• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 65
  • 61
  • 14
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 415
  • 415
  • 415
  • 106
  • 98
  • 88
  • 85
  • 83
  • 65
  • 64
  • 62
  • 58
  • 56
  • 55
  • 52
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Réduction de modèle et contrôle d'écoulements / Reduced-order modelling and flow control

Tissot, Gilles 02 October 2014 (has links)
Le contrôle d'écoulements turbulents est un enjeu majeur en aérodynamique. Cependant, la présence d'un grand nombre de degrés de libertés et d'une dynamique complexe rend délicat la modélisation dynamique de ces écoulements qui est pourtant nécessaire à la conception d'un contrôle efficace. Au cours de cette thèse, différentes directions ont été suivies afin de développer des modèles réduits dans des configurations réalistes d'écoulements et d'utiliser ces modèles pour le contrôle.Premièrement, la décomposition en modes dynamiques (DMD), et certaines de ses variantes, ont été exploitées en tant que base réduite afin d'extraire au mieux le comportement dynamique de l'écoulement. Par la suite, nous nous sommes intéressés à l'assimilation de données 4D-Var qui permet de combiner des informations inhomogènes provenant d'un modèle dynamique, d'observations et de connaissances a priori du système. Nous avons ainsi élaboré des modèles réduits POD et DMD d'un écoulement turbulent autour d'un cylindre à partir de données expérimentales PIV. Finalement, nous avons considéré le contrôle d'écoulement dans un contexte d'interaction fluide/structure. Après avoir montré que les mouvements de solides immergés dans le fluide pouvaient être représentés comme une contrainte supplémentaire dans le modèle réduit, nous avons stabilisé un écoulement de sillage de cylindre par oscillation verticale. / Control of turbulent flows is still today a challenge in aerodynamics. Indeed, the presence of a high number of active degrees of freedom and of a complex dynamics leads to the need of strong modelling efforts for an efficient control design. During this PhD, various directions have been followed in order to develop reduced-order models of flows in realistic situations and to use it for control. First, dynamic mode decomposition (DMD), and some of its variants, have been exploited as reduced basis for extracting at best the dynamical behaviour of the flow. Thereafter, we were interested in 4D-variational data assimilation which combines inhomogeneous informations coming from a dynamical model, observations and an a priori knowledge of the system. POD and DMD reduced-order models of a turbulent cylinder wake flow have been successfully derived using data assimilation of PIV measurements. Finally, we considered flow control in a fluid-structure interaction context. After showing that the immersed body motion can be represented as an additional constraint in the reduced-order model, we stabilized a cylinder wake flow by vertical oscillations.
342

Interação fluido-estrutura com escoamentos incompressíveis utilizando o método dos elementos finitos / Incompressible fluid-structure interaction using the finite element method

