• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 65
  • 61
  • 14
  • 9
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 412
  • 412
  • 412
  • 104
  • 98
  • 88
  • 85
  • 81
  • 64
  • 64
  • 62
  • 58
  • 55
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

A Novel Micro Fluid Kinetic Energy Harvester Based on the Vortex-Induced Vibration Principle and the Piezo Effect

Wen, Quan 13 October 2015 (has links)
In this thesis, a miniaturized energy harvester system is developed. The energy harvester converts fluid kinetic energy into electrical energy without using any rotating components. The working principle of the energy harvester is based on the so called vortex-induced vibration. Such systems have the potential to provide energy for wireless sensor networks in the field of inline measurements for gas, oil or water transportation systems. The theoretical background of the vortex-induced vibration (VIV) is studied. Based on the studies, a fluid-structure interaction simulation is carried out to optimize the structure of the energy harvester. As result, the conversion efficiency is significantly improved, which is experimentally confirmed. A series of demonstrators are manufactured according to the simulation and optimization results. It is tested on a self-constructed test bench. To further improve the performance, an electromagnetic generator is proposed, and therefore, a multimethod demonstrator realized. The demonstrators are working in air flow already at a velocity of 2 m/s, and reach the maximum efficiency at 3.6 m/s. This performance ranks among the best published results and is discussed in detail. / In der vorliegenden Arbeit wird ein miniaturisiertes Energiegewinnungssystem entwickelt, das unter Verzicht auf rotierende Komponenten kinetische Strömungsenergie in elektrische Energie umwandelt. Die Funktion dieses Wandlers basiert auf der sogenannten wirbelinduzierten Vibration. Derartige Systeme besitzen unter anderem das Potenzial, drahtlose Sensornetzwerke zur Erfassung von Messdaten in Gas-, Öl- oder Wassertransportsystemen mit Energie zu versorgen zu können. In der Arbeit wird der theoretische Hintergrund der wirbelinduzierten Vibration untersucht und darauf basierend werden Fluid-Struktur-Wechselwirkungssimulationen zur Strukturoptimierung durchgeführt in deren Ergebnis eine theoretische Verbesserung der Effizienz des Wandlers um ein Mehrfaches erreicht wird, die auch praktisch bestätigt wird. Unter Berücksichtigung der Simulations- und Optimierungsergebnisse wurden eine Reihe von Demonstratoren gefertigt, die auf einem selbst konstruierten Prüfstand getestet wurden. Zur weiteren Erhöhung der Leistungsfähigkeit des Wandlers wird ein zusätzlicher elektromagnetischer Generator vorgeschlagen und damit ein Multi-Methoden-Demonstrator technisch realisiert. Die Demonstratoren arbeiten in strömender Luft bereits bei Geschwindigkeiten von 2 m/s und erreichen bei 3,6 m/s ihre maximale Effizienz. Die erreichten Ergebnisse ordnen sich im Vergleich mit denen aus entsprechenden Publikationen vorn ein und werden ausführlich diskutiert.
412

Rheology of suspension of fibers: Microscopic interaction to macroscopic rheology

Md Monsurul Islam Khan (6911054) 21 July 2023 (has links)
<p>Fibre suspensions in the fluid medium are common in industry, biology, and the environment. Industrial examples of concentrated suspensions include fresh concrete, uncured solid rocket fuel, and biomass slurries; natural examples include silt transfer in rivers and red blood cells in the blood.  These suspensions often include a Newtonian fluid as their suspending medium; still, these suspensions exhibit a plethora of non-Newtonian properties, such as yield stresses, rate-dependent rheology, and normal stresses, to name a few. Other than volume fraction, the type of fiber material, the presence of fluid-fiber or fiber-fiber interactions such as hydrodynamic, Brownian, colloidal, frictional, chemical, and/or electrostatic determine the rheological behavior of suspension. The average inter-fiber gaps between the neighboring fibers decrease significantly as the suspension volume fraction move towards a concentrated regime. As a result, in this regime, inter-fiber interactions become dominant.  Moreover, the surface asperities are present on the fiber surface even in the case of so-called smooth fibers, as fibers in real suspensions are not perfectly smooth. Hence, contact forces arising from the direct touching of the fibers become one of the essential factors in determining the rheology of suspensions.</p> <p>We first describe the causes of yield stress, shear thinning, and normal stress differences in fibre suspensions. We model the fibers as inextensible continuous flexible slender bodies with the Euler-Bernoulli beam equation governing their dynamics suspended in an incompressible Newtonian fluid. The fiber dynamics and fluid flow coupling is achieved using the immersed boundary method (IBM). In addition, the fiber surface roughness lead to inter-fiber contacts resulting in normal and tangential forces between the fibers, which follow Coulomb’s law of<br> friction. The surface roughness is modeled as hemispherical protrusions on the fiber surfaces. In addition to the comparison of the computational model to the experimental results, we demonstrate that attractive interactions lead to yield stress and shear thinning rheology.</p> <p>Furthermore, we investigate the effects of fiber aspect ratio, roughness, flexibility, and volume fraction on the rheology of concentrated suspensions. We find that the suspension viscosity increases with increasing the volume fraction, roughness, fiber rigidity, and aspect ratio. The increase in relative viscosity is the macroscopic manifestation of a similar increase  in the microscopic contact contribution with these parameters. In addition, we observe positive and negative first and second normal stress differences, respectively, in agreement with previous experiments. Lastly, we propose a modified Maron-Pierce law to quantify the the jamming volume fraction with varying fiber aspect ratio and roughness. Additionally, we provide a constitutive model to calculate the viscosity at various volume fractions, aspect ratios, and shear rates.</p>

Page generated in 0.1028 seconds