική 16 April 2015 (has links)
Η έννοια των δικτύων εμφανίζεται πολύ συχνά με διάφορες μορφές. Δίκτυο μπορούμε να θεωρήσουμε ένα σύνολο υπολογιστών που συνδέονται μεταξύ τους υπακούοντας σε κάποιο πρωτόκολλο επικοινωνίας αλλά και μια ομάδα ανθρώ- πων που συνδέονται μέσω κάποιας κοινωνικής σχέσης, ενός εργασιακού χώρου αλλά και ως χρήστες ενός forum ή μίας πλατφόρμας κοινωνικής δικτύωσης. Σε οποιαδήποτε περίπτωση, ένα δίκτυο μπορεί να αναπαρασταθεί με τη μορφή ενός γράφηματος, όπου οι κόμβοι αναπαριστούν τα άτομα/υπολογιστές και οι ακμές τη μεταξύ τους σχέση ανάλογα με το πρόβλημα. Στα πλαίσια ενός τέτοιου δικτύου μας ενδιαφέρει η συμπεριφορά των κόμβων στην περίπτωση που συμβεί ένα γεγονός που αλλάζει την κατάστασή τους. Στην περίπτωση που αναφερόμαστε σε μία κοινωνική ομάδα ή μία πόλη, αυτό το φαι- νόμενο μπορεί να είναι το ξέσπασμα μίας επιδημίας που εξαπλώνεται στο δίκτυο αλλά και μίας είδησης/φήμης, όπου ενημερώνεται το δίκτυο. Στην πρώτη περί- πτωση, μας ενδιαφέρει να περιορίσουμε την επιδημία, αλλάζοντας τοπολογικά το δίκτυο ενώ στη δεύτερη περίπτωση, είναι επιθυμητό να διευκολύνουμε την εξά- πλωση της είδησης, έτσι ώστε να ενημερωθούν όσο το δυνατόν, περισσότεροι κόμβοι(χρήστες). Η συμπεριφορά του δικτύου σε ένα τέτοιο φαινόμενο, μπορεί να προσομοιωθεί από ένα δυναμικό σύστημα. Με τον όρο δυναμικό σύστημα αναφερόμαστε σε ένα σύστημα που έχει ένα σύνολο καταστάσεων, όπου κάθε κατάσταση, προκύπτει σε συνάρτηση με την προηγούμενη. Παραδείγματα εφαρμογής ενός δυναμικού συστήματος σε δίκτυο, εμφανίζονται σε διάφορους τομείς όπως στην οικολογία, τη διάχυση πληροφορίας, το viral marketing, την επιδημιολογία. Τα δυναμικά συστήματα που προσομοιώνουν τη συμπεριφορά του δικτύου σε τέτοια φαινόμενα, χρησιμοποιούν επιδημιολογικά μοντέλα για να περιγρά- ψουν τις δυνατές καταστάσεις στις οποίες μπορεί να περιέλθει ένας κόμβος. Στη συγκεκριμένη εργασία, χρησιμοποιήσαμε το μοντέλο SIS (Susceptible-Infected-Susceptible) [8].Το μοντέλο SIS δηλώνει ότι ένας κόμβος μπορεί να είναι είτε επιρρεπής στο να ασθενήσει (susceptible) είτε ασθενής (infected). Αυτό σημαί- νει πως ένας κόμβος δεν θεραπεύεται ποτέ πλήρως αλλά υπάρχει πιθανότητα να ασθενήσει πάλι. Με βάση τη βιβλιογραφία, σε ένα τέτοιο δυναμικό σύστημα, αναζητούμε κά- ποια σημεία (fixed points) στα οποία το σύστημα θα ισορροπεί. Υπάρχουν σημεία τα οποία είναι σημεία ισορροπίας αλλά δεν είναι σταθερά. Σε αυτά τα σημεία, το σύστημα μπορεί στιγμιαία να ισορροπήσει αλλά ξεφεύγει πολύ εύκολα από αυτό. Αναζητούμε συνεπώς, σταθερά σημεία ισορροπίας, τα λεγόμενα stable fixed points. Έχει αποδειχτεί [6] ότι μπορούμε σε αυτά στα σημεία να καθορίσουμε τις απαραίτητες συνθήκες για να είναι σταθερά, περιορίζοντας τη μέγιστη ιδιοτιμή του μητρώου γειτνίασης που περιγράφει το δίκτυο. Ορίζονται δηλαδή κατώφλια (thresholds) κατά περίπτωση, που περιορίζουν την μέγιστη ιδιοτιμή του δικτύου με τέτοιο τρόπο ώστε το σύστημα, να βρίσκεται σε κατάσταση ισορροπίας. Στην πε- ρίπτωση που αναφερόμαστε στο φαινόμενο της επιδημίας, στόχος είναι στο αντί- στοιχο σημείο ισορροπίας η μέγιστη ιδιοτιμή να είναι κάτω του κατωφλίου, έτσι ώστε να εξασφαλίσουμε τον περιορισμό εξάπλωσης της επιδημίας στο δίκτυο. Στην περίπτωση που αναφερόμαστε σε μία είδηση ή ένα ανταγωνιστικό προϊόν, η μέγιστη ιδιοτιμή θέλουμε να είναι άνω του αντίστοιχου κατωφλίου έτσι ώστε να έχουμε εξάπλωση στο δίκτυο. Επομένως ανάλογα με την περίπτωση, αντιμε- τωπίζουμε διαφορετικά τα κατώφλια που υπολογίζονται για το αντίστοιχο σημείο ισορροπίας. Στα πλαίσια της μεταπτυχιακής εργασίας, χρησιμοποιήσαμε το μοντέλο SIS για να περιγράψουμε το φαινόμενο όπου ένας ιός εξαπλώνεται σε ένα δίκτυο όπου οι κόμβοι του δικτύου, έχουν διαφορετική ευαισθησία απέναντί του. Πραγματο- ποιήσαμε μαθηματική περιγραφή του μοντέλου, ορίζοντας τα απαραίτητα κατώ- φλια έτσι ώστε το σύστημα να ισορροπεί ανάλογα με το σημείο ισορροπίας αλλά και το είδος του γραφήματος. Επίσης, πραγματοποιήσαμε προσομοίωση του μο- ντέλου σε συνθετικά γραφήματα (κλίκα, αυθαίρετο γράφημα κ.