Fernandes, Jeferson Wilian Dossa 01 March 2016 (has links)
A interação entre fluidos e estruturas caracteriza um problema multi-físico não linear e está presente numa grande variedade de áreas da engenharia. Este trabalho apresenta o desenvolvi mento de ferramentas computacionais com base no Método dos Elementos Finitos (MEF) para a análise de interação fluido-estrutura (IFE) considerando escoamentos com baixas velocidades. Dada a interdisciplinaridade do tema, se faz necessário o estudo em três diferentes assuntos: a dinâmica das estruturas computacional, a dinâmica dos fluidos computacional, e o problema de acoplamento. No caso da dinâmica das estruturas empregar-se um elemento finito que seja adequado para a simulação de problemas de IFE, que claramente demandam uma análise não linear geométrica, optando-se pelo emprego de uma formulação descrita em posições, a qual evita problemas relativos à aproximação de rotações finitas. Quanto à dinâmica dos fluidos computacional, é empregado um método estável e ao mesmo tempo sensível à movimentação da estrutura, utilizando a descrição Lagrangeana-Euleriana Arbitrária (ALE). Os casos considerados neste trabalho, assim como muitos dos problemas de engenharia, ocorrem com escoamentos em baixas velocidades, implicando na incompressibilidade do fluido, o que demanda, para um método estável, a utilização de elementos que atendam à condição de Ladyzhenskaya-Babuska-Brezzi (LBB). Além disso, é necessário também o emprego de métodos que consigam neutralizar as variações espúrias decorrentes da não-linearidade de possíveis escoamentos com convecção dominante e que surgem com a aplicação do processo clássico de Galerkin. Para superar esse problema, é aplicado o método Streamline-Upwind/Petrov-Galerkin (SUPG), que adiciona difusividade artificial na direção do escoamento, controlando a amplitude dos termos convectivos. No que se refere ao acoplamento fluido-casca, buscam-se modularidade e versatilidade adotando-se o modelo particionado. O modelo de acoplamento implementado garante ainda a utilização de malhas do fluido e da estrutura sem a necessidade de coincidência de nós. / Interaction between fluids and structures characterizes a nonlinear multi-physics problem presente in a wide range of engineering fields. This works presets the development of computational tools based on finite element method (FEM) for fluid-structure interaction (FSI) analysis considering low speed flows (incompressible), as a great part of the engineering problems. Given the topic multidisciplinary nature, it is necessary to study three different subjects: the computational structural dynamics, the computational fluid mechanics and the coupling problem. Regarding structural mechanics, we seek to employ a finite element adequate to FSI simulation, what clearly demands a geometric nonlinear analysis. We chose to employ shell elements with formulation in terms of positions, which avoids problems related to finite rotations approximations. Concerning computational fluid dynamics, we employ a stable method, at same time sensible o structural movements, which is written in the arbitrary Lagrangian-Eulerian (ALE) description. The flow incompressibility demands, for a stable method, the use of elements according to the Ladyzhenskaya-Bbuska-Brezzi (LBB) condition. It is also necessary to employ methods able to neutralize the spurious variations that appears from convection dominated flows when applying the standard Galerking method. In order to overcome this problem, we apply the Streamline-Upwind/Petrov-Galerkin (SUPG) method, which adds artificial diffusivity to the streamline direction, controlling spurious variations. Considering the fluid-shell coupling, we seek modularity and versatility, adopting the partitioned model. The developed coupling model ensure the use of fluid and structure meshes with no need for matching nodes.
343

Simulação numérica paralela do escoamento ao redor de risers. / Parallel numerical simulation of the flow around risers.

Flatschart, Ricardo Becht 16 April 2007 (has links)
Neste trabalho, a resposta dinâmica de um riser marítimo devido à geração e desprendimento alternado de vórtices é investigada numericamente. O riser é dividido em seções bidimensionais ao longo de seu comprimento. O Método dos Vórtices Discretos é empregado para a determinação das forças hidrodinâmicas que agem nestas seções bidimensionais. As seções hidrodinâmicas são resolvidas independentemente, e o acoplamento entre as mesmas é feito através da solução da estrutura no domínio do tempo pelo Método dos Elementos Finitos. Os resultados numéricos são comparados com resultados obtidos experimentalmente. Processamento paralelo é empregado para melhorar a performance do método. As simulações são realizadas através de uma metodologia mestre-escravo, utilizando MPI Message Passing Interface para explorar o paralelismo. A escalabilidade do algoritmo é mostrada e discutida. Este trabalho representa o desenvolvimento de um simulador que permite, efetivamente, a análise dinâmica de um riser com características e dimensões representativas das condições reais encontradas em campo, a um custo computacional factível para seu uso como uma ferramenta de engenharia. Isto é obtido por meio da técnica de processamento paralelo, aliada à solução do escoamento através de um método eficiente de CFD Método dos Vórtices Discretos e à solução da estrutura através do Método dos Elementos Finitos. / In this work the dy6namic response of a marine riser due to vortex shedding is numerically investigated. The riser is divided in two-dimensional sections along the riser length. The Discrete Vortex Method is employed for the assessment of the hydrodynamic forces acting on these two-dimensional sections. The hydrodynamic sections are solved independently, and the coupling among the sections is taken into account by the solution of the structure in the time domain by the Finite Element Method. The numerical results are compared with results obtained experimentally. Parallel processing is employed to improve the performance of the method. The simulations are carried out through a master-slave approach using MPI Message Passing Interface to exploit the parallelism. Scalability of the algorithm is shown and discussed. This work represents the development of a simulator that effectively allows the dynamic analysis of a riser with representative characteristics and dimensions of real field conditions, with a feasible computational cost for its use as an engineering tool. This is obtained by means of the parallel processing technique, together with an efficient CFD solution of the flow with de Discrete Vortex Method and the solution of the structure with the Finite Element Method.
344

