381 |
Invariants spectraux en homologie de Floer lagrangienneLeclercq, Rémi January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
|
382 |
Enseignement de la géométrie en première secondaire et conceptions d'élèves : une oscillation entre la perception, la mesure et la théorieGauthier, Johanne 02 1900 (has links)
Cette recherche, réalisée en milieu scolaire québécois, concerne l’enseignement et l’apprentissage de la géométrie à l’entrée au secondaire. Ce contexte est caractérisé par une géométrie non clairement définie d’un point de vue épistémologique, tant dans le programme d’études du premier cycle que dans les manuels scolaires. Ainsi, nous avons cherché à voir d’une part, l’activité géométrique souhaitée et actualisée par des enseignants incluant les problèmes proposés et, d’autre part, les conceptions d’élèves développées par ces problèmes. À partir de données recueillies auprès de quatre classes, nous avons déterminé cette activité géométrique et répertorié six types de problèmes dont quatre sont dominants ainsi que des conceptions d’élèves. L’activité géométrique en classe a donné lieu à des moments d’hésitation épistémologique, lesquels ne sont pas sans effet dans le développement des conceptions des élèves. / This research was conducted in a Quebec classroom environment. It pertains to the teaching and learning of geometry at the outset of secondary school. This context is characterized by a geometry that is not clearly defined from the epistemological point of view in either the secondary cycle one program or in textbooks. We attempted to find firstly, the desired geometric activity and updated by teachers with the proposed problems and, secondly, students conceptions developed by these problems. Using data collected from four classes, we then determined this geometric activity and identified six types of problems from which four were predominant. We also observed students conceptions. The classroom activity gave birth to moments of epistemological hesitance that may have had a certain effect on the development of the students’conceptions.
|
383 |
Processus de diffusion discret : opérateur laplacien appliqué à l'étude de surfaces / Digital diffusion processes : discrete Laplace operator for discrete surfacesRieux, Frédéric 30 August 2012 (has links)
Le contexte est la géométrie discrète dans Zn. Il s'agit de décrire les courbes et surfaces discrètes composées de voxels: les définitions usuelles de droites et plans discrets épais se comportent mal quand on passe à des ensembles courbes. Comment garantir un bon comportement topologique, les connexités requises, dans une situation qui généralise les droites et plans discrets?Le calcul de données sur ces courbes, normales, tangentes, courbure, ou des fonctions plus générales, fait appel à des moyennes utilisant des masques. Une question est la pertinence théorique et pratique de ces masques. Une voie explorée, est le calcul de masques fondés sur la marche aléatoire. Une marche aléatoire partant d'un centre donné sur une courbe ou une surface discrète, permet d'affecter à chaque autre voxel un poids, le temps moyen de visite. Ce noyau permet de calculer des moyennes et par là, des dérivées. L'étude du comportement de ce processus de diffusion, a permis de retrouver des outils classiques de géométrie sur des surfaces maillées, et de fournir des estimateurs de tangente et de courbure performants. La diversité du champs d'applications de ce processus de diffusion a été mise en avant, retrouvant ainsi des méthodes classiques mais avec une base théorique identique.} motsclefs{Processus Markovien, Géométrie discrète, Estimateur tangentes, normales, courbure, Noyau de diffusion, Analyse d'images / The context of discrete geometry is in Zn. We propose to discribe discrete curves and surfaces composed of voxels: how to compute classical notions of analysis as tangent and normals ? Computation of data on discrete curves use average mask. A large amount of works proposed to study the pertinence of those masks. We propose to compute an average mask based on random walk. A random walk starting from a point of a curve or a surface, allow to give a weight, the time passed on each point. This kernel allow us to compute average and derivative. The studied of this digital process allow us to recover classical notions of geometry on meshes surfaces, and give accuracy estimator of tangent and curvature. We propose a large field of applications of this approach recovering classical tools using in transversal communauty of discrete geometry, with a same theorical base.
