• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 125
  • 23
  • 14
  • 12
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 212
  • 212
  • 80
  • 47
  • 41
  • 36
  • 32
  • 30
  • 26
  • 26
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Influence of Invasive Species, Climate Change and Population Density on Life Histories and Mercury Dynamics of Two Coregonus Species

Rennie, Michael 25 September 2009 (has links)
Non-indigenous species can profoundly alter the ecosystems they invade and impact local economies. Growth and body condition declines of commercially fished Great Lakes lake whitefish coincide with the establishment of non-native dreissenid mussels and the cladoceran Bythotrephes longimanus. Declines in lake herring abundance—a key prey item for other commercially important species—have also been reported. Though additional stressors such as climate change may have contributed to changes in coregonid populations, they have not been thoroughly evaluated. Here, I present data that condition and contaminant declines in coregonids are associated with increasing density or warming climate, but growth declines in lake whitefish are likely due to ecosystem changes associated with dreissenids and Bythotrephes. In South Bay, Lake Huron, changes in lake whitefish diet composition and stable isotope signatures were consistent with increased reliance on nearshore resources after dreissenid establishment; lake whitefish occupied shallower habitats and experienced declines in mean diet energy densities post-dreissenid invasion. Growth of South Bay lake whitefish declined after environmental effects were statistically removed, whereas condition declines were explained best by changes in lake whitefish density. Among four lake whitefish populations, growth declined after dreissenids established, but not in uninvaded reference populations. Growth also declined among four lake whitefish populations after the establishment of Bythotrephes relative to reference populations. In contrast with growth, condition of lake whitefish did not change as a result of dreissenid or Bythotrephes invasion. Bioenergetic models revealed that activity rates increased and conversion efficiencies decreased in lake whitefish populations exposed to dreissenids, despite higher consumption rates in populations with dreissenids present. Condition declines among many lake whitefish and lake herring populations (and declines in mercury among herring populations) reflected regional differences and were not related to the presence of Bythotrephes or Mysis relicta. Declines in condition were more pronounced in northwest Ontario populations where climate has changed more dramatically than in southern Ontario. This work suggests that projected range expansions of dreissenid mussels and Bythotrephes will likely affect native fisheries, and their effect on these fisheries may be exacerbated by declining fish condition associated with climate change.
52

Invasion-induced Changes to the Offshore Lake Ontario Food Web and the Trophic Consequence for Bloater (Coregonus hoyi) Reestablishment

Stewart, Thomas Joseph 21 April 2010 (has links)
I compared changes in offshore Lake Ontario major species-group biomass, production and diets before (1987-1991) and after (2001-2005) invasion-induced ecological change. I synthesized the observations into carbon-based mass-balanced food webs linking two pathways of energy flow; the grazing chain (phytoplankton-zooplankton-fish) and the microbial loop (autotrophic bacteria-heterotrophic protozoans) and determined how the structure and function of the food web changed between time-periods. I use the food web descriptions to simulate the reestablishment of native deepwater bloater. I developed empirical models describing spatial variation in temperature and applied them to investigate predator temperature distributions, bioenergetic consequences of alewife diet and distribution shifts, and zooplankton productivity. Primary production declined as did the biomass and production of all species-groups except Chinook salmon. Total zooplankton production declined by approximately half with cyclopoid copepod production declining proportionately more. Zooplankton species richness and diversity were unaffected. Alewife adapted to low zooplankton production by consuming more Mysis, increasing their trophic level. The increased prey-size and exploitation of spatial heterogeneity in resource patches and temperature may have allowed alewife to maintain their growth efficiency. The trophic level also increased for smelt, adult sculpin, adult alewife and Chinook salmon. Phytoplankton grazing rates declined and predation pressure increased on Mysis, adult smelt and alewife, and decreased on protozoans. Resource to consumer trophic transfer efficiencies changed; increasing for protozoans, Mysis, Chinook salmon and other salmonines and decreasing for zooplankton, prey-fish and benthos. The changes suggest both bottom-up and top-down influences on food web structure. The direct trophic influences of invasive species on the offshore Lake Ontario food web were minor. Carbon flows to Mysis indicated an important, and changing ecological role for this species and we hypothesize that Mysis may have contributed to Diporeia declines. Simulations suggest that only a small reestablished bloater population, limited by Diporeia production, could be sustained.
53