Modélisation et simulation numérique de la déformation et la rupture de la plaque d'athérosclérose dans les artères / Modeling and numerical simulation of the deformation and the rupture of the plaque of atherosclerosis in the arteries.

Abbas, Fatima 18 April 2019 (has links)
Cette thèse est consacrée à la modélisation mathématique du flux sanguin dans les artères en présence de la sténose à cause de l'athérosclérose. L'athérosclérose est une maladie vasculaire complexe caractérisée par la formation d'une plaque menant au rétrécissement de l'artère. Elle est responsable des crises cardiaques et des accidents vasculaires cérébraux. Quels que soient les nombreux facteurs de risque identifiés - cholestérol et lipides, pression, régime alimentaire malsain et obésité - seuls des facteurs mécaniques et hémodynamiques peuvent donner une cause précise de cette maladie. Dans la première partie de la thèse, nous introduisons le modèle mathématique tridimensionnel décrivant l'introduction entre le sang et la paroi artérielle. Le modèle consiste à coupler la dynamique du flux sanguin donnée par les équations de Navier-Stokes formulées dans le cadre Arbitrary Lagrangian Eulerian (ALE) avec les équations élastodynamiques décrivant l'élasticité de la paroi artérielle considérée comme un matériau hyperélastique modélisé par la loi de comportement non-linéaire de Saint Venant-Kirchhoff en tant que système d'interaction fluide-structure. Théoriquement, nous prouvons l'existence et l'unicité locale dans le temps de la solution pour ce système lorsque le fluide est supposé être un fluide homogène Newtonien incompressible et que la structure est décrite par la loi de comportement non-linéaire quasi-incompressible de Saint Venant-Kirchhoff. Les résultats sont établis en utilisant l'outil clé; le théorème du point fixe. La deuxième partie est consacrée à l'analyse numérique de ce modèle. Le sang est considéré comme un fluide non-Newtonien dont le comportement et les propriétés rhéologiques sont décrits par le modèle de Carreau, tandis que la paroi artérielle est un matériau homogène incompressible décrit par les équations élastodynamiques quasi-statiques. Les simulations sont effectuées dans l'espace à deux dimensions R^2 à l'aide du logiciel FreeFem ++ en utilisant la méthode des éléments finis. Nous nous concentrons sur l'étude de la viscosité, de la vitesse et des contraintes de cisaillement maximale. En outre, nous visons à localiser les zones de recirculation qui sont formées à la suite de l'existence de la sténose. En se basant sur de ces résultats, nous procédons à la détection de la zone de solidification où le sang passe de l'état liquide à un matériau de type gelée. Ensuite, nous spécifions que le sang solidifié est un matériau élastique linéaire qui obéit à la loi de Hooke et qui subit à une force de surface externe représentant la contrainte exercée par le sang sur la zone de solidification. Les résultats numériques concernant le sang solidifié sont obtenus en résolvant les équations d'élasticité linéaires à l'aide de FreeFem ++. Nous analysons principalement la déformation de cette zone ainsi que les contraintes de cisaillement la paroi. Les résultats obtenus vont nous permettre de proposer une hypothèse pour la formulation d'un modèle de rupture. / This thesis is devoted to the mathematical modeling of the blood flow in stenosed arteries due to atherosclerosis. Atherosclerosis is a complex vascular disease characterized by the build up of a plaque leading to the narrowing of the artery. It is responsible for heart attacks and strokes. Regardless of the many risk factors that have been identified- cholesterol and lipids, pressure, unhealthy diet and obesity- only mechanical and hemodynamic factors can give a precise cause of this disease. In the first part of the thesis, we introduce the three dimensional mathematical model describing the blood-wall setting. The model consists of coupling the dynamics of the blood flow given by the Navier-Stokes equations formulated in the Arbitrary Lagrangian Eulerian (ALE) framework with the elastodynamic equations describing the elasticity of the arterial wall considered as a hyperelastic material modeled by the non-linear Saint Venant-Kirchhoff model as a fluid-structure interaction (FSI) system. Theoretically, we prove local in time existence and uniqueness of solution for this system when the fluid is assumed to be an incompressible Newtonian homogeneous fluid and the structure is described by the quasi-incompressible non-linear Saint Venant-Kirchhoff model. Results are established relying on the key tool; the fixed point theorem. The second part is devoted for the numerical analysis of the FSI model. The blood is considered to be a non-Newtonian fluid whose behavior and rheological properties are described by Carreau model, while the arterial wall is a homogeneous incompressible material described by the quasi-static elastodynamic equations. Simulations are performed in the two dimensional space R^2 using the finite element method (FEM) software FreeFem++. We focus on investigating the pattern of the viscosity, the speed and the maximum shear stress. Further, we aim to locate the recirculation zones which are formed as a consequence of the existence of the stenosis. Based on these results we proceed to detect the solidification zone where the blood transits from liquid state to a jelly-like material. Next, we specify the solidified blood to be a linear elastic material that obeys Hooke's law and which is subjected to an external surface force representing the stress exerted by the blood on the solidification zone. Numerical results concerning the solidified blood are obtained by solving the linear elasticity equations using FreeFem++. Mainly, we analyze the deformation of this zone as well as the wall shear stress. These analyzed results will allow us to give our hypothesis to derive a rupture model.
345

