• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 527
  • 119
  • 70
  • 61
  • 54
  • 35
  • 35
  • 35
  • 35
  • 35
  • 35
  • 15
  • 9
  • 8
  • 7
  • Tagged with
  • 1085
  • 1085
  • 430
  • 368
  • 205
  • 172
  • 93
  • 84
  • 83
  • 76
  • 73
  • 73
  • 71
  • 68
  • 67
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
441

The feasibility of Fourier transform infrared imaging spectroscopy in discriminating benign prostatic hyperplasia from prostate cancer in blood serum samples

Monjardez, Geraldine January 2013 (has links)
The feasibility of Fourier transform infrared (FTIR)-imaging spectroscopy as a tool to discriminate samples from patients suffering from benign prostatic hyperplasia (BPH) and prostate cancer (CaP) samples in blood serum was investigated. Prostate cancer is known to be an age related disease, with the risk of developing the disease dramatically increasing in men past forty years old. Currently the PSA blood test is notoriously unreliable and is non specific for CaP thus leading to overtreatment of the disease. It is important therefore to develop diagnostic method that is non-invasive, reliable, and specific for CaP.In order to achieve the objective of establishing a robust protocol, which could be applied to a clinical study, obtaining optimal sample preparation for the FTIR analysis of serum smears, had to be achieved. A protocol was developed to prepare the serum samples prior to their FTIR analysis. First, the samples were centrifuged with ultrafiltration devices of different sizes to obtain several fractions which were then smeared to obtain thin films of serum. The spectra from the larger (>100 kDa components) and medium (containing the 10–100 kDa components) fractions were utilised for both a pilot and a clinical study, while the spectra from the smaller fractions (containing the 3–10 and <3 kDa components) were affected by fringing and could therefore not be used. A major novelty of this project involved the application of FTIR-imaging to the analysis of serum smears. The use of the Focal Plane Array detector system enabled the collection of a spectral image containing 16,384 spectra, on which a Quality Testing and pre-processing techniques were applied to select the “good spectra” and reject the spectra that failed the Quality Test. Several types of substrates were assessed to determine the most appropriate for the analysis of the smears and it was established that the spectra obtained from the serum smeared on CaF2 windows gave the most reproducible results. 5 BPH and 5 CaP samples were analysed for the pilot study following the developed protocol. While no clear separation was observed in the Principal Component Analysis (PCA) plots between the BPH and the cancerous samples, a trend emerged throughout the results, with the CaP samples clustering together and the BPH samples scattered around them. A larger clinical study was conducted with 60 BPH samples and 60 CaP samples. PCA was applied on the “good spectra” and while the over 100 kDa fraction did not show a clear separation between the two types of samples, the 10–100 kDa fraction showed a distinct classification between the BPH and CaP samples. An artificial neural network was then applied to create a model using patients from the database used for the PCA analysis to determine whether the discrimination between the two types of samples could be increased or highlight different classification trends. For the >100 kDa fraction, the sensitivity value was calculated to be 97.8% and the specificity value was calculated to be 44.3% while the sensitivity and the specificity value for the 10 to 100 kDa fraction were calculated to be 78.9% and 60% respectively. A complementary study using mass spectrometry was carried out on healthy and diseased samples to identify the components contained within the different fractions and determine whether they could be correlated with the components identified from the spectral features of the FTIR data. While no quantitative information was obtained from this study, the components found in the different fractions were identified, confirming the results of the FTIR studies.
442

Diagnostics and modelling of atmospheric pressure chemical vapour deposition reactors

