Spelling suggestions: "subject:"frenkel excitons"" "subject:"frenkel éxcitons""
1 |
Energy Transfer in Organic-Inorganic Semiconductor StructuresBianchi, Francesco 09 July 2018 (has links)
In HIOS-Strukturen, die auf einem Quantengraben und einer angrenzenden organischen Deckschicht basieren, wurde eine effiziente Umwandlung von Wannier-Exzitonen in Frenkel-Exzitonen mittels resonantem Förster Energietransfer (FRET) demonstriert.
Das hier verwendete Design besteht aus einem spiro-annulierten Quarter-phenyl (L4P-SP3), das auf einen ZnO-Quantengraben (SQW) aufgewachsen wurde, um inkohärente Kopplung zu erreichen.
Mittels optischer Spektroskopie haben wir demonstriert, dass diese hybriden Strukturen Energietransfer vom SQW zu den organischen Molekülen mit einer Effizienz von bis zu 77% zeigen. Allerdings zeigen UPS-Messungen eine typ-II-artige Energieniveau-Anpassung zwischen ZnO und der molekularen Schicht, die zu einem sehr effizienten Ladungstrennungsvorgang (ηCT=0.9) führt, der die molekulare Emission unterdrückt.
Die erste beruht auf einer schnellen und hocheffizienten Energietransfer-Kaskade: nach der ersten Transferstufe wird die Anregungsenergie von der hybriden Grenzfläche weggeleitet, indem eine zweite Energietransferstufe eingeführt wird, bevor die Dissoziation der Exzitonen an der Grenzfläche statt-finden kann. Wir verwenden Sexiphenyl, L6P als endgültigen Akzeptor. In solch einer Struktur können wir eine Wiederherstellung der molekularen Emission um einen Faktor acht demonstrieren und zeigen, dass der Energietransferprozess zwischen L4P-SP3 und L6P den Ladungstrennungsprozess fast vollständig überholt.
Als andere Option haben wir die Energieniveaus angepasst, indem eine organometallische Donor-Monolage [RuCp*mes] ergänzt wird. Diese Zwischenschicht senkt die Austrittsarbeit von ZnO deutlich ab und führt so zu einer Anpassung der Niveaus zwischen die zwei Halbleiter. Während die Effizienz des Energietransfers unverändert bleibt, steigen die Emission von L4P-SP3 sowie die Lebenszeit der molekularen Photoluminescenz um einen Faktor sieben verglichen mit entsprechenden Strukturen ohne Zwischenlage. / In HIOS structures based on a quantum well and an adjacent organic overlayer, efficient conversion of Wannier excitons into Frenkel excitons via Förster-type resonant energy transfer (FRET) has been demonstrated. The design here in use consists of a spiro-annulated ladder-type quarter-phenyl (L4P-SP3), deposited on ZnO-based single quantum wells (SQW) to obtain incoherent electronic coupling. The SQWs we use are grown with extremely thin (2 nm) capping layer. With photoluminescence excitation and time-resolved spectroscopy, we demonstrate that these hybrid structures exhibit energy transfer from the inorganic material to the organic molecules with an efficiency up to 77%.
However, UPS measurements show a type-II energy level alignment between ZnO and the molecular layer, resulting in a very efficient charge separation process (ηCT=0.9) that suppresses the molecular emission.
The first idea relies on a fast and highly efficient cascade FRET: following the primary transfer step from the QW, the excitation is conveyed away from the hybrid interface by a secondary transfer-step within the organic layer. As final acceptor we select ladder-type sexiphenyl (L6P). In such a structure, we demonstrate a recovery of the molecular emission by a factor eight, showing that the intermolecular FRET outpaced almost entirely the charge separation process.
As alternative option, we tune the energy levels at the interface by introducing an organometallic donor monolayer [RuCp*mes]. The interlayer reduces substantially the ZnO work function, aligning the frontier levels of the inorganic and organic semiconductor. Optical experiments show the benefits of the interlayer: while the FRET efficiency is unaffected, the L4P-SP3 emission and its photoluminescence lifetime increase by a factor of seven, when compared to the same structure without interlayer.
|
2 |
Optical Properties of Organic Thin Films and Waveguides Fabricated by OMBD: Importance of Intermolecular InteractionsGANGILENKA, VENKATESHWAR RAO 22 September 2008 (has links)
No description available.