Sobre o acoplamento fluido-casca utilizando o método dos elementos finitos / On fluid-shell coupling using the finite element method

Sanches, Rodolfo André Kuche 30 March 2011 (has links)
Este trabalho consiste no desenvolvimento de ferramentas computacionais para análise não linear geométrica de interação fluido-casca utilizando o Método dos Elementos Finitos (MEF). O algoritmo para dinâmica dos fluidos é explícito e a integração temporal é baseada em linhas características. O código computacional é capaz de simular as equações de Navier-Stokes para escoamentos compressíveis tanto na descrição Euleriana como na descrição Lagrangeana-Euleriana arbitrária (ALE), na qual é possível prescrever movimentos para a malha do fluido. A estrutura é modelada em descrição Lagrangeana total através de uma formulação de MEF para análise dinâmica não linear geométrica de cascas baseada no teorema da mínima energia potencial total escrito em função das posições nodais e vetores generalizados e não em deslocamentos e rotações. Essa característica evita o uso de aproximações de grandes rotações. Dois modelos de acoplamentos são desenvolvidos. O primeiro modelo, ideal para problemas onde a escala de deslocamentos não é muito grande comparada com as dimensões do domínio do fluido, é baseado na descrição ALE e o acoplamento entre as duas diferentes malhas é feito através do mapeamento das posições locais dos nós do contorno do fluido sobre os elementos de casca e vice-versa, evitando a necessidade de coincidência entre os nós da casca e do fluido. A malha do fluido é adaptada dinamicamente usando um procedimento simples baseado nas posições e velocidades nodais da casca. O segundo modelo de acoplamento, ideal para problemas com grande escala de deslocamentos tais como estruturas infláveis, considera a casca imersa na malha do fluido e consiste em um procedimento robusto baseado em curvas de nível da função distância assinalada do contorno, o qual integra o algoritmo Lagrangeano de casca com o Fluido em descrição Euleriana, sem necessidade de movimentação da malha do fluido, onde a representação computacional do fluido se resume a uma malha não estruturada maior ou igual ao domínio inicial do fluido e a interface fluido-casca dentro da malha do fluido é identificada por meio de curvas de nível da função distância assinalada do contorno. Ambos os modelos são testados através de exemplos numéricos mostrando robustez e eficiência. Finalmente, como uma sugestão para o futuro desenvolvimento desta pesquisa, iniciaram-se estudos relativos a funções B-splines. O uso desse tipo de funções deverá resolver problemas de estabilidade relativos a oscilações espúrias devidas ao uso de polinômios de Lagrange para a representação de descontinuidades. / This work consists of the development of computational tools for nonlinear geometric fluid-shell interaction analysis using the Finite Element Method (FEM). The fluid solver is explicit and its time integration based on characteristics. The computational code is able to simulate the Navier-Stokes equations for compressible flows written in the Eulerian description as well as in the arbitrary Lagrangian-Eulerian (ALE) description, enabling movements prescription for the fluid mesh. The structure is modeled in a total Lagrangian description, using a FEM formulation to deal with geometrical nonlinear dynamics of shells based on the minimum potential energy theorem written regarding nodal positions and generalized unconstrained vectors, not displacements and rotations, avoiding the use of large rotation approximations. Two partitioned coupling models are developed. The first model, ideal for simulations where the displacements scale is not very large compared to the fluid domain, is based on the ALE description and the coupling between the two different meshes is done by mapping the fluid boundary nodes local positions over the shell elements and vice-versa, avoiding the need for matching fluid and shell nodes. The fluid mesh is adapted using a simple approach based on shell nodal positions and velocities. The second model, ideal for problems with large scales of displacements such as inflatable structures, is based on immersed boundary and consists of a robust level-set based approach that integrates the Lagrangian shell finite and the Eulerian finite element high speed fluid flow solver, with no need for mesh adaptation, where the fluid representation relies on a fixed unstructured mesh larger or equal to the initial fluid domain and the fluid-shell interface inside the fluid mesh is tracked with level sets of a boundary signed distance function. Both models are tested with numerical examples, showing efficiency and robustness. Finally, as a suggestion for future development of this research, we started studies relatives to B-Spline functions. The use of this kind of functions should solve stability problems related to spurious oscillations due to the use of Lagrange polynomials for representing discontinuities.