α), επαληθεύοντας τη συμπεριφορά που υποδεικνύει το μαθηματικό μοντέλο. / Which is the appropriate answer about the definition of a network? One could answer that a group of people who share a relationship (colleagues, students etc) could be referred to, as a network. Another possible definition, is a computer network. Consequently, it is obvious that the idea of a network can be found in various ways in our daily life. In the same terms, suppose we have one competing idea/product or a virus that propagates over a multiple profile social (or other) network. Can we predict what proportion of the network will actually get ”infected” (e.g., spread the idea or buy the competing product), when the nodes of the network appear to have different sensitivity based on their profile? For example, if there are two profiles A, B in a network and the nodes of profile A and profile B are susceptible to a highly spreading virus with probabilities βA and βB respectively, what percentage of both profiles will actually get infected from the virus in the end? The behavior of such a network, can be simulated using dynamical systems theory. We consider a dynamical system as a system with a set of possible states where each future state, is computed based on the previous state. Dynamical System Applications, can be found in many fields such as viral marketing, ecology, information diffusion and virus propagation. In order to simulate the rumor or virus which is spreading across the network, one has to use virus propagation models. The selection of the appropriate model, depends on the special attributes and characteristics of the spreading rumor/virus and it should cover all the possible states in which a node in the network can be (sick, healthy,susceptible, informed, not informed etc). According to Dynamical Systems Theory, we are looking for possible fixed points where the system is in equilibrium. In particular, we would require each fixed point to be a stable attractor and not lead the system far away from the equilibrium point due to opposing forces (stable fixed points). It has been proven that limiting the leading eigenvalue of the adjacency matrix of the graph, is the only condition required, in order for the system to be in equilibrium state, in the corresponding fixed point. In this paper, we assume an SIS propagation model [8] which is applied on a heterogeneous network. That is, we assume that there is no fair game using the terminology of [14, 3]. In the SIS model, each node can be either in a susceptible (S) state or in the infected state (I) and as result there is no permanent immunity and every node can get infected multiple times.Since this is the first theoretical treatment of heterogeneous environments for virus propagation, we choose to work in the simple model of SIS and not in other models. Suppose that we are given a social network and a rumor that spreads over it, where the nodes of the network represent people with high/low sensitivity to the rumor and the links represent the association of the nodes, how will the rumor propagate over the network? That is, can we determine whether all members of the network will reproduce the rumor to their neighbors and ”infect” them or the rumor will