|
3 |
Frenkel and Charge-Transfer Excitons in Quasi-One-Dimensional Molecular Crystals with Strong Intermolecular Orbital OverlapHoffmann, Michael 19 December 2000 (has links)
We present a theoretical and experimental study on the lowest electronically excited states in quasi-one-dimensional molecular crystals. The specific calculations and the experiments are performed for the model compounds MePTCDI (N-N'-dimethylperylene-3,4:9,10-dicarboximide) and TCDA(3,4:9,10-perylenetetracarboxylic dianhydride). The intermolecular interactions between nearest neighbors are quantum chemically analyzed on the basis of semi-empirical (ZINDO/S) Hartree-Fock calculations and a singly excited configuration interaction scheme. Supermolecular dimer states are projected onto a basis set of localized excitations. The nature of the lowest states is then completely explained as a superposition of molecular and low lying charge-transfer excitations. The CT excitations show a significant intrinsic transition dipole, which is oriented approximately parallel to the molecular planes and has a large component along the molecular M-axis. The exciton states in the one-dimensional stacks are described by a model Hamiltonian that includes interactions between three vibronic levels of the lowest molecular excitation and nearest-neighbor CT excitations. The three-dimensional crystal structure is considered by Frenkel exciton transfer between arbitrary molecules. This model is compared to polarized absorption spectra. With a small set of parameters, we can describe the key features of the absorption spectra, the polarization behavior, and the Davydov splitting. The variation of the polarization ratio for the various exciton states is analyzed as a direct qualitative proof for the mixing between Frenkel and charge-transfer excitons.
|
4 |
Recombination dynamics of optically generated small polarons and self-trapped excitons in lithium niobateMesserschmidt, Simon 02 July 2019 (has links)
Quasi-particles formed in lithium niobate after pulse exposure were investigated by transient absorption and photoluminescence spectroscopy as well as numerical simulations. This includes the formation process, the transport through the crystal, interim pinning on defects during the relaxation process, and the final recombination with deep centers. It was shown that the charge-transport through the crystal can be described by a hopping transport including different types of hops between regular or defective lattice sites, i.e., the transport includes a mixture of free and bound small polarons. Furthermore, the different types of hops connected with varying activation energies and their distribution are responsible for an altered temporal decay curve when changing the crystal composition or temperature.
Additionally, it was shown that the hitherto accepted recombination model is insufficient to describe all transient absorption and luminescence effects in lithium niobate under certain experimental conditions, i.e., long-living absorption dynamics in the blue/UV spectral range do not follow the typical polaron dynamics and cannot be described under the assumption of charge compensation. However, similar decay characteristics between self-trapped excitons known from photoluminescence spectroscopy and the unexpected behavior of the transient absorption were found leading to a revised model. This includes, besides the known polaron relaxation and recombination branch, a significant role of self-trapped excitons and their pinning on defects (pinned STEs).
Since the consideration of further absorption centers in the relaxation path after pulse exposure might result in misinterpretations of previously determined polaron absorption cross-sections and shapes, the necessity to perform a review became apparent. Therefore, a supercontinuum pump-probe experiment was designed and all measurements applied under the same experimental conditions (temperature, polarization) so that one can extract the absorption amplitudes of the single quasi-particles in a spectral range of 0.7-3.0eV. The detailed knowledge might be used to deconvolve the absorption spectra and transform them to number densities of the involved centers which enables one to obtain an easier insight into recombination and decay dynamics of small polarons and self-trapped excitons.
As the hopping transport of quasi-particles and the concept of pinned STEs might be fundamental processes, a thorough understanding opens up the possibility of their exploitation in various materials. In particular, results presented herein are not only limited to lithium niobate and its applications; an extension to a wide range of further strongly polar crystals in both their microscopic processes and their use in industry can be considered.
|
5 |
Frenkel and Charge-Transfer Excitons in Quasi-One-Dimensional Molecular Crystals with Strong Intermolecular Orbital Overlap / Frenkel und Charge-Transfer Exzitonen in Quasi-Eindimensionalen Molekülkristallen mit starker intermolekularer OrbitalüberlappungHoffmann, Michael 04 December 2000 (has links) (PDF)
We present a theoretical and experimental study on the lowest electronically excited states in quasi-one-dimensional molecular crystals. The specific calculations and the experiments are performed for the model compounds MePTCDI (N-N'-dimethylperylene-3,4:9,10-dicarboximide) and TCDA(3,4:9,10-perylenetetracarboxylic dianhydride). The intermolecular interactions between nearest neighbors are quantum chemically analyzed on the basis of semi-empirical (ZINDO/S) Hartree-Fock calculations and a singly excited configuration interaction scheme. Supermolecular dimer states are projected onto a basis set of localized excitations. The nature of the lowest states is then completely explained as a superposition of molecular and low lying charge-transfer excitations. The CT excitations show a significant intrinsic transition dipole, which is oriented approximately parallel to the molecular planes and has a large component along the molecular M-axis. The exciton states in the one-dimensional stacks are described by a model Hamiltonian that includes interactions between three vibronic levels of the lowest molecular excitation and nearest-neighbor CT excitations. The three-dimensional crystal structure is considered by Frenkel exciton transfer between arbitrary molecules. This model is compared to polarized absorption spectra. With a small set of parameters, we can describe the key features of the absorption spectra, the polarization behavior, and the Davydov splitting. The variation of the polarization ratio for the various exciton states is analyzed as a direct qualitative proof for the mixing between Frenkel and charge-transfer excitons.
|
Page generated in 0.0474 seconds