346

Low-order coupled map lattices for estimation of wake patterns behind vibrating flexible cables

Balasubramanian, Ganapathi Raman 08 September 2003 (has links)
"Fluid-structure interaction arises in a wide array of technological applications including naval and marine hydrodynamics, civil and wind engineering and flight vehicle aerodynamics. When a fluid flows over a bluff body such as a circular cylinder, the periodic vortex shedding in the wake causes fluctuating lift and drag forces on the body. This phenomenon can lead to fatigue damage of the structure due to large amplitude vibration. It is widely believed that the wake structures behind the structure determine the hydrodynamic forces acting on the structure and control of wake structures can lead to vibration control of the structure. Modeling this complex non-linear interaction requires coupling of the dynamics of the fluid and the structure. In this thesis, however, the vibration of the flexible cylinder is prescribed, and the focus is on modeling the fluid dynamics in its wake. Low-dimensional iterative circle maps have been found to predict the universal dynamics of a two-oscillator system such as the rigid cylinder wake. Coupled map lattice (CML)models that combine a series of low-dimensional circle maps with a diffusion model have previously predicted qualitative features of wake patterns behind freely vibrating cables at low Reynolds number. However, the simple nature of the CML models implies that there will always be unmodelled wake dynamics if a detailed, quantitative comparison is made with laboratory or simulated wake flows. Motivated by a desire to develop an improved CML model, we incorporate self-learning features into a new CML that is trained to precisely estimate wake patterns from target numerical simulations and experimental wake flows. The eventual goal is to have the CML learn from a laboratory flow in real time. A real-time self-learning CML capable of estimating experimental wake patterns could serve as a wake model in a future anticipated feedback control system designed to produce desired wake patterns. A new convective-diffusive map that includes additional wake dynamics is developed. Two different self-learning CML models, each capable of precisely estimating complex wake patterns, have been developed by considering additional dynamics from the convective-diffusive map. The new self-learning CML models use adaptive estimation schemes which seek to precisely estimate target wake patterns from numerical simulations and experiments. In the first self-learning CML, the estimator scheme uses a multi-variable least-squares algorithm to adaptively vary the spanwise velocity distribution in order to minimize the state error (difference between modeled and target wake patterns). The second self-learning model uses radial basis function neural networks as online approximators of the unmodelled dynamics. Additional unmodelled dynamics not present in the first self-learning CML model are considered here. The estimator model uses a combination of a multi-variable normalized least squares scheme and a projection algorithm to adaptively vary the neural network weights. Studies of this approach are conducted using wake patterns from spectral element based NEKTAR simulations of freely vibrating cable wakes at low Reynolds numbers on the order of 100. It is shown that the self-learning models accurately and efficiently estimate the simulated wake patterns within several shedding cycles. Next, experimental wake patterns behind different configurations of rigid cylinders were obtained. The self-learning CML models were then used for off-line estimation of the stored wake patterns. With the eventual goal of incorporating low-order CML models into a wake pattern control system in mind, in a related study control terms were added to the simple CML model in order to drive the wake to the desired target pattern of shedding. Proportional, adaptive proportional and non-linear control techniques were developed and their control efficiencies compared."
347

