• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 59
  • 11
  • 9
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 131
  • 131
  • 44
  • 31
  • 29
  • 22
  • 20
  • 20
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

The Kiruna town move : Unearthing the possibilities for full-scale fire tests

Pettersson, Henrik, Thörn, Adam January 2021 (has links)
The work with this thesis started during the last semester at the Fire Protection Engineering program at Luleå University of Technology. Kiruna has relied on the iron ore resources of Luossavaara and Kiirunavaara since the creation of the town. The iron ore stretches underneath the current city center. Therefore, some of the housings have to move northwest. The consequences of the town move are that some of the current housings will be demolished after the government owned mining company LKAB has bought the estates. This thesis aims to research the possibilities of performing fire tests in theses abandoned housings. Full-scale fire tests are usually expensive and therefore it is of substantial importance that the performed tests are meaningful. A meaningful full-scale fire test, in the author’s opinion, is defined as: The goal has to be well defined with a structured definition of what should be achieved. The test should aim at over-bridging knowledge gaps in the fire engineering science. The test should not be suitable executing for a laboratory environment. Earlier performed fire tests and scientific papers where studied to identify possible knowledge gaps. Four main topics where identified: FDS validation and computer modeling Passive fire protection system in old buildings Load bearing systems Façades and exterior claddings Two field inventories were conducted during 2016-2017. Some objects had a cultural value and were therefore excluded. The authors have decided to only include objects deemed interesting. However, these objects are just a small amount of the buildings affected by the move. The majority of the buildings identified as suitable for fire tests are high-rise residential buildings. These were found suitable for most of the identified topics. The number of buildings with large open spaces, large ceiling heights and atriums was small. The environmental requirements and permits required for performing fire tests were studied as a part of the thesis. The County administration of Norrbotten is in charge of these legal matters. The authors conclude that the authorization process may be lengthy and complicated but feasible. The authors’ conclusion is that the probability of performing full-scale fire tests are low. The lack of complex buildings, difficulty in extracting accurate, reliable data and high costs are some of the reasons. / Detta examensarbete påbörjades under den sista terminen vid brandingenjörsprogrammet på Luleå tekniska universitet, höstterminen 2017. Kiruna har sedan staden grundades alltid varit beroende av de järnmalmsfyndigheter som finns Loussavaara och Kiirunavaara. Den järnmalmsåder som löper från Kiirunavaara sträcker sig under stadens befintliga stadskärna. Delar av staden kommer därför att flyttas i nordvästlig riktning. Stadsflytten medför att delar av stadens bebyggelse kommer att köpas upp av det statliga gruvdriftsbolaget LKAB som sedan river fastigheterna. Arbetet syftar till att undersöka möjligheten att utföra brandförsök i dessa tomma fastigheter. Försök i full skala är mycket kostsamma vilket medför att det är eftersträvansvärt om brandförsöket är meningsfullt. Ett meningsfullt brandtest i full skala definierades av författarna som följande: Målet som försöket ska uppnå och vad som ska mätas är tydligt definierat Försöket ska överbrygga eller syfta till att överbrygga kunskapsglapp inom brandforskningen Försöket ska inte vara lämpligt att utföra in en laboratoriemiljö För att uppnå kravet avseende kunskapsglappet undersöktes tidigare brandförsök och vetenskapliga tidskrifter. Fyra huvudspår identifierades: FDS validering och datormodellering Passivt byggnadstekniskt brandskydd i äldre byggnader Lastbärande system Fasader och fasadbeklädnader Inventeringen gjordes i två omgångar under 2016 och 2017. Vissa objekt sållades bort på grund av dess kulturhistoriska värde. Inventeringen visar de objekt som författarna finner intressanta sett till ovanstående men representerar bara ett urval av alla de byggnader som evakueras i samband med flytten. Sett till de byggnader som under inventeringen identifierades som lämpliga för brandförsök utgörs de flesta av höga bostadshus. De höga bostadshusen bedömdes som lämpliga för samtliga identifierade huvudspår. Byggnader med stora öppna ytor, höga takhöjder eller atrium förekom ej förutom i ett fåtal fall. Som en del i arbetet undersöktes de miljötillstånd som krävs. Länsstyrelsen i Norrbotten som är den instans som beviljar eller avslår tillstånd. Författarna bedömer processen som omfattande men genomförbar. Sannolikheten för försök i full skala i samband med stadsflytten bedöms som låga. Bristen på komplexa byggnader, svårigheten i att extrahera exakta och tillförlitliga mätvärden samt den höga kostnaden medför att det är svårt att driva projektet så långt att det leder till försök i full skala.
102

