• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 7
  • 6
  • 2
  • 1
  • Tagged with
  • 79
  • 34
  • 29
  • 28
  • 24
  • 22
  • 20
  • 17
  • 17
  • 16
  • 16
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Modelling and controlling a bio-inspired flapping-wing micro aerial vehicle

Smith, David Everett 17 January 2012 (has links)
The objective of this research is to verify the three degree of freedom capabilities of a bio-inspired quad flapping-wing micro aerial vehicle in simulation and in hardware. The simulation employs a nonlinear plant model and input-output feedback linearization controller to verify the three degree of freedom capabilities of the vehicle. The hardware is a carbon fiber test bench with four flapping wings and an embedded avionics system which is controlled via a PD linear controller. Verification of the three degree of freedom capabilities of the quad flapping-wing concept is achieved by analyzing the response of both the simulation and test bench to pitch, roll, and yaw attitude commands.
72

QV: the quad winged, energy efficient, six degree of freedom capable micro aerial vehicle

Ratti, Jayant 21 April 2011 (has links)
The conventional Mini and Large scale Unmanned Aerial Vehicle systems span anywhere from approximately 12 inches to 12 feet; endowing them with larger propulsion systems, batteries/fuel-tanks, which in turn provide ample power reserves for long-endurance flights, powerful actuators, on-board avionics, wireless telemetry etc. The limitations thus imposed become apparent when shifting to Micro Aerial Vehicles (MAVs) and trying to equip them with equal or near-equal flight endurance, processing, sensing and communication capabilities, as their larger scale cousins. The conventional MAV as outlined by The Defense Advanced Research Projects Agency (DARPA) is a vehicle that can have a maximum dimension of 6 inches and weighs no more than 100 grams. Under these tight constraints, the footprint, weight and power reserves available to on-board avionics and actuators is drastically reduced; the flight time and payload capability of MAVs take a massive plummet in keeping with these stringent size constraints. However, the demand for micro flying robots is increasing rapidly. The applications that have emerged over the years for MAVs include search&rescue operations for trapped victims in natural disaster succumbed urban areas; search&reconnaissance in biological, radiation, natural disaster/hazard succumbed/prone areas; patrolling&securing home/office/building premises/urban areas. VTOL capable rotary and fixed wing flying vehicles do not scale down to micro sized levels, owing to the severe loss in aerodynamic efficiency associated with low Reynolds number physics on conventional airfoils; whereas, present state of the art in flapping wing designs lack in one or more of the minimum qualities required from an MAV: Appreciable flight time, appreciable payload capacity for on-board sensors/telemetry and 6DoF hovering/VTOL performance. This PhD. work is directed towards overcoming these limitations. Firstly, this PhD thesis presents the advent of a novel Quad-Wing MAV configuration (called the QV). The Four-Wing configuration is capable of performing all 6DoF flight maneuvers including VTOL. The thesis presents the design, conception, simulation study and finally hardware design/development of the MAV. Secondly, this PhD thesis proves and demonstrates significant improvement in on-board Energy-Harvesting resulting in increased flight times and payload capacities of the order of even 200%-400% and more. Thirdly, this PhD thesis defines a new actuation principle called, Fixed Frequency, Variable Amplitude (FiFVA). It is demonstrated that by the use of passive elastic members on wing joints, a further significant increase in energy efficiency and consequently reduction in input power requirements is observed. An actuation efficiency increase of over 100% in many cases is possible. The natural evolution of actuation development led to invention of two novel actuation systems to illustrate the FiFVA actuation principle and consequently show energy savings and flapping efficiency improvement. Lastly, but not in the least, the PhD thesis presents supplementary work in the design, development of two novel Micro Architecture and Control (MARC) avionics platforms (autopilots) for the application of demonstrating flight control and communication capability on-board the Four-Wing Flapping prototype. The design of a novel passive feathering mechanism aimed to improve lift/thrust performance of flapping motion is also presented.
73