Simulação numérica paralela do escoamento ao redor de risers. / Parallel numerical simulation of the flow around risers.

Ricardo Becht Flatschart 16 April 2007 (has links)
Neste trabalho, a resposta dinâmica de um riser marítimo devido à geração e desprendimento alternado de vórtices é investigada numericamente. O riser é dividido em seções bidimensionais ao longo de seu comprimento. O Método dos Vórtices Discretos é empregado para a determinação das forças hidrodinâmicas que agem nestas seções bidimensionais. As seções hidrodinâmicas são resolvidas independentemente, e o acoplamento entre as mesmas é feito através da solução da estrutura no domínio do tempo pelo Método dos Elementos Finitos. Os resultados numéricos são comparados com resultados obtidos experimentalmente. Processamento paralelo é empregado para melhorar a performance do método. As simulações são realizadas através de uma metodologia mestre-escravo, utilizando MPI Message Passing Interface para explorar o paralelismo. A escalabilidade do algoritmo é mostrada e discutida. Este trabalho representa o desenvolvimento de um simulador que permite, efetivamente, a análise dinâmica de um riser com características e dimensões representativas das condições reais encontradas em campo, a um custo computacional factível para seu uso como uma ferramenta de engenharia. Isto é obtido por meio da técnica de processamento paralelo, aliada à solução do escoamento através de um método eficiente de CFD Método dos Vórtices Discretos e à solução da estrutura através do Método dos Elementos Finitos. / In this work the dy6namic response of a marine riser due to vortex shedding is numerically investigated. The riser is divided in two-dimensional sections along the riser length. The Discrete Vortex Method is employed for the assessment of the hydrodynamic forces acting on these two-dimensional sections. The hydrodynamic sections are solved independently, and the coupling among the sections is taken into account by the solution of the structure in the time domain by the Finite Element Method. The numerical results are compared with results obtained experimentally. Parallel processing is employed to improve the performance of the method. The simulations are carried out through a master-slave approach using MPI Message Passing Interface to exploit the parallelism. Scalability of the algorithm is shown and discussed. This work represents the development of a simulator that effectively allows the dynamic analysis of a riser with representative characteristics and dimensions of real field conditions, with a feasible computational cost for its use as an engineering tool. This is obtained by means of the parallel processing technique, together with an efficient CFD solution of the flow with de Discrete Vortex Method and the solution of the structure with the Finite Element Method.
348

Analysis and control of some fluid models with variable density / Analyse et contrôle de certains modèles de fluide à densité variable