Evaluation of a concrete plug : From the Dome Plug Experiment DOMPLU at Äspö HRL

Kristiansson, Anders January 2014 (has links)
In SKB’s Äspö Hard Rock Laboratory (HRL) a full scale test of a concrete plug,part of a sealing structure for the depository of spent nuclear fuel, has been carriedout. The aim of this thesis is to evaluate the behavior of the concrete plug and howit corresponds to assumptions made during the design. The concrete plug is domeshaped, un-reinforced and casted in situ with low-pH concrete. It will be exposed tohigh water and swelling pressures and designed for a life span of 100 years. Duringthe first years it shall also prevent water leakage from the inside of the depositiontunnel. Before the pressure is applied, the concrete plug is assumed to de-bond fromthe rock due to autogenous and cooling shrinkage. The gap between the concrete androck is then grouted during cooling and the concrete plug will hence be prestressedwhen the cooling is stopped. The concrete plug is analyzed with the measurement data from the full scale testwith comparisons to results from finite element simulations. The performed measurementsinclude form pressure, internal strain and temperature, concrete plugdisplacements in the tunnel alignment, displacements relative to the rock and ambienttemperatures. Two assumptions have been made during the evaluation; fullbond to the rock or no bond to the rock. The results are also compared to twosimilar experiment that were previously performed. The results indicate that the concrete did de-bond from the rock before grouting tosome extent. It is plausible that a selective de-bonding was obtained. Due to highwater leakage, were cables for the measurement equipment are drawn out from theconcrete plug, the concrete plug was not exposed to the planed maximum pressureload. Results indicate that a water pressure is acting on the concrete plug frominside the rock slot which was not assumed during the design. / I SKB:s Äspölaboratoriet har ett fullskaleförsök på en betongplugg, del av ett pluggsystemför förvaret av kärnavfall, utförts. Syftet med denna uppsats var attutvärdera betongpluggens beteende under fullskaleförsöket och hur det förhållersig till gjorda antaganden under dess utformning. Betongpluggen är kupolformad,oarmerad och platsgjuten med låg-pH-betong. Höga vatten- och svälltryck kommerverka på betongpluggen som är utformad för en livstid på 100 år. Under deförsta åren ska den även motverka läckage från insidan av deponeringstunneln. Innantrycklasten läggs på är det antaget att betongpluggen släpper från berget till följd avautogen krympning och kylning. Utrymmet mellan betongen och berget injekterasoch betongpluggen kommer således vara förspänd efter att kylningen upphört. Betongpluggen är analyserad med mätdata från fullskaleförsöket som jämförts medresultat från finita element analyser. Mätningarna inkluderar formtryck, inre töjningaroch temperaturer, deformationer i tunnelriktningen, deformationer relativt bergetoch lufttemperatur utanför betongpluggen. Två antaganden har gjorts under utvärderingen;att betongen är fast i berget eller att den är fri från berget. Resultaten jämförsäven med två liknande fullskaleförsök som utförts tidigare. Resultaten tyder på att betongpluggen till viss del släppt från berget innan injekteringen.Det är troligt att den släppt på vissa ställen och på andra inte. På grundav för högt vattenläckage där de ingjutna mätinstrumentens kabelgenomföring utförts,kunde inte betongpluggen belastas till det maximala tryck som var planerat.Resultaten tyder på att ett vattentryck verkar på betongpluggen mellan berget ochbetongen vilket inte var antaget under konstruktionen.
103