|
384 |
Caractérisation macroscopique du milieu végétal pour les modèles physiques de feux de forêts / Macroscopic characterization of the vegetal medium for physical forest fire modelingLamorlette, Aymeric 14 October 2008 (has links)
La description aux échelles macroscopiques et gigascopiques des feux de forêts permet l'établissement de modèles physiques aptes à représenter l'évolution d'un feu avec une meilleure précision que les modèles empiriques de type Rothermel développés jusqu'alors. Cependant ces modèles nécessitent l'ajustement de paramètres dont la mesure directe est impossible, car les équations associées à ces modèles ne sont pas relatives à l'air et à la matière végétale mais aux milieux équivalents à la végétation pour l'échelle considérée. Les propriétés des milieux équivalents sont alors liées aux propriétés des milieux les constituant, mais la connaissance des propriétés des milieux constitutifs ne permet pas de connaître directement les propriétés du milieu équivalent. Ce travail consistera tout d'abord en la reconstruction du milieu végétal à l'aide d'outils issus de la géométrie fractale. Des méthodes de mesures de paramètres géométriques venant de la foresterie ont ensuite été utilisées pour valider nos modèles de végétation. Enfin, des expériences numériques ont été menées sur nos structures reconstruites afin d'identifier les paramètres macroscopiques qui nous intéressent. Ces expériences permettent également de valider ou non les hypothèses effectuées lors de l'établissement des équations du milieu équivalent. Les paramètres ajustés sont la viscosité du milieu équivalent, le coefficient d'échange convectif et le coefficient d'extinction / The macroscopic and gigascopic scale description of forest fires allows physical modelings of the propagation which can predict the fire evolution with a better accuracy than usually developed empirical Rothermel-like models. However, those models need fitting for their parameters which cannot be measured directly as the models equations are related to the equivalent media at the considered scale and not related to the air and the vegetal material. The equivalent media properties are related to the inner media properties, but the inner media properties knowledge does not allow directly the equivalent media properties knowledge. This work is then aiming on the vegetal medium reconstruction using fractal geometry. Geometrical parameters measurement methods used in forestry sciences are applied for the vegetal modeling validation. Numerical studies are finally done on the reconstructed structures to fit the relevant macroscopic scale parameters. Those studies also allow us to validate or invalidate the assumptions which have been done for the equivalent medium equation development. Those parameters are: the equivalent medium viscosity, the convective heat transfer coefficient and the extinction coefficient
|
385 |
Algorithme des complexes CAT (0) planaires et rectangulairesMaftuleac, Daniela 28 June 2012 (has links)
Dans cette thèse, nous étudions des problèmes algorithmiques dans les complexes CAT(0) planaires et rectangulaires munis d'une m ́etrique intrinsèque l_2. Nous proposons des algorithmes de calcul du plus court chemin dans les complexes CAT(0) planaires et rectangulaires et de construction de l'enveloppe convexe d'un ensemble fini de points dans les complexes CAT(0) planaires. E ́tant donné un complexe CAT(0) rectangulaire 2-dimensionnel K à n sommets, nous proposons un algorithme qui, pour toute paire de points calcule la distance et le plus court chemin en temps sous-lin ́eaire en nombre de sommets de K, en utilisant une structure de données de taille O(n^2). Le deuxième problème étudié est celui du plus court chemin entre un point-source donné et tout autre point dans un complexe CAT(0) planaire K a n sommets. Pour cela, nous proposons un algorithme qui, pour tout point y de K, étant donnée le point source x et la carte géodésique SPM(x), construit le plus court chemin γ(x,y) en temps O(n), en utilisant une structure de données de taille O(n^2). Enfin, nous nous intéressons au calcul de l'enveloppe convexe d'un ensemble de k points dans un complexe CAT(0) planaire à n sommets. Nous proposons un algorithme qui construit l'enveloppe convexe en temps O(n^2 + nk log k) en utilisant une structure de données de taille O(n^2 + k). / In this thesis, we study algorithmic problems in CAT(0) planar and rectangular complexes with an intrinsic l_2−metric. We present algorithms for some algorithmic problems, such as computing the shortest path and the convex hull of a finite set of points in CAT(0) planar and rectangular complexes. We present an efficient algorithm for answering two-point distance queries in a given CAT(0) rectangular complex K with n vertices. Namely, we show that for a CAT(0) rectangular complex K with n vertices, one can construct a data structure of size O(n^2) so that, given any two points in K, the shortest path can be computed in subliniar time of n. The second problem presented is computing shortest path from a single-source to the query point in a CAT(0) planar complex. We propose an algorithm which computes in O(n) time the shortest path between a given point and the query point in a CAT(0) planar complex with n vertices, using a given shortest path map and data structure of size O(n^2). Finally, we study the problem of computing the convex hull of a set of k points in a CAT(0) planar complex with n vertices. We describe an algorithm which computes the convex hull in O(n^2 + nk log k) time, using a data structure of size O(n^2 + k).