The biotic and abiotic interactions influencing organochlorine contaminants in temporal trends (1992-2003) of three Yukon lakes: focus on Lake Laberge

Ryan, Michael J. 29 March 2007 (has links)
Periodic monitoring of contaminant levels in fish from the Yukon Territory indicated that organochlorine (OC) contaminants had rapidly declined since the early 1990s. This study examined OC concentrations, including chlordane (sigma-CHL), sigma-DDT, hexachlorocyclohexane (sigma-HCH), toxaphene (sigma-CHB), sigma-PCB and chlorinated benzenes (sigma-CBz) in sentinel fish (species of consistent annual observation and collection) from two Yukon lakes (Kusawa, Quiet), and from the aquatic food web of a focus lake (Lake Laberge) across several temporal points between 1993 and 2003. OC analysis and phytoplankton counts from dated sediment cores as well as climate data were also collected. Population, morphological (length, weight, age), biochemical (lipid content, delta-13C, delta-15N) and OC contaminant data for fish and invertebrates (zooplankton, snails, clams) were reviewed to elucidate the primary causes for these OC declines. Although some spatial differences in contaminant levels exist between the Yukon lakes, OC concentrations were declining for lake trout in all three lakes, with declines also noted for burbot from Lake Laberge. Several other fish species as well as zooplankton from Lake Laberge exhibited decreases in contaminant levels except northern pike, which registered consistently higher levels from 1993 to 2001. There was no evidence to support the hypotheses of changes in fish trophic levels or food sources with the exception of burbot, which marginally decreased, and northern pike, which climbed a half trophic level. Through OC flux analysis in dated sediments, the hypothesis that declines in abiotic deposition affected the contaminant levels in the food web was also negated. The closure of the Lake Laberge commercial fishery resulted in faster fish growth and larger fish populations, which are contributing to biomass dilution of OC concentrations, higher OC biomagnification factors for some species and likely changes in predator-prey interactions as resource competition increases. The large ratio of OC decreases in the lower vs. higher trophic levels of Lake Laberge have increased food web magnification factors (FWMF) for all six OC groups. It is also suspected that above-average temperatures and below-average precipitation in the lower Yukon region over the 1990s may have contributed towards an increase in lake primary production resulting in biomass dilution of contaminants in zooplankton for all three study lakes. Concurrently, shifts in the Lake Laberge zooplankton community, from climate fluctuations or increased fish predation, have gone from an abundance of Cyclops scutifer in 1993 to dominance by Diaptomus pribilofensis in 2001, although sample sites were limited. Characteristics specific to each species (e.g. body size, composition and metabolism) likely play a role in the significant OC declines measured in zooplankton. Fluctuations in population dynamics, species characteristics and OC contaminant concentrations in the Lake Laberge ecosystem may continue for several years to come. Sentinel species such as lake trout, burbot, whitefish, cisco and plankton should continue to be monitored in all three Yukon lakes for future temporal correlations with contaminants or climate change. / May 2006
54

Multiple forces drive the Baltic Sea food web dynamics and its response to environmental change

Niiranen, Susa January 2013 (has links)
Understanding the interaction of multiple drivers and their compounded effects on ecosystem dynamics is a key challenge for marine resource management. The Baltic Sea is one of the world’s seas most strongly impacted by effects from both human activities and climate. In the late 1980’s changes in climate in combination with intensive fishing initiated a reorganization of the Central Baltic Sea (CBS) food web resulting in the current sprat-dominated state. In the future, climate change is projected to cause drastic changes in hydrodynamic conditions of the world oceans in general, and the Baltic Sea in particular.   In this thesis, CBS food web responses to the combined effects of fishing, nutrient loads and climate were tested for the past (1974-2006) and projected into the future (2010-2098). A new food web model for the CBS (BaltProWeb) was developed using extensive monitoring data across trophic levels. This model described the past food web dynamics well, and was hence also used for future (2010-2098) projections. Different ensemble modeling approaches were employed when testing the food web response to future scenarios. The results show that regardless the climate change, the management of nutrient loads and cod fishing are likely to determine the food web dynamics and trophic control mechanisms in the future Baltic Sea. Consequently, the variation in the food web projections was large, ranging from a strongly eutrophied and sprat-dominated to a cod-dominated CBS with eutrophication levels close to today’s values. The results also suggest a potential risk of abrupt ecosystem changes in the future CBS, particularly if the nutrient loads are not reduced. Finally, the studies illustrate the usefulness of the ensemble modeling approach, both from the perspective of ecosystem-based management as well as for studying the importance of different mechanisms in the ecosystem response. / <p>At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: In press. Paper 5: Submitted.</p>
55