spread in a small group in the network and die out quickly? Similarly, which is the tipping point where such a rumor or infectious virus will take off? It would be very helpful if we could find the specific point when the ”virus” spreads all over the network and an epidemic occurs. Finally, what is the case when the nodes have different endurance/sensitivity to the ”virus” and have temporary or permanent immunity? Our basic assumption and innovation when compared to all previous approaches is that there is no fair-play and nodes have different profile against the virus. That is, the network is heterogeneous with respect to the virus, which means that nodes have different sensitivity to it. This is one of our main contributions in comparison with previous results where all nodes appear to have the same behavior towards the virus and the same model parameters. The propagation model which is followed, resembles the SIS (no immunity like flu) model where nodes are either susceptible or infected but with modifications. All nodes can get infected from one another, despite the difference of their profiles. We prove and present the tipping point where the virus is about to spread all over the network or the rumor ”infect” every member of the network and result in a ”viral” phenomenon. Our main contribution, is that we provide answers for the questions above, for special topologies such as the clique as well as arbitrary graphs of high or low connectivity. In particular, to the best of our knowledge, we are the first to provide theoretical and experimental findings on the propagation of a virus over a heterogeneous network. We prove that in the case of two profiles, if one profile has high sensitivity to the virus and the other one has low sensitivity, actually nodes from both profiles will get infected proportionally in the case where the network is a clique. For arbitrary networks, we prove necessary conditions for the virus to die out allowing for multiple profiles (not just two), while at the same time we give directions to prove other interesting cases. The problem has many applications in the field of viral marketing, medicine, ecology and other.
140

O teorema de Lefschetz-Hopf e sua relação com outros teoremas clássicos da topologia

Galves, Ana Paula Tremura [UNESP] 27 February 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:26:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-02-27Bitstream added on 2014-06-13T18:30:54Z : No. of bitstreams: 1 galves_apt_me_sjrp.pdf: 719114 bytes, checksum: 3cc285d329c0d629cf2c6ff65c13a201 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Em Topologia, mais especificamente em Topologia Algébrica, temos alguns resultados clássicos que de alguma forma estão relacionados. No desenvolvimento deste trabalho, estudamos alguns desses resultados, a saber: Teorema de Lefschetz-Hopf, Teorema do Ponto Fixo de Lefschetz, Teorema do Ponto Fixo de Brouwer, Teorema da Curva de Jordan e o Teorema Clássico de Borsuk-Ulam. Além disso, tivemos como objetivo principal mostrar relações existentes entre esses teoremas a partir do Teorema de Lefschetz-Hopf. / In Topology, more specifically in Algebraic Topology, we have some classical results that are in some way related. In developing this work, we studied some of these results, namely the Lefschetz-Hopf Theorem, the Lefschetz Fixed Point Theorem, the Brouwer Fixed Point Theorem, the Jordan Curve Theorem and the Classic Borsuk-Ulam Theorem. Moreover, our main objective was to show relationships among those theorems by using Lefschetz-Hopf Theorem.

Page generated in 0.2547 seconds