Influence of Pile Shape on Resistance to Lateral Loading

Bustamante, Guillermo 01 December 2014 (has links) (PDF)
The lateral resistance of pile foundations has typically been based on the resistance of circular pipe piles. In addition, most instrumented lateral load tests and cases history have involved circular piles. However, piles used in engineering practice may also be non-circular cross-section piles such as square and H piles. Some researchers have theorized that the lateral resistance of square piles will be higher than that of circular piles (Reese and Van Impe, 2001; Briaud et al, 1983; Smith, 1987) for various reasons, but there is not test data to support this claims. To provide basic comparative performance data, lateral load tests were performed on piles with circular, square and H sections. To facilitate comparisons, all the tests piles were approximately 12 inches in width or diameter and were made of steel. The square and circular pipe sections had comparable moments of inertia; however, the H pile was loaded about the weak axis, as is often the case of piles supporting integral abutments, and had a much lower moment of inertia. The granular fill around the pile was compacted to approximately 95% of the standard Proctor maximum density and would be typical of fill for a bridge abutment. Lateral load was applied with a free-head condition at a height of 1 ft above the ground surface. To define the load-deflection response, load was applied incrementally to produce deflection increments of about 0.25 inches up to a maximum deflection of about 3 inches. Although the square and pipe pile sections had nearly the same moment of inertia, the square pile provided lateral resistance that was 20 to 30% higher for a given deflection. The lateral resistance of the H pile was smaller than the other two pile shapes but higher than what it is expected based on the moment of inertia. Back analysis with the computer program LPILE indicates that the pile shape was influencing the lateral resistance. Increasing the effective width to account for the shape effect as suggested by Reese and Van Impe (2001) was insufficient to account for the increased resistance. To provide agreement with the measured response, p-multipliers of 1.2 and 1.35 were required for the square pile and H piles, respectively. The analyses suggest that the increased resistance for the square and H pile sections was a result of increases in both the side shear and normal stress components of resistance. Using the back-calculated p-multipliers provided very good agreement between the measured and computed load-deflection curves and the bending moment versus depth curves.
104

Lateral Resistance of Piles at the Crest of Slopes in Sand

Mirzoyan, Artak Davit 29 August 2007 (has links) (PDF)
Pile foundations near the crest of a slope are often required to resist lateral loads. This is particularly important for piles at the abutments of bridges. However, limited full-scale test data are available to indicate how the lateral resistance of a pile would be affected when it is located near the crest of a slope. To investigate the effect of a slope on lateral pile resistance, three full scale lateral load tests were conducted on an instrumented steel pipe pile. For the first test, the pile was laterally loaded in horizontal ground. For the second test the pile was at the crest of a 30 degree slope and in the third test the pile was placed three diameters behind the crest of the 30 degree slope. The soil around the pile consisted of clean sand compacted to about 95% of the modified Proctor maximum unit weight for all three tests. Laboratory and in-situ direct shear tests indicated that the friction angle of the sand was approximately 39 degrees. The pile was instrumented with strain gages at approximately 1.5 ft intervals along its length so that the bending moment versus depth profile could be determined. Pile head load, deflection, and rotation were also measured. Based on the results, the presence of the slope decreased the ultimate lateral resistance of the pile-soil system by approximately 25% and 10% for tests two and three, respectively. The presence of the slope also resulted in an increase in the maximum bending moment of approximately 40% and 30% for tests two and three, respectively. Analyses using LPILE matched the lateral resistance for the pile in horizontal ground, but significantly overestimated the decrease in resistance due to the sloping ground. A mathematical model was developed to predict the ultimate strength of a pile located some distance from the crest of a cohesionless sloping profile. Parametric test results using the model were within 2.6 % of the measured results of tests two and three.
105

End-Shield Bridges for High-Speed Railway : Full scale dynamic testing and numerical simulations

Elgazzar, Hesham January 2017 (has links)
The increasing need for High-Speed Railway (HSR) to reduce the travelling time requires increasing research within this field. Bridges are main components of any railway network, including HSR networks, and the optimization of their design for this purpose would contribute to a faster and more cost effective development of the HSR network. The initial investment, the running and maintenance costs of the bridges can be decreased through better understanding of the their dynamic behaviour. This thesis studies the dynamic behaviour of end-shield railway bridges under HSR operation. 2D beam analysis is used to study the effect of the distribution of the train’s axle load. Relatively accurate 3D FE-models are developed to study the effect of Soil-Structure Interaction (SSI) and the dynamic response of the bridges. Modelling alternatives are studied to develop an accurate model. A full scale test of a simply supported Bridge with end-shields using load-controlled forced excitation was performed and the results were used to verify the theoretical models. A manual model updating process of the material properties of the 3D FE-model is performed using FRFs from the field measurements. A Simple 2D model is also developed, where a spring/dashpot system is implemented to simplify SSI, and updated to reproduce the field measured responses. The conclusions of the project emphasize the importance of SSI effects in the dynamic analysis of end-shield bridges for predicting their dynamic behaviour. The conclusions also show that the modelling of the surrounding soil and the assumption of the soil material parameters have significant effect on the dynamic response. Even the boundary conditions, bedrock level and the ballast on the railway track affects the response. The results also show that the bridge’s concrete section behaves as uncracked section under the studied dynamic loading. / <p>QC 20170403</p>
106