Evaluating the Influence of Flooding on Aquatic Food-webs in Basins of the Peace-Athabasca Delta Using Isotopic Tracers

Lyons, Stephanie 04 June 2010 (has links)
Periodic flooding has been widely believed to serve an important role in maintaining water levels and productivity of aquatic basins in floodplain landscapes. Here, I analyze four basins of contrasting flood frequencies (one through-flow, one pulse-flooded, two non-flooded) and two adjacent river sites in the PAD were sampled during the open-water season of 2007 and spring of 2008 to characterize linkages between hydrological processes (using O and H stable isotopes) and limnological conditions, and to assess how these linkages affect trophic interactions involving the aquatic flora and fauna (using C and N stable isotopes). The water balance and water chemistry of the through-flow basin was dominated at all times by the input of river water which reduced concentrations of nutrients and ions. In contrast, evaporation played an important role in the water balance and concentrated nutrients and ions in the non-flooded basins. Surprisingly, pulse-flood events had short-lived effects on the water balance and carbon stable isotopic signatures of biota. Hydrological and limnological conditions in the pulse-flooded basin were similar to those of the river water shortly after spring flooding. After flooding, evaporation caused rapid increase of δ18O of the water comparable to patterns observed in the non-flooded basins, but recovery of water chemistry variables was delayed. In the non-flooded and pulse-flooded basins, δ13CDIC declined due to atmospheric CO2 invasion under conditions of high primary productivity and pH that generated strong kinetic fractionation. This decline in δ13CDIC values produced the opposite effect compared to when photosynthesis occurs under non-limiting carbon conditions, as occurred in the through-flow basin. This feature provides important new knowledge to improve paleolimnological interpretation of δ13C values of organic matter in sediment cores to track past changes in flooding regimes. Importantly, this study shows that pulse floods exert short-lived transient (~1-2 months) effects of the water balance and carbon dynamics of aquatic food-webs and do not elevate aquatic production, but exert longer lasting (at least an entire open-water season) on water chemistry conditions. This contrasts with previous beliefs that the effects of pulse flooding are more profound and longer lasting.
56

Contribution of Nitrogen Fixation to Planktonic Food Webs North of Australia

Drexel, Jan Peter 16 November 2007 (has links)
Nitrogen fixation is no longer considered to be a minor factor of the nitrogen cycle in oceanic ecosystems. Recent geochemical and biological efforts have led to a significant increase in the estimated input of nitrogen to marine ecosystems by biological fixation, while molecular studies have increased our knowledge of the number and diversity of nitrogen fixers known to be active in the ocean. Although Trichodesmium spp. have long been viewed as the primary marine nitrogen fixers, recent efforts have shown that various members of the picoplankton community are also actively involved in nitrogen fixation. The relative abundance of different nitrogen fixers is an important ecosystem parameter since nitrogen fixers may differ significantly in their physiology, life history and ecology. Here we combine rate measurements and stable isotope natural abundance measurements to constrain the impact of N2 fixation in the waters north of Australia. Samples were collected in the Coral, Arafura, and East Timor Seas, thus spanning three distinct hydrographic regions. Our data show that Trichodesmium has a significant influence on the stable nitrogen isotope ratios of particulate and zooplankton biomass and suggest that Trichodesmium is a significant source of nitrogen for the pelagic ecosystem. Based on stable carbon isotope ratios, it is also likely that the pathways are indirect and nitrogen fixed by Trichodesmium enters the higher trophic levels via decomposition as dissolved organic and inorganic nitrogen. Picocyanobacteria showed high diazotrophic activity at some stations, but unlike Trichodesmium, their N2 fixation rate was not reflected in the stable N isotope ratios of particulate and zooplankton biomass. Our results suggest an important N contribution to biomass by diazotrophs in the Coral Sea, Arafura Sea and East Timor Sea.
57