Hehn, Martin Christoph January 2014 (has links)
In the manufacturing process of float glass often atmospheric pressure chemical vapour deposition (APCVD) reactors are integrated on-line for the deposition of functional thin solid films. Such functional films have applications in architectural glass, flat panel displays and solar cells. As glass moves downstream in the process, the thin film is deposited at temperatures between 500 to 700°C. The high temperatures make it difficult to monitor the deposition process and thin film quality control is commonly done at the end of the line or at lower temperatures. A time delay therefore exists between the point of thin film deposition and subsequent quality control, which can lead to large quantities of defective product being produced before faults are detected. It is therefore desirable to monitor in the APCVD reactor for rapid feedback of unexpected deviations from desired process conditions, reaction progress and fault detection. High uniformity of film properties across the substrate are important, but APCVD reactors are often empirically designed and the detailed chemical reaction mechanism is unknown. This leads to inefficient gas flow patterns and precursor utilization as well as difficulties in the design of new reactors. The APCVD deposition of tin oxide from the mono-butyl-tin tri-chloride (MBTC) is an example of such a process. Optical monitoring instruments in-situ and in-line on the APCVD reactor provided rapid feedback about process stability and progress non-invasively. Near infrared diode laser absorption spectroscopy (NIR-LAS) monitored the concentration of the reaction species hydrogen chloride (HCl) in-situ and spatially in the coating zone. A mid-infrared grating absorption spectrometer (IR-GAS) with novel pyro-electric array detector monitored the concentration of precursor entering the coating system simultaneously. In combination these instruments provide the means for rapid process feedback. Fourier transform infrared absorption spectroscopy (FTIR) was used to investigate the unknown decomposition pathway of the precursor to find the yet unknown key tin radical that initiates film growth. Stable species forming during MBTC decomposition over a temperature range of 170 to 760°C were investigated but the tin intermediate remains unknown. Computational fluid dynamics (CFD) is routinely employed in research and industry for the numerical simulation of CVD processes in order to predict reactor flow patterns, deposition rates, chemical species distribution or temperature profiles. Two and three dimensional models with complex geometries and detailed reaction models exist. A three dimensional computational fluid dynamics (CFD) model of the used APCVD reactor was built using the Fluent CFD software. The numerical simulation included a chemical model that predicted qualitatively the chemical species distribution of hydrogen chloride in the gas phase. This was confirmed through comparison with NIR-LAS results. Design shortcomings due to inefficient flow patterns were also identified. In combination the optical tools developed provide the means for safe and efficient manufacturing of thin films in APCVD reactors. CFD simulations can be used to increase precursor utilization and film uniformity in the development of new reactor designs.
443

Effect of Polyphosphoric Acid on Aging Characteristics of PG 64-22 Asphalt Binder

Ramasamy, Naresh Baboo 12 1900 (has links)
This research presents the results on an experimental investigation to identify the effect of polyphosphoric acid (PPA) on aging characteristics of an asphalt binder. Addition of PPA to asphalt binders is said to improve performance of flexible pavements. Asphalt binder PG 64-22 in modified and unmodified conditions was subjected to aging in the laboratory using a regular oven and also simulated short term aging using rolling thin film oven (RTFO) test. Aging experiments were conducted to analyze the extent of oxidation in terms of changes in molecular structure of the asphalt binder. These changes were appraised using Fourier transform infrared (FTIR) spectroscopy, dynamic shear rheometer (DSR), and epifluorescence microscopy tests. FTIR was used to determine the changes in major bands with addition of PPA. Stiffness and viscoelastic behaviors of asphalts were determined from the DSR test. The stiffness is measured by calculating the shear modulus, G* and the viscoelastic behavior is measured by calculating the phase angle, sin &#948;. Epifluorescence microscopy is a tool used to study properties of organic or inorganic substances. The morphological characteristics of PPA modified asphalt samples were observed through epifluorescence microscopy. Epifluorescence microscopy reveals the polymer phase distribution in the asphalt binders. Results of this investigation show PPA addition to asphalt binders improve G*/sin &#948; characteristics of asphalt binders. In addition, presence of PPA in polymer containing asphalt did not adversely affect aging of the binders.
444

Fluides, graphes et transformée de Fourier : trois incarnations du laplacien / Fluids, graphs and Fourier transform : three incarnations of the laplacian