Large-Scale Strength Testing of High-Speed Railway Bridge Embankments: Effects of Cement Treatment and Skew Under Passive Loading

Schwicht, Daniel Ethan 01 April 2018 (has links)
To investigate the passive force-displacement relationships provided by a transitional zoned backfill consisting of cement treated aggregate (CTA) and compacted gravel, a series of full-scale lateral abutment load tests were performed. The transitional zoned backfill was designed to minimize differential settlement adjacent to bridge abutments for the California High Speed Rail project. Tests were performed with a 2-D or plane strain backfill geometry to simulate a wide abutment. To investigate the effect of skew angle on the passive force, lateral abutment load tests were also performed with a simulated abutment with skew angles of 30º and 45º. The peak passive force developed was about 2.5 times higher than that predicted with the California HSR design method for granular backfill material with a comparable backwall height and width. The displacement required to develop the peak passive force decreased with skew angle and was somewhat less than for conventional granular backfills. Peak passive force developed with displacements of 3 to 1.8% of the wall height, H in comparison to 3 to 5% of H for conventional granular backfills.The skew angle had less effect on the peak passive force for the transitional backfill than for conventional granular backfills. For example, the passive force reduction factor, Rskew, was only 0.83 and 0.51 for the 30º and 45º skew abutments in comparison to 0.51 and 0.37 for conventional granular backfills. Field measurements suggest that the CTA backfill largely moves with the abutment and does not experience significant heave while shear failure and heaving largely occurs in the granular backfill behind the CTA backfill zone.
107

Collapse Experiments and Assessment of Masonry Wall Buildings

Li, Kai January 2017 (has links)
No description available.
108

Structural assessment procedures for existing concrete bridges : Experiences from failure tests of the Kiruna Bridge

Bagge, Niklas January 2017 (has links)
Assessing existing bridges is an important task in the sustainable management ofinfrastructure. In practice, structural bridge assessments are usually conducted usingtraditional and standardised methods, despite knowledge that these methods oftenprovide conservative estimates. In addition, more advanced methods are available, suchas nonlinear finite element (FE) analysis, that are used for research purposes and cansimulate the structural behaviour of bridges more accurately. Therefore, it would beuseful to develop practical and reliable procedures for refined assessments using theseadvanced techniques.Focusing on the ultimate load-carrying capacity of existing concrete bridges, this thesispresents a procedure for structural assessments. The fundamental idea is to improve theassessment successively, as necessary to predict bridges’ structural behaviour adequately.The procedure involves a multi-level assessment strategy with four levels of structuralanalysis, and an integrated framework for safety verification. At the initial level (Level 1)of the multi-level strategy, traditional standardised methods are used, no failures arecovered implicitly in the structural analysis and action effects are verified using localresistances calculated using analytical models. In the subsequent enhanced levels (Levels2 – 4), nonlinear FE analysis is used for stepwise integration of the verification of flexural,shear-related and anchorage failures into the structural analysis. The framework for safetyverifications includes partial safety factor (PSF), global resistance safety factor (GRSF) andfull probabilistic methods. Within each of these groups, verifications of desired safetymargins can be conducted with varying degrees of complexity.To demonstrate and evaluate the proposed structural assessment procedure, comparativestudies have been carried out, based on full-scale tests of a prestressed concrete bridge.This was the Kiruna Bridge, located in the northernmost city in Sweden, which was duefor demolition as part of a city transformation project, necessitated by large grounddeformations caused by the large nearby mine. Thus, it was