Light-Environment Controls and Basal Resource Use of Planktonic and Benthic Primary Production

Radabaugh, Kara 01 January 2013 (has links)
Consumers in marine and estuarine environments have a strong reliance on planktonic and benthic primary production. These two basal resources form the foundation of aquatic food webs, yet the abundance of phytoplankton and benthic algae are frequently inversely related due to competition for light and nutrients. As a result, optimal habitats for benthic and planktonic consumers vary spatially and temporally. To investigate these trends, three studies were conducted focusing on light attenuation and basal resources in a bay, river, and on a continental shelf. δ13C and δ15N stable isotopes can be used as endogenous tracers to determine both the trophic level and basal resource use of consumers. δ13C values of primary producers are determined by the isotopic values of available CO2 and by the degree of photosynthetic fractionation (εp) that occurs during photosynthesis. εp by aquatic algae is greater in high CO2concentrations, high light, during slow growth rates, and for cells with a small surface area to volume ratio. Interaction among these parameters complicates prediction of algal εp in a natural setting, prompting the investigation as to which factors would impact εp and δ13C in a dynamic estuary. Community-level fractionation of an assemblage of filamentous algae, pennate diatoms, and centric diatoms grown on glass plates was found to be positively correlated with photosynthetically active radiation (PAR), resulting in higher δ13C values for organic matter in low-light conditions. These results support the concept that the low-light benthic environment may contribute to the widely observed phenomenon of ~5 / higher δ13C values in benthic algae compared to phytoplankton. Spatial and temporal variability in the isotopic baseline provides evidence of shifting biogeochemical controls on primary production. The West Florida Shelf in the eastern Gulf of Mexico transitions from a eutrophic ecosystem near the Mississippi River to an oligotrophic ecosystem in offshore continental shelf waters. Spatiotemporal variability in the δ13C and δ15N signatures of primary producers and fish populations were examined along this gradient. Muscle δ15N from three widely distributed fish species exhibited strong longitudinal isotopic gradients that coincided with the principal trophic gradient, whereas δ13C values of fish muscle and benthic algae were correlated with depth. The three fish species had relatively high site fidelity, as isotopic gradients were consistent between seasons and years. Isotopic mixing models showed all three fish species had a significant reliance on benthic algae as a basal resource. Dynamic models of the West Florida Shelf isotopic baseline were created using spatial data and satellite-derived water quality characteristics as predictors. Models were constructed using data from three fish species and tested on four other species to determine if the models could be extrapolated to new taxa. Both dynamic and static δ15N models had similar predictive capabilities, indicating a fairly stable δ15N baseline. The satellite-derived dynamic variables explained more variation in baseline δ13C than static spatial descriptors. Planktonic primary production can directly impact benthic food chains through phytoplankton deposition. A novel phytoplankton deposition detection method that combined water-column and benthic fluorometry with surficial sediment sampling was developed and assessed in a two-year study of the Caloosahatchee River estuary. Classifications based upon this detection method showed phytoplankton deposition dominated the upstream region and deposition was associated with reduced dissolved oxygen concentrations. Benthic algae dominated in downstream regions, particularly during low freshwater flow conditions when light absorption by colored dissolved organic matter was low. This same Caloosahatchee River estuary study was used to determine if zooplankton aggregate in regions with optimal basal resource availability. The isopod Edotia triloba was found to associate with chlorophyll peaks when freshwater velocity was constant. Chlorophyll peaks were offset downstream or upstream from isopod aggregations when freshwater flow was accelerating or decelerating, implying that phytoplankton and isopods have different response times to changes in flow. Temporal and spatial fluctuations in water quality and primary production introduce instability to aquatic consumers that primarily rely on one basal resource. The current global trends in eutrophication and increasing planktonic production are likely to be a liability for benthic consumers due to increased benthic hypoxia and light attenuation. The results of these studies indicate that both the location of consumers and their isotopic signatures can be impacted by factors, such as light attenuation, that control benthic and planktonic primary production.
58

Trophic enrichment patterns of d 13C in organic matter of molluscan shell: Implications for reconstructing ancient environments and food webs