Mitra, Sourav 23 October 2018 (has links)
Dans cette thèse, nous étudions des modèles mathématiques concernant certains problèmes d'écoulement de fluide à densité variable. Le premier chapitre résume l'ensemble de la thèse et se concentre sur les résultats obtenus, la nouveauté et la comparaison avec la littérature existante. Dans le deuxième chapitre, nous étudions la stabilisation locale des équations non homogènes de Navier-Stokes dans un canal 2d autour du flot de Poiseuille. Nous concevons un contrôle feedback de la vitesse qui agit sur l'entrée du domaine de sorte que la vitesse et la densité du fluide soient stabilisées autour du flot de Poiseuille, à condition que la densité initiale soit donnée par une constante additionnée d'une perturbation dont le support se situe loin du bord latéral du canal. Dans le troisième chapitre, nous étudions un système couplant les équations de Navier-Stokes compressibles à une structure élastique située à la frontière du domaine fluide. Nous prouvons l'existence locale de solutions solides pour ce système couplé. Dans le quatrième chapitre, notre objectif est d'étudier la nulle- contrôlabilité d'un problemè d'interaction fluide-structure linéarisé dans un canal bi dimensional. L'écoulement du fluide est ici modélisé par les équations de Navier-Stokes compressibles. En ce qui concerne la structure, nous considérons une poutre de type Euler-Bernoulli amortie située sur une partie du bord. Dans ce chapitre, nous établissons une inégalité d'observabilité pour le problème considéré d'interaction fluid-structure linéarisé qui constitue le premier pas vers la preuve de la nulle contrôlabilité du système. / In this thesis we study mathematical models concerning some fluid flow problems with variable density. The first chapter is a summary of the entire thesis and focuses on the results obtained, novelty and comparison with the existing literature. In the second chapter we study the local stabilization of the non-homogeneous Navier-Stokes equations in a 2d channel around Poiseuille flow. We design a feedback control of the velocity which acts on the inflow boundary of the domain such that both the fluid velocity and density are stabilized around Poiseuille flow provided the initial density is given by a constant added with a perturbation, such that the perturbation is supported away from the lateral boundary of the channel. In the third chapter we prove the local in time existence of strong solutions for a system coupling the compressible Navier-Stokes equations with an elastic structure located at the boundary of the fluid domain. In the fourth chapter our objective is to study the null controllability of a linearized compressible fluid structure interaction problem in a 2d channel where the structure is elastic and located at the fluid boundary. In this chapter we establish an observability inequality for the linearized fluid structure interaction problem under consideration which is the first step towards the direction of proving the null controllability of the system.
349

Algorithmes semi-implicites pour des problèmes d’interaction fluide structure : approches procédures partagées et monolithiques / Semi-implicit algorithms for fluid structure interaction problems : shared and monolithic procedures approaches