Lévy, Guillaume 08 November 2017 (has links)
Cette thèse est consacrée à l'étude de propriétés du laplacien dans trois contextes bien distincts. Dans une première partie, celui-ci nous sera utile pour régulariser des solutions d'équations venues de la mécanique des fluides incompressibles. En application, on montrera un théorème dans la lignée des résultats de J. Serrin et de ses continuateurs. Dans une deuxième partie, le laplacien est vu comme le pendant stationnaire de l'opérateur des ondes sur un graphe, dont les modes et fréquences propres déterminent la propagation de perturbations sur le graphe. On y explore et démêle les liens entre la topologie du graphe, sa forme et sa première fréquence propre non nulle. Dans une dernière partie, le laplacien est pensé comme un opérateur linéaire à diagonaliser dans une base adaptée, objectif dont l'accomplissement est intimement lié à la transformée de Fourier. Deux difficultés majeures apparaissent ici : la non commutativité des groupes auxquels nous nous intéressons d'une part, l'apparition d'une limite singulière de la transformée de Fourier d'autre part. / This thesis is devoted to the study of the laplacian properties in three fully distinct contexts.In a first part, it will be used to smooth solutions of equations coming from incompressible fluid mechanics.As an application, we will show a result in the spirit of J. Serrin and his continuators' theorem.In a second part, the laplacien is seen as the stationary counterpart of the wave operator on a graph, whose eigenmodes and eigenfrequencies determine the propagation of perturbations on the graph.We explore and disentangle the ties between the graph's topology, its shape and its first nonzero eigenfrequency.In the last part, the laplacian is thought of as a linear operator which we wish to diagonalize in an appropriate basis, a goal which is intimately tied to the Fourier transform.Two major difficulties appear in our context : the noncommutativity of the groups of interest on the one hand, the appearance of a singular limit in the Fourier transform on the other hand.
445

Advancements in Instrumentation for Fourier Transform Microwave Spectroscopy

Dewberry, Christopher Thomas 08 1900 (has links)
The efforts of my research have led to the successful construction of several instruments that have helped expand the field of microwave spectroscopy. The classic Balle-Flygare spectrometer has been modified to include two different sets of antenna to operate in the frequency ranges 6-18 GHz and 18-26 GHz, allowing it to function for a large range without having to break vacuum. This modified FTMW instrument houses two low noise amplifiers in the vacuum chamber to allow for the LNAs to be as close to the antenna as physically possible, improving sensitivity. A new innovative Balle-Flygare type spectrometer, the efficient low frequency FTMW, was conceived and built to operate at frequencies as low as 500 MHz through the use of highly curved mirrors. This is new for FTMW techniques that normally operate at 4 GHz or higher with only a few exceptions around 2 GHz. The chirped pulse FTMW spectrometer uses horn antennas to observe spectra that span 2 GHz versus the standard 1 MHz of a cavity technique. This instrument decreases the amount of time to obtain a large spectral region of relative correct intensity molecular transitions. A Nd:YAG laser ablation apparatus was attached to the classic Balle-Flygare and chirped pulse FTMW spectrometers. This allowed the study of heavy metal containing compounds. The instruments I constructed and the techniques I used have allowed the discovery of further insights into molecular chemistry. I have seen the effects of fluorinating an alkyl halide by determining the geometry of the carbon backbone of trans-1-iodoperfluoropropane and observing a ΔJ = 3 forbidden transition caused by a strong quadrupole coupling constant on this heavy molecule. The quadrupole coupling tensors of butyronitrile, a molecule observed in space, have been improved. The nuclear quadrupole coupling tensor of difluoroiodomethane was added to a list of variably fluorinated methyl halides upholding a trend for the magnitude of χzz. The study of SrS led to the determination of the Born-Oppenheimer breakdown terms and improving the precision of the SrS internuclear distance. I have also conducted the first pure rotational spectroscopic investigation on an actinide containing molecule, ThO.
446

Investigation of Post-Plasma Etch Fluorocarbon Residue Characterization, Removal and Plasma-Induced Low-K Damage for Advanced Interconnect Applications