available for destructiveexperimental investigation within the doctoral project presented in this thesis. The bridgehad five continuous spans, was 121.5 m long and consisted of three parallel girders with a connecting slab at the top. Both the girders and slab were tested to failure to investigatetheir structural behaviour and load-carrying capacity. Non-destructive and destructivetests were also applied to determine the residual prestress forces in the bridge girders andinvestigate the in situ applicability of methods developed for this purpose. The so-calledsaw-cut method and decompression-load method were used after refinement to enabletheir application to structures of such complexity. The variation of the experimentallydetermined residual prestress forces was remarkably high, depending on the sectioninvestigated. There were also high degrees of uncertainty in estimated values, and thusare only regarded as indications of the residual prestress force.Level 1 analysis of the multi-level assessment strategy consistently underestimatedcapacity, relative to the test results, and did not provide accurate predictions of the shearrelatedfailure observed in the test. With linear FE analysis and local resistance modelsdefined by the European standard, Eurocode 2, the load-carrying capacity wasunderestimated by 32 % for the bridge girder and 55 % for the bridge deck slab. At theenhanced level of structural analysis (Level 3), nonlinear FE analyses predicted thecapacities with less than 2 % deviation from the test results and correctly predicted thefailure mode. However, for existing bridges there are many uncertainties, for instance,the FE simulations were sensitive to the level of residual prestressing, boundaryconditions and assumed material parameters. To accurately take these aspects intoaccount, bridge-specific information is crucial.The complete structural assessment procedure, combining the multi-level strategy andsafety verification framework, was evaluated in a case study. Experiences from theprevious comparative studies were used in an assessment of the Kiruna Bridge followingthe Swedish assessment code. The initial assessment at Level 1 of the multi-level strategyand safety verification, using the PSF method, indicated that the shear capacity of one ofthe girders was critical. The most adverse load case (a combination of permanent loads,prestressing and variable traffic loads) was further investigated through enhancedstructural analyses implicitly accounting for flexural and shear-related failures (Level 3).Nonlinear FE analysis and safety evaluation using the PSF method, several variants of theGRSF method and the full probabilistic analysis for resistance indicated that the permittedaxle load for the critical classification vehicle could be 5.6 – 6.5 times higher than thelimit obtained from the initial assessment at Level 1. However, the study also indicatedthat the model uncertainty was not fully considered in these values. The modeluncertainty was shown to have strong effects on the safety verification and (thus)permissible axle loads. The case study also highlighted the need for a strategy forsuccessively improving structural analysis to improve understanding of bridges’ structuralbehaviour. The refined analysis indicated a complex failure mode, with yielding of thestirrups in the bridge girders and transverse flexural reinforcement in the bridge deck slab,but with a final shear failure of the slab. It would be impossible to capture suchcomplexity in a traditional standardised assessment, which (as mentioned) indicated thatthe shear capacity of the girder limited permissible axle loads. However, nonlinear FEanalyses are computationally demanding, and numerous modelling choices are required.Besides a strategy for rationally improving the analysis and helping analysts to focus oncritical aspects, detailed guidelines for nonlinear FE analysis should be applied to reduce the analyst-dependent variability of results and (thus) the model uncertainty. Clearly, toensure the validity of bridge assessment methods under in situ conditions, theirevaluations should include in situ tests. This thesis presents outcomes of such tests, therebyhighlighting important aspects for future improvements in the assessment of existingbridges.
109