|
386 |
Applications de la théorie géométrique des invariants à la géométrie diophantienne / Applications of geometric invariant theory to diophantine geometryMaculan, Marco 07 December 2012 (has links)
: La théorie géométrique des invariants constitue un domaine central de la géométrie algébrique d'aujourd'hui : développée par Mumford au début des années soixante, elle a conduit à des progrès considérables dans l'étude des variétés projectives, notamment par la construction d'espaces de modules. Dans les vingt dernières années des interactions entre la théorie géométrique des invariants et la géométrie arithmétique -- plus précisément la théorie des hauteurs et la géométrie d'Arakelov -- ont été étudiés par divers auteurs (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). Dans cette thèse nous nous proposons d'un côté d'étudier de manière systématique la théorie géométrique des invariants dans le cadre de la géométrique d'Arakelov ; de l'autre de montrer que ces résultats permettent une nouvelle approche géométrique (distincte aussi de la méthode des pentes développée par Bost) aux résultats d'approximation diophantienne, tels que le Théorème de Roth et ses généralisations par Lang, Wirsing et Vojta. / Geometric invariant theory is a central subject in nowadays' algebraic geometry : developed by Mumford in the early sixties, it enhanced the knowledge of projective varieties through the construction of moduli spaces. During the last twenty years, interactions between geometric invariant theory and arithmetic geometric --- more precisely, height theory and Arakelov geometry --- have been exploited by several authors (Burnol, Bost, Zhang, Soulé, Gasbarri, Chen). In this thesis we firstly study in a systematic way how geometric invariant theory fits in the framework of Arakelov geometry; then we show that these results give a new geometric approach to questions in diophantine approximation, proving Roth's Theorem and its recent generalizations by Lang, Wirsing and Vojta.
|
387 |
Aspects différentiels et métriques de la géométrie non commutative : application à la physique / Aspects of the metric and differential noncommutative geometry : application to physicsCagnache, Eric 25 June 2012 (has links)
La géométrie non commutative, du fait qu'elle permet de généraliser des objets géométriques sous forme algébrique, offre des perspectives intéressantes pour réunir la théorie quantique des champs et la relativité générale dans un seul cadre. Elle peut être abordée selon différents points de vue et deux d'entre eux sont présentés dans cette thèse. Le premier, le calcul différentiel basé sur les dérivations, nous a permis de construire une action de Yang-Mills-Higgs dans laquelle apparait des champs pouvant être interprétés comme des champs de Higgs. Avec le second, les triplets spectraux, on peut généraliser la notion de distance entre état et calculer des formules de distance. C'est ce que nous avons fait dans le cas de l'espace de Moyal et du tore non commutatif. / Noncommutative geometry offers interesting prospects to gather the quantum field theory and relativity in one general framework because it allows one to generalize geometric objects algebraically. It can be approached from different points of view and two of them are presented in this PhD. The first, calculus based on derivations, allowed us to construct a Yang-Mills-Higgs action which appears in fields that can be interpreted as Higgs fields. With the second, spectral triples, we can generalize the notion of distance between states. We calculated the distance formulas in the case of the Moyal space and the noncommutative torus.
|
388 |
Étude du modèle des variétés roulantes et de sa commandabilité / Study of the Rolling Manifolds Model and of its ControllabilityKokkonen, Petri 27 November 2012 (has links)
Nous étudions la commandabilité du système de contrôle décrivant le procédé de roulement, sans glissement ni pivotement, de deux variétés riemanniennes n-dimensionnelles, l'une sur l'autre. Ce modèle est étroitement associé aux concepts de développement et d'holonomie des variétés, et il se généralise au cas de deux variétés affines. Les contributions principales sont celles données dans quatre articles, attachés à la fin de la thèse.Le premier d'entre eux «Rolling manifolds and Controllability : the 3D case»traite le cas où les deux variétés sont 3-dimensionelles. Nous donnons alors, la liste des cas possibles pour lesquelles le système n'est pas commandable.Dans le deuxième papier «Rolling manifolds on space forms», l'une des deux variétés est supposée être de courbure constante. On peut alors réduire l'étude de commandabilité à l'étude du groupe d'holonomie d'une certaine connexion vectorielle et on démontre, par exemple, que si la variété à courbure constante est une sphère n-dimensionelle et si ce groupe de l'holonomie n'agit pas transitivement, alors l'autre variété est en fait isométrique à la sphère.Le troisième article «A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles» décrit, en utilisant le procédé de roulement (ou développement) le long