Numerical simulation of the unsteady aerodynamics of flapping airfoils

Young, John, Aerospace, Civil & Mechanical Engineering, Australian Defence Force Academy, UNSW January 2005 (has links)
There is currently a great deal of interest within the aviation community in the design of small, slow-flying but manoeuvrable uninhabited vehicles for reconnaissance, surveillance, and search and rescue operations in urban environments. Inspired by observation of birds, insects, fish and cetaceans, flapping wings are being actively studied in the hope that they may provide greater propulsive efficiencies than propellers and rotors at low Reynolds numbers for such Micro-Air Vehicles (MAVs). Researchers have posited the Strouhal number (combining flapping frequency, amplitude and forward speed) as the parameter controlling flapping wing aerodynamics in cruising flight, although there is conflicting evidence. This thesis explores the effect of flapping frequency and amplitude on forces and wake structures, as well as physical mechanisms leading to optimum propulsive efficiency. Two-dimensional rigid airfoils are considered at Reynolds number 2,000 ??? 40,000. A compressible Navier-Stokes simulation is combined with numerical and analytical potential flow techniques to isolate and evaluate the effect of viscosity, leading and trailing edge vortex separation, and wake vortex dynamics. The wake structures of a plunging airfoil are shown to be sensitive to the flapping frequency independent of the Strouhal number. For a given frequency, the wake of the airfoil exhibits ???vortex lock-in??? as the amplitude of motion is increased, in a manner analogous to an oscillating circular cylinder. This is caused by interaction between the flapping frequency and the ???bluff-body??? vortex shedding frequency apparent even for streamlined airfoils at low Reynolds number. The thrust and propulsive efficiency of a plunging airfoil are also shown to be sensitive to the flapping frequency independent of Strouhal number. This dependence is the result of vortex shedding from the leading edge, and an interaction between the flapping frequency and the time for vortex formation, separation and convection over the airfoil surface. The observed propulsive efficiency peak for a pitching and plunging airfoil is shown to be the result of leading edge vortex shedding at low flapping frequencies (low Strouhal numbers), and high power requirements at large flapping amplitudes (high Strouhal numbers). The efficiency peak is governed by flapping frequency and amplitude separately, rather than the Strouhal number directly.
74

Simulation numérique de jets liquides cisaillés par une phase rapide : dynamique de battement à grande échelle et intéraction avec les structures tourbillonnaires / Numerical simulation of liquid jets sheared by a high-speed stream : flapping dynamics and interaction with vortical structures

Odier, Nicolas 18 December 2014 (has links)
L'injection d'un mélange carburant/comburant dans une chambre de combustion d'un turboréacteur ou d'un moteur-fusée fait intervenir un jet liquide, cisaillé par un gaz rapide. Le jet liquide peut être sous certaines conditions sujet à un phénomène de battement à grande échelle. Ce phénomène, dont les mécanismes de base sont aujourd'hui mal connus, peut avoir des conséquences importantes sur la combustion. Nous réalisons dans ce travail une étude numérique de jets liquides cisaillés par une phase rapide, en portant une attention particulière à l'étude de l'interaction entre les structures tourbillonnaires de la phase rapide et le jet liquide. Une nappe liquide plane cisaillée de part et d'autre par une phase rapide est analysée dans un premier temps . Les mécanismes de déstabilisation de cette nappe liquide sont étudiés, ainsi que le contrôle passif du phénomène de battement. Des jets liquides coaxiaux, cisaillés par une couronne de phase rapide, sont ensuite analysés. Les mécanismes de déstabilisation à grande échelle sont étudiés, ainsi que le contrôle passif et actif de cette déstabilisation. La simulation d'une configuration d'écoulement réaliste eau/air est enfin réalisée, en interaction avec les expérimentateurs du LEGI. Une attention particulière est portée à l'écoulement se produisant au sein de la buse d'injection. / Fuel injection in an aircraft engine or in a rocket engine involves a liquid jet sheared by a high-velocity gas. The liquid jet can display, under some specific conditions, a flapping motion. This flapping motion, the basic mechanisms of which are still poorly understood, can significantly impact the combustion process. We perform in this work a numerical study of liquid jets interacting with a high-speed stream and focus on the interactions between the vortical structures in this high-speed stream and the liquid jet. A plane liquid jet surrounded by two high-speed streams is first analysed. The mechanisms leading to the flapping motion are studied, as well as the passive control of this instability. A liquid coaxial jet, sheared by an annular high speed stream, is next analysed. The mechanisms leading to the flapping motion are also analysed, as well as passive and active strategies for controlling this instability. Finally, we perform simulations of an experimental set-up studied at LEGI, focusing on the flow inside the nozzle.
75

Robotic hummingbird: design of a control mechanism for a hovering flapping wing micro air vehicle