Capitalisation et partage de connaissances d’analyse de traces numériques d’activités : assister le suivi de l'activité dans les environnements de formation à base de simulateur pleine échelle / Capitalizing and sharing analysis knowledge of digital traces of activities : assist the monitoring of activity in full scale simulator-based training environments

Champalle, Olivier 04 July 2014 (has links)
Nos recherches s'inscrivent dans le domaine de l'ingénierie des connaissances et plus particulièrement dans la capitalisation et le partage de connaissances d'observation et d'analyse de traces numériques d'activités. Dans ce cadre, nous basons notre approche sur le concept de la trace modélisée (M-Trace) développée par l'équipe SILEX. Au travers de notre approche nous donnons la possibilité d'exploiter des traces numériques d'activités de bas niveaux pour faire émerger des connaissances de plus haut niveaux obtenues via des transformations à base de règles. Ces règles modélisent des connaissances d'observation et d'analyse de différents utilisateurs et sont capitalisables et partageables entre ces derniers. Nous complétons notre proposition en fournissant une visualisation synthétique des niveaux de connaissances et de leurs observés. Via un modèle générique de trace, que nous avons développé, cette synthèse visuelle est navigable afin de permettre aux utilisateurs d'explorer les différents niveaux de connaissances et de reconstituer le chemin de construction des observables entre les niveaux, facilitant ainsi l'analyse. Nos différentes propositions ont été réifiées dans un logiciel du nom de D3KODE (« Define, Discover, and Disseminate Knowledge from Observation to Develop Expertise »). Ce logiciel a été mis à l'épreuve dans le contexte de la formation professionnelle sur les simulateurs pleine échelle du groupe EDF utilisés pour la formation et le perfectionnement des agents de conduite de centrale nucléaire. Dans un tel cadre l'observation, l'analyse et le débriefing des interactions individuelles et collectives des opérateurs sont des activités critiques et particulièrement dense notamment pour les jeunes formateurs. Les données collectées sont difficilement exploitables dû à leur grande quantité et à leur très bas niveau nécessitant une expertise forte que tous les formateurs ne possèdent pas. Ce travail a donné lieu à une évaluation en contexte réel sur simulateur pleine échelle et à des résultats significatifs permettant de valider notre approche et d'encourager des perspectives de recherche nombreuses / Our research takes place in the field of knowledge engineering. In particularly we focus our study in capitalizing and sharing knowledge of observation and analysis of digital traces. In this context, we base our approach on the concept of modeled trace (M-Trace) developed by the SILEX team. Our approach give the possibility to exploit low levels digital traces in order to extract higher knowledge level through rule-based transformations. These rules modelize the knowldege of observation and analysis of different users. Rules can be capitalized and shared between users. We complete our proposal by providing a synthetic visualization of the knowledge levels with observed elements from the activity. By means of a generic trace model, that we have specified, users can explore the different abstraction level in purposes of investigation in order to better understand and analyze the activity. Our proposals have been implemented in a prototype, called D3KODE (« Define, Discover, and Disseminate Knowledge from Observation to Develop Expertise »), allowing the processing, representation and visualization of traces. D3KODE was applied in the context of professional training on the nuclear power plant full-scope simulator of the EDF group designed to maintain and enhance the knowledge and skills of Nuclear Power Plant control room staff. In such context, the observation, analysis and debriefing of individual and collective interactions of trainees’ operators is a dense activity that require attention and constant alertness of the trainers throughout the simulation, especially for the young trainers who do not have the expertise of confirmed trainers. The amount of data collected during a simulation is big and very low levels. They are difficult to analyse manually in order to extract high level information reflecting the behaviour of trainees. In such a context, understand and follow the activity requires a strong expertise that all trainers don’t have. So as to validate our approach, D3KODE was evaluated in a real context according to a comparative protocol conducted with a team of trainers from EDF Group. The evaluation gave significant results to validate our approach and encourage many research opportunities
110

A work process supporting the implementation of smart factory technologies developed in smart factory compliant laboratory environment

Sandberg, Pontus January 2019 (has links)
The industry is facing major challenges today. The challenges are tougher global competition, customers who require individualized products and shorter product lifecycles. The predicted industrial revolution is a way to deal with these challenges. Industry 4.0 includes strategies linked to several technologies that will meet the new needs. Smart factory is a central concept in industry 4.0, which involves connected technologies of various kinds. Such as digital manufacturing technology, network communication technology, computer technology, automation technology and several other areas. In this work, these were defined as smart factory technologies. Implementing such technologies will result in improved flexibility, resource productivity and efficiency, quality, etc. But, implementing smart factory technologies poses major challenges for the companies. Laboratory environments can be utilized to address the challenges. This results in a new problem, how to transfer a smart factory technology developed in a laboratory environment to a full-scale production system. In the literature study no, structured approach was identified to handle this challenge. Therefore, the purpose of this work was to: create a work process that supports the technology transfer from a smart factory compliant laboratory environment to a full-scale production system. To justify the purpose, the following research questions were answered: RQ1: What are the differences in the operating environment between the laboratory and the full-scale production system? RQ2: How is a smart factory technology determined ready to be implemented into a full-scale production system? RQ3: What critical factors should a work process for the implementation of smart factory technologies include? The research questions were answered by conducting a multiple-case study in collaboration with Scania CV AB. During the case studies, interviews, observations and other relevant types of data collection were conducted. The results were as follows: RQ1: How difficult it is to transfer a technology from a laboratory environment to a full-scale production system depends on how large the differences between these are. The general difference is that laboratory environments are used to experiment and develop technologies and a full-scale production system is used to produce products. Some want the laboratory environment to be an exact copy of a full-scale production system, but this is not appropriate because it means you lose the freedom of experimentation and it would be much more expensive. RQ2: Determining whether a smart factory technology is ready consists of two parts, laboratory activities and pilot testing. A structured assessment method has been developed. The laboratory operations reduce the risks and contribute to raising the degree of maturity of the technology. In pilot testing, it is important not to interfere with the full-scale production system stability. This is the reason for doing pilot testing in a delimited area first and checking that the technology works as desired. RQ3: The critical factors identified were: competence and knowledge, technology contributing to improvements, considering risks with implementation, cost versus potential improvement, clear goals and reason for implementation and communication.

Page generated in 0.0586 seconds