des lacets, une version alternative du théorème de Cartan-Ambrose-Hicks, qui caractérise, entre autres, les isométries riemanniennes. Plus précisément, on prouve que si on part d'une certaine orientation initiale, et si on ne roule que le long des lacets basés au point initial (associé à cette orientation), alors les deux variétés sont isométriques si (et seulement si) les chemins tracés par le procédé de roulement sur l'autre variété, sont tous des lacets.Finalement, le quatrième article «Rolling Manifolds without Spinning» étudie le procédé de roulement et sa commandabilité dans le cas où l'on ne peut pas pivoter. On caractérise alors les structures de toutes les orbites possibles en termes des groupes d'holonomie des variétés en question. On montre aussi qu'il n'existe aucune structure de fibré principal sur l'espace d'état tel que la distribution associée à ce modèle devienne une distribution principale, ce qui est à comparer notamment aux résultats du deuxième article.Par ailleurs, dans la troisième partie de cette thèse, nous construisons soigneusement le modèle de roulement dans le cadre plus général des variétés affines, ainsi que dans celui des variétés riemanniennes de dimensiondifférente. / We study the controllability of the control system describing the rolling motion, without slipping nor spinning, of two n-dimensional Riemannian manifolds, one against the other.This model is closely related to the concepts of development and holonomy of the manifolds, and it generalizes to the case of affine manifolds.The main contributions are those given in four articles attached to the the thesis.First of them "Rolling manifolds and Controllability: the 3D case"deal with the case where the two manifolds are 3-dimensional. We give the listof all the possible cases for which the system is not controllable.In the second paper "Rolling manifolds on space forms"one of the manifolds is assumed to have constant curvature.We can then reduce the study of controllability to the study of the holonomy groupof a certain vector bundle connection and we show, for example, thatif the manifold with the constant curvature is an n-sphere and ifthis holonomy group does not act transitively,then the other manifold is in fact isometric to the sphere.The third paper "A Characterization of Isometries between Riemannian Manifolds by using Development along Geodesic Triangles"describes, by using the rolling motion (or development) along the loops,an alternative version of the Cartan-Ambrose-Hicks Theorem,which characterizes, among others, the Riemannian isometries.More precisely, we prove that if one starts from a certain initial orientation,and if one only rolls along loops based at the initial point (associated to this orientation),then the two manifolds are isometric if (and only if) the pathstraced by the rolling motion on the other manifolds, are all loops.Finally, the fourth paper "Rolling Manifolds without Spinning"studies the rolling motion, and its controllability, when slipping is allowed.We characterize the structure of all the possible orbits in terms of the holonomy groupsof the manifolds in question. It is also shown that there does not exist anyprincipal bundle structure such that the related distribution becomes a principal distribution,a fact that is to be compared especially to the results of the second article.Furthermore, in the third chapter of the thesis, we construct carefully the rolling modelin the more general framework of affine manifolds, as well as that of Riemannian manifolds,of possibly different dimensions.
|
389 |
Radon-type transforms on some symmetric spaces / Transformées de type Radon sur certains espaces symétriquesGrouy, Thibaut 01 April 2019 (has links) (PDF)
Dans cette thèse, nous étudions des transformées de type Radon sur certains espaces symétriques. Une transformée de type Radon associe à toute fonction continue à support compact sur une variété $M$ ses intégrales sur une classe $Xi$ de sous-variétés de $M$. Le problème sur lequel nous nous concentrons est l'inversion d'une telle transformée, c'est-à-dire déterminer la fonction à partir de ses intégrales sur les sous-variétés dans $Xi$. Nous présentons d'abord la solution de ce problème inverse due à Sigurdur Helgason et François Rouvière, entre autres, lorsque $M$ est un espace symétrique riemannien isotrope et $Xi$ une certaine orbite de sous-variétés totalement géodésiques de $M$ sous l'action d'un groupe de transformations de Lie de $M$. La transformée de Radon associée est qualifiée de totalement géodésique.Sur les espaces symétriques pseudo-riemanniens semisimples, nous considérons une autre transformée de type Radon, qui associe à toute fonction continue à support compact ses intégrales orbitales, c'est-à-dire ses intégrales sur les orbites du sous-groupe d'isotropie du groupe des transvections. L'inversion des intégrales orbitales, qui est donnée par une formule-limite, a été obtenue par Sigurdur Helgason sur les espaces symétriques lorentziens à courbure sectionnelle constante et par Jeremy Orloff sur tout espace symétrique pseudo-riemannien