McKnight, Julie 01 June 2009 (has links)
Shell organic matrix proteins in fossils are valuable geochemical archives for studying ancient environments and food webs. Compound-specific studies of stable carbon isotope ratios offer particularly good resolution of trophic level of consumers and the identities of primary producers and can be used to detect diagenetic alteration of isotopic ratios. To interpret compound specific isotope data, however, controlled diet studies in the laboratory are needed to reveal trophic enrichment patterns of 13C in tissues and shell organic matter. This study examines the relationship between d 13C of 11 amino acids in diet, soft tissues, and shell organic matter in laboratory-cultured Strombus alatus, an herbivorous marine gastropod. The d 13C values of amino acids in this animal's foot and mantle tissues are consistently enriched in 13C relative to the diet. Phenylalanine (+1.8 ppm) and alanine (+3.8 ppm) showed the least fractionation between diet and tissues, while aspartic acid (+10.7 ppm) and glutamic acid (+14.6 ppm) showed the greatest enrichment. On average, nonessential amino acids exhibited greater enrichment than did essential amino acids (+7.1 ppm vs. + 4.1 ppm). Shell organic matter amino acids showed a very similar pattern, with aspartic and glutamic acids again showing the greatest enrichment (+7.2 ppm and +11.1 ppm respectively). Nonessential amino acids in shell (+4.9 ppm) were also more enriched than the essential amino acids (+3.5 ppm). Overall, the carbon isotopic compositions of amino acids in shell organic matrix appear to parallel those in animal tissue, validating the utility of employing this material as a surrogate for animal tissue in fossil samples. Interpreting trophic position information in consumers is difficult, however, as the variation in the magnitude of trophic enrichments for glutamic and aspartic acids between species, tissue types and diet is still poorly understood. As phenylalanine has the most consistent diet-consumer enrichments, the most suitable application for d 13C isotope analysis at this time is the reconstruction of base food sources.
59

Evaluating the Influence of Flooding on Aquatic Food-webs in Basins of the Peace-Athabasca Delta Using Isotopic Tracers

Lyons, Stephanie 04 June 2010 (has links)
Periodic flooding has been widely believed to serve an important role in maintaining water levels and productivity of aquatic basins in floodplain landscapes. Here, I analyze four basins of contrasting flood frequencies (one through-flow, one pulse-flooded, two non-flooded) and two adjacent river sites in the PAD were sampled during the open-water season of 2007 and spring of 2008 to characterize linkages between hydrological processes (using O and H stable isotopes) and limnological conditions, and to assess how these linkages affect trophic interactions involving the aquatic flora and fauna (using C and N stable isotopes). The water balance and water chemistry of the through-flow basin was dominated at all times by the input of river water which reduced concentrations of nutrients and ions. In contrast, evaporation played an important role in the water balance and concentrated nutrients and ions in the non-flooded basins. Surprisingly, pulse-flood events had short-lived effects on the water balance and carbon stable isotopic signatures of biota. Hydrological and limnological conditions in the pulse-flooded basin were similar to those of the river water shortly after spring flooding. After flooding, evaporation caused rapid increase of δ18O of the water comparable to patterns observed in the non-flooded basins, but recovery of water chemistry variables was delayed. In the non-flooded and pulse-flooded basins, δ13CDIC declined due to atmospheric CO2 invasion under conditions of high primary productivity and pH that generated strong kinetic fractionation. This decline in δ13CDIC values produced the opposite effect compared to when photosynthesis occurs under non-limiting carbon conditions, as occurred in the through-flow basin. This feature provides important new knowledge to improve paleolimnological interpretation of δ13C values of organic matter in sediment cores to track past changes in flooding regimes. Importantly, this study shows that pulse floods exert short-lived transient (~1-2 months) effects of the water balance and carbon dynamics of aquatic food-webs and do not elevate aquatic production, but exert longer lasting (at least an entire open-water season) on water chemistry conditions. This contrasts with previous beliefs that the effects of pulse flooding are more profound and longer lasting.
60

Influence of fish competitors on Lake Trout trophic ecology in sub-arctic lakes

Hulsman, Mark F. Unknown Date
No description available.

Page generated in 0.0538 seconds