Karasek, Matej 21 November 2014 (has links)
<p>The use of drones, also called unmanned aerial vehicles (UAVs), is increasing every day. These aircraft are piloted either remotely by a human pilot or completely autonomously by an on-board computer. UAVs are typically equipped with a video camera providing a live video feed to the operator. While they were originally developed mainly for military purposes, many civil applications start to emerge as they become more affordable.<p><p><p>Micro air vehicles are a subgroup of UAVs with a size and weight limitation; many are designed also for indoor use. Designs with rotary wings are generally preferred over fixed wings as they can take off vertically and operate at low speeds or even hover. At small scales, designs with flapping wings are being explored to try to mimic the exceptional flight capabilities of birds and insects. <p><p><p>The objective of this thesis is to develop a control mechanism for a robotic hummingbird, a bio-inspired tail-less hovering flapping wing MAV. The mechanism should generate moments necessary for flight stabilization and steering by an independent control of flapping motion of each wing.<p><p><p>The theoretical part of this work uses a quasi-steady modelling approach to approximate the flapping wing aerodynamics. The model is linearised and further reduced to study the flight stability near hovering, identify the wing motion parameters suitable for control and finally design a flight controller. Validity of this approach is demonstrated by simulations with the original, non-linear mathematical model.<p><p><p>A robotic hummingbird prototype is developed in the second, practical part. Details are given on the flapping linkage mechanism and wing design, together with tests performed on a custom built force balance and with a high speed camera. Finally, two possible control mechanisms are proposed: the first one is based on wing twist modulation via wing root bars flexing; the second modulates the flapping amplitude and offset via flapping mechanism joint displacements. The performance of the control mechanism prototypes is demonstrated experimentally. / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
76

Design of insect-scale flapping wing vehicles

Nabawy, Mostafa January 2015 (has links)
This thesis contributes to the state of the art in integrated design of insect-scale piezoelectric actuated flapping wing vehicles through the development of novel theoretical models for flapping wing aerodynamics and piezoelectric actuator dynamics, and integration of these models into a closed form design process. A comprehensive literature review of available engineered designs of miniature rotary and flapping wing vehicles is provided. A novel taxonomy based on wing and actuator kinematics is proposed as an effective means of classifying the large variation of vehicle configurations currently under development. The most successful insect-scale vehicles developed to date have used piezoelectric actuation, system resonance for motion amplification, and passive wing pitching. A novel analytical treatment is proposed to quantify induced power losses in normal hover that accounts for the effects of non uniform downwash, wake periodicity and effective flapping disc area. Two different quasi-steady aerodynamic modelling approaches are undertaken, one based on blade element analysis and one based on lifting line theory. Both approaches are explicitly linked to the underlying flow physics and, unlike a number of competing approaches, do not require empirical data. Models have been successfully validated against experimental and numerical data from the literature. These models have allowed improved insight into the role of the wing leading-edge vortex in lift augmentation and quantification of the comparative contributions of induced and profile drag for insect-like wings in hover. Theoretical aerodynamic analysis has been used to identify a theoretical solution for the optimum planform for a flapping wing in terms of chord and twist as a function of span. It is shown that an untwisted elliptical planform minimises profile power, whereas a more highly tapered design such as that found on a hummingbird minimises induced power. Aero-optimum wing kinematics for hovering are also assessed. It is shown that for efficient flight the flapping velocity should be constant whereas for maximum effectiveness the flapping velocity should be sinusoidal. For both cases, the wing pitching at stroke reversal should be as rapid as possible. A dynamic electromechanical model of piezoelectric bending actuators has been developed and validated against data obtained from experiments undertaken as part of this thesis. An expression for the electromechanical coupling factor (EMCF) is extracted from the analytical model and is used to understand the influence of actuator design variables on actuator performance. It is found that the variation in EMCF with design variables is similar for both static and dynamic operation, however for light damping the dynamic EMCF will typically be an order of magnitude greater than for static operation. Theoretical contributions to aerodynamic and electromechanical modelling are integrated into a low order design method for propulsion system sizing. The method is unique in that aside from mass fraction estimation, the underlying models are fully physics based. The transparency of the design method provides the designer with clear insight into effects of changing core design variables such as the maximum flapping amplitude, wing mass, transmission ratio, piezoelectric characteristics on the overall design solution. Whilst the wing mass is only around 10% of the actuator mass, the effective wing mass is 16 times the effective actuator mass for a typical transmission ratio of 10 and hence the wing mass dominates the inertial contribution to the system dynamics. For optimum aerodynamic effectiveness and efficiency it is important to achieve high flapping amplitudes, however this is typically limited by the maximum allowable field strength of the piezoelectric material used in the actuator.
77

AWS Flap Detector: An Efficient way to detect Flapping Auto Scaling Groups on AWS Cloud