Mukherjee, Tamal 05 1900 (has links)
Modern three-dimensional integrated circuit design is rapidly evolving to more complex architecture. With continuous downscaling of devices, there is a pressing need for metrology tool development for rapid but efficient process and material characterization. In this dissertation work, application of a novel multiple internal reflection infrared spectroscopy metrology is discussed in various semiconductor fabrication process development. Firstly, chemical bonding structure of thin fluorocarbon polymer film deposited on patterned nanostructures was elucidated. Different functional groups were identified by specific derivatization reactions and model bonding configuration was proposed for the first time. In a continued effort, wet removal of these fluorocarbon polymer was investigated in presence of UV light. Mechanistic hypothesis for UV-assisted enhanced polymer cleaning efficiency was put forward supported by detailed theoretical consideration and experimental evidence. In another endeavor, plasma-induced damage to porous low-dielectric constant interlayer dielectric material was studied. Both qualitative and quantitative analyses of dielectric degradation in terms of increased silanol content and carbon depletion provided directions towards less aggressive plasma etch and strip process development. Infrared spectroscopy metrology was also utilized in surface functionalization evaluation of very thin organic films deposited by wet and dry chemistries. Palladium binding by surface amine groups was examined in plasma-polymerized amorphous hydrocarbon films and in self-assembled aminosilane thin films. Comparison of amine concentration under different deposition conditions guided effective process optimization. A time- and cost-effective method such as current FTIR metrology that provides in-depth chemical information about thin films, surfaces, interfaces and bulk layers can be increasingly valuable as critical dimensions continue to scale down and subtle process variances begin to have a significant impact on device performance.
447

Non-Equispaced Fast Fourier Transforms in Turbulence Simulation

Kulkarni, Aditya M. 27 October 2017 (has links)
Fourier pseudo-spectral method on equispaced grid is one of the approaches in turbulence simulation, to compute derivative of discrete data, using fast Fourier Transform (FFT) and gives low dispersion and dissipation errors. In many turbulent flows the dynamically important scales of motion are concentrated in certain regions which requires a coarser grid for higher accuracy. A coarser grid in other regions minimizes the memory requirement. This requires the use of Non-equispaced Fast Fourier Transform (NFFT) to compute the Fourier transform, by solving a system of linear equations. To achieve similar accuracy, the NFFT needs to return more Fourier coefficients than the number of non-equispaced gridpoints, making it an under-determined system. The minimum L2 norm solution of the system is refined using an iterative reconstruction algorithm, FOCUSS. The NFFT and FOCUSS algorithms yield accurate results with smaller test case of a Direct Numerical Simulation on a grid of 64 gridpoints in each dimension, using Taylor green initial condition. The computational speed for this case was found to be unacceptably slow and few methods to improve the performance have been discussed. The approach of NFFT and FOCUSS was tested on a line extracted from 3-dimensional turbulent flow field. Fourier transform of the extracted line, sampled on 1024 non-equispaced gridpoints, computed for 2048 coefficients and the corresponding numerical derivative are found to be inaccurate. It can be observed that the NFFT and FOCUSS approach works for sparse Fourier transform, but not for turbulent fields having a wideband Fourier transform.
448

Signály s omezeným spektrem, jejich vlastnosti a možnosti jejich extrapolace / Bandlimited signals, their properties and extrapolation capabilities

Mihálik, Ondrej January 2019 (has links)
The work is concerned with the band-limited signal extrapolation using truncated series of prolate spheroidal wave function. Our aim is to investigate the extent to which it is possible to extrapolate signal from its samples taken in a finite interval. It is often believed that this extrapolation method depends on computing definite integrals. We show an alternative approach by using the least squares method and we compare it with the methods of numerical integration. We also consider their performance in the presence of noise and the possibility of using these algorithms for real-time data processing. Finally all proposed algorithms are tested using real data from a microphone array, so that their performance can be compared.
449

Aplikace pro dvoukanálovou analýzu elektroakustického systému v reálném čase / Application for Real-Time Dual-Channel Analysis of Electroacoustic System

Bača, Petr January 2019 (has links)
Master’s thesis contains the theory for realization of the researched software. Besides other, it describes Fourier transform, frequency response function, coherence, impulse response and group delay. Real life application of the software is discussed. Software is invented in the MatLab environment. Further, thesis provides testing of the software and shows its commented outcomes.
450

Strojový přepis kytarových melodií do tabulatury / Computer Aided Transformation of Guitar Solos from Recorded Song to Tabs

Joščák, Juraj January 2019 (has links)
The aim of this thesis was automatic pitch detection in melodic guitar lines and subsequent transcription to guitar tablature. Final system uses comb filtering to detect pitch. Individual notes are separated by beat detection. An algorithm for transcription of notes to guitar tablature, based on minimalization of hand movement is proposed.

Page generated in 0.0556 seconds