Sy, Soyibou 23 October 2009 (has links)
Dans cette thèse on a développé des algorithmes semi-implicites procédures partagées et monolithiques pour l'interaction entre un fluide gouverné par le modèle de Navier Stokes et une structure. Dans le premier chapitre, on présente un algorithme semi-implicite procédures partagées pour l'interaction entre un fluide et une structure gouvernée soit par les équations d'élasticité linéaire ou soit par le modèle de Saint-Venant Kirchhoff non linéaire. Dans le second chapitre, on propose un algorithme semi-implicite procédures partagées pour l'interaction entre un fluide et une structure de modèle linéaire et on montre un résultat de stabilité inconditionnelle en temps de l'algorithme. Un problème d'optimisation est résolu dans les deux algorithmes précédents, afin de satisfaire les conditions de continuité des vitesses et d'égalité des contraintes à l'interface. Durant les itérations de BFGS pour résoudre le problème d'optimisation, le maillage fluide reste fixe et la matrice fluide n'est factorisée qu'une seule fois, ce qui réduit l'effort de calcul. Dans le troisième chapitre, un algorithme semi-implicite monolithique pour l'interaction entre un fluide et une structure de modèle linéaire est proposé. L'algorithme utilise un maillage global pour le domaine fluide structure. La condition de continuité des vitesses à l'interface est automatiquement satisfaite et celle de l'égalité des contraintes n'apparaît pas explicitement dans la formulation faible. A chaque pas de temps on résout un système monolithique d'inconnues vitesse et pression définies sur le domaine global. Le temps CPU est réduit quand l'approche monolithique est utilisée à la place des procédures partagées. / Our aim was to develop some partitioned procedures and monolithic semi-implicit algorithms for solving the interaction between a fluid governed by Navier Stokes equations and a structure. In the first chapter, we propose a partitioned procedures semi-implicit algorithm for solving fluid-structure interaction problems, with a structure governed either by linear elasticity equations or by the non-linear Saint-Venant Kirchhoff model. In the second chapter, we present a partitioned procedures semi-implicit algorithm for solving fluid-structure interaction problem with a linear model for the structure and we prove an unconditional stability result of the algorithm. In the above algorithms, an optimization problem must be solved in order to get the continuity of the velocity as well as the continuity of the stress at the interface. During the iterations of BFGS for solving the optimization problem, the fluid mesh does not move and the fluid matrix is only factorized once, which reduces the computational effort. In the fast chapter, we present a monolithic semi-implicit algorithm for solving fluid-structure interaction problem with linear model for the structure. The algorithm uses one global mesh for the fluid-structure domain. The continuity of velocity at the interface is automatically satisfied and the continuity of stress does not appear explicitly in the global weak form due to the action and reaction principle. At each time step, we have to solve a monolithic system of unknowns velocity and pressure defined on the global fluid-structure domain. When the monolithic approach is used the CPU time is reduced compared to a particular partitioned procedures strategy.
350

Modelling of wave impact on offshore structures

Abdolmaleki, Kourosh January 2007 (has links)
[Truncated abstract] The hydrodynamics of wave impact on offshore structures is not well understood. Wave impacts often involve large deformations of water free-surface. Therefore, a wave impact problem is usually combined with a free-surface problem. The complexity is expanded when the body exposed to a wave impact is allowed to move. The nonlinear interactions between a moving body and fluid is a complicated process that has been a dilemma in the engineering design of offshore and coastal structures for a long time. This thesis used experimental and numerical means to develop further understanding of the wave impact problems as well as to create a numerical tool suitable for simulation of such problems. The study included the consideration of moving boundaries in order to include the coupled interactions of the body and fluid. The thesis is organized into two experimental and numerical parts. There is a lack of benchmarking experimental data for studying fluid-structure interactions with moving boundaries. In the experimental part of this research, novel experiments were, therefore, designed and performed that were useful for validation of the numerical developments. By considering a dynamical system with only one degree of freedom, the complexity of the experiments performed was minimal. The setup included a plate that was attached to the bottom of a flume via a hinge and tethered by two springs from the top one at each side. The experiments modelled fluid-structure interactions in three subsets. The first subset studied a highly nonlinear decay test, which resembled a harsh wave impact (or slam) incident. The second subset included waves overtopping on the vertically restrained plate. In the third subset, the plate was free to oscillate and was excited by the same waves. The wave overtopping the plate resembled the physics of the green water on fixed and moving structures. An analytical solution based on linear potential theory was provided for comparison with experimental results. ... In simulation of the nonlinear decay test, the SPH results captured the frequency variation in plate oscillations, which indicated that the radiation forces (added mass and damping forces) were calculated satisfactorily. In simulation of the nonlinear waves, the waves progressed in the flume similar to the physical experiments and the total energy of the system was conserved with an error of 0.025% of the total initial energy. The wave-plate interactions were successfully modelled by SPH. The simulations included wave run-up and shipping of water for fixed and oscillating plate cases. The effects of the plate oscillations on the flow regime are also discussed in detail. The combination of experimental and numerical investigation provided further understanding of wave impact problems. The novel design of the experiments extended the study to moving boundaries in small scale. The use of SPH eliminated the difficulties of dealing with free-surface problems so that the focus of study could be placed on the impact forces on fixed and moving bodies.

Page generated in 0.1114 seconds