Chandrasekar, Dhaarini 07 June 2016 (has links)
No description available.
78

Development, Modelling and Control of a Multirotor Vehicle

Mikkelsen, Markus January 2015 (has links)
The interest of drones in all forms has exploded in the recent years. The development of multirotor vehicles such as quadcopters and octocopters, has reached a point where they are cheap and versatile enough to start becoming a part of everyday life. It is clear to say that the future applications seem limitless. This thesis goes through the steps of development, modelling and control design of an octocopter system. The developed octocopter builds on a concept of using the mini computer Raspberry Pi together with the code generation functionality of Matlab/Simulink. The mathematical modelling of the octocopter includes the thrust and torques generated by the propellers, added with gyroscopic torque. These are combined with the aerodynamic effects caused by incoming air. The importance of modelling the later mentioned effects has increased with the demand of precise controlled extreme manoeuvres. A full state feedback based hybrid controller scheme is designed against a linearized model, which makes use of the motor dynamics. The controllers show good performance in simulations and are approved for flight tests, which are conducted on two separate occasions. The octocopter makes two successful flights, proving that the concept can be applied on multirotor vehicles. However, there is a miss-match between the mathematical model and the physical octocopter, leaving questions for future work.
79

Canonical Decomposition of Wing Kinematics for a Straight Flying Insectivorous Bat

Fan, Xiaozhou 22 January 2018 (has links)
Bats are some of the most agile flyers in nature. Their wings are highly articulated which affords them very fine control over shape and form. This thesis investigates the flight of Hipposideros Pratti. The flight pattern studied is nominally level and straight. Measured wing kinematics are used to describe the wing motion. It is shown that Proper Orthogonal Decomposition (POD) can be used to effectively to filter the measured kinematics to eliminate outliers which usually manifest as low energy higher POD modes, but which can impact the stability of aerodynamic simulations. Through aerodynamic simulations it is established that the first two modes from the POD analysis recover 62% of the lift, and reflect a drag force instead of thrust, whereas the first three modes recover 77% of the thrust and even more lift than the native kinematics. This demonstrates that mode 2, which features a combination of spanwise twisting (pitching) and chordwise cambering, is critical for the generation of lift, and more so for thrust. Based on these inferences, it is concluded that the first 7 modes are sufficient to represent the full native kinematics. The aerodynamic simulations are conducted using the immersed boundary method on 128 processors. They utilize a grid of 31 million cells and the bat wing is represented by about 50000 surface elements. The movement of the immersed wing surface is defined by piecewise cubic splines that describe the time evolution of each control point on the wing. The major contribution of this work is the decomposition of the native kinematics into canonical flapping wing physical descriptors comprising of the flapping motion, stroke-plane deviation, pitching motion, chordwise, and spanwise cambering. It is shown that the pitching mode harvests a Leading Edge Vortex (LEV) during the upstroke to produce thrust. It also stabilizes the LEV during downstroke, as a result, larger lift and thrust production is observed. Chordwise cambering mode allows the LEV to glide over and cover a large portion of the wing thus contributing to more lift while the spanwise cambering mode mitigates the intensification of LEV during the upstroke by relative rotation of outer part of the wing ( hand wing ) with respect to the inner part of the wing ( arm wing). While this thesis concerns itself with near straight-level flight, the proposed decomposition can be applied to any complex flight maneuver and provide a basis for unified comparison not only over different bat flight regimes but also across other flying insects and birds. / MS / Bats are some of the most agile flyers in nature. Their wings are highly articulated which affords them very fine control over shape and form. This thesis investigates the flight of Hipposideros Pratti. The flight pattern studied is nominally level and straight. Measured wing kinematics are used to describe the wing motion. The central motivation of the thesis is to characterize how the bat uses its wings to generate lift to counter gravity and thrust to move forward against drag forces. A mathematical filter based on Proper Orthogonal Decomposition (POD) is used to filter the measured wing motion to eliminate high frequency noise in the data but at the same time including including the important motions which produce lift and thrust. The filtered native kinematics is decomposed into flapping wing motions comprising of flapping mode, stroke-plane deviation, pitching motion, chordwise, and spanwise cambering. It is shown that the pitching mode harvests the low pressure region created by the Leading Edge Vortex (LEV) during the upstroke to produce thrust. It also stabilizes the LEV during the downstroke, as a result, larger lift and thrust production is observed. Chordwise cambering mode allows the LEV to glide over and cover a large portion of the wing thus contributing to more lift, while the spanwise cambering mode mitigates the intensification of LEV during the upstroke by relative rotation of the outer part of the wing (hand wing) with respect to the inner part of the wing (arm wing). While this thesis concerns itself with near straight-level flight, the proposed decomposition can be applied to any complex flight maneuver and provide a basis for unified comparison not only over different bat flight regimes but also across other flying insects and birds.

Page generated in 0.0518 seconds