semisimple de rang un. Nous résolvons le problème d'inversion des intégrales orbitales sur les espaces de Cahen-Wallach, qui sont les modèles d'espaces symétriques lorentziens indécomposables résolubles.Pour finir, nous nous intéressons aux transformées de type Radon sur les espaces symétriques symplectiques à courbure de type Ricci. L'inversion des orbitales intégrales sur ces espaces lorsqu'ils sont semisimples a déjà été obtenue par Jeremy Orloff. En revanche, lorsque ces espaces ne sont pas semisimples, la transformée donnée par les intégrales orbitales n’est pas inversible. Ensuite, nous déterminons les orbites de sous-variétés totalement géodésiques symplectiques ou lagrangiennes sous l'action d'un groupe de transformations de Lie de l'espace de départ. Dans ce contexte, la méthode d'inversion développée par Sigurdur Helgason et François Rouvière, entre autres, ne fonctionne que pour les transformées de Radon totalement géodésiques symplectiques sur les espaces symétriques kählériens à courbure holomorphe constante. Les formules d'inversion de ces transformées sur les espaces hyperboliques complexes sont dues à François Rouvière. Nous calculons les formules d'inversion de ces transformées sur les espaces projectifs complexes. / In this thesis, we study Radon-type transforms on some symmetric spaces. A Radon-type transform associates to any compactly supported continuous function on a manifold $M$ its integrals over a class $Xi$ of submanifolds of $M$. The problem we address is the inversion of such a transform, that is determining the function in terms of its integrals over the submanifolds in $Xi$. We first present the solution to this inverse problem which is due to Sigurdur Helgason and François Rouvière, amongst others, when $M$ is an isotropic Riemannian symmetric space and $Xi$ a particular orbit of totally geodesic submanifolds of $M$ under the action of a Lie transformation group of $M$. The associated Radon transform is qualified as totally geodesic.On semisimple pseudo-Riemannian symmetric spaces, we consider an other Radon-type transform, which associates to any compactly supported continuous function its orbital integrals, that is its integrals over the orbits of the isotropy subgroup of the transvection group. The inversion of orbital integrals, which is given by a limit-formula, has been obtained by Sigurdur Helgason on Lorentzian symmetric spaces with constant sectional curvature and by Jeremy Orloff on any rank-one semisimple pseudo-Riemannian symmetric space. We solve the inverse problem for orbital integrals on Cahen-Wallach spaces, which are model spaces of solvable indecomposable Lorentzian symmetric spaces.In the last part of the thesis, we are interested in Radon-type transforms on symplectic symmetric spaces with Ricci-type curvature. The inversion of orbital integrals on these spaces when they are semisimple has already been obtained by Jeremy Orloff. However, when these spaces are not semisimple, the orbital integral operator is not invertible. Next, we determine the orbits of symplectic or Lagrangian totally geodesic submanifolds under the action of a Lie transformation group of the starting space. In this context, the technique of inversion that has been developed by Sigurdur Helgason and François Rouvière, amongst others, only works for symplectic totally geodesic Radon transforms on Kählerian symmetric spaces with constant holomorphic curvature. The inversion formulas for these transforms on complex hyperbolic spaces are due to François Rouvière. We compute the inversion formulas for these transforms on complex projective spaces. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
390 |
Influence de la surcharge pondérale sur la densité minérale osseuse et la géométrie osseuse chez des adolescents et des jeunes libanais / Influence of being overweight on bone mineral density and bone geometry in a group of Lebanese adolescents and young adultsEl Hage, Zaher 03 July 2013 (has links)
Les buts de cette thèse étaient d'explorer les effets de l'obésité et du surpoids sur le contenu minéral osseux (CMO), la densité minérale osseuse (DMO) et la géométrie osseuse de la hanche ches des adolescents et des jeunes adultes libanais. 131 sujets libanais agés de 13 à 30 ans ont acceptés de participer à cette étude (67 de sexe masculin et 64 de sexe féminin) et ont donné leur consentement éclairé. Le poids et la taille ont été mesurés et l'indice de masse corporelle (IMC) a été calculé. La composition corporelle, le CMO du corps entier (CE), la DMO CE, la DMO du rachis lombaire (L2-L4), la DMO de la hanche et la DMO de l'avant-bras ont été mesuréses par la DXA. La géométrie osseuse de la hanche a été évaluée par le logiciel Hip Structure Analysis (HSA). La surface de la section transversale (CSA), le moment d'inertie de la surface transversale (CSMI), le module de section (Z), l'épaisseur corticale (CT) et le buckling ratio (BR) ont été ainsi mesurés par le logiciel HSA. Dans les deux sexes, l'obésité et le surpoids étaient associés à une augmentation des valeurs absolues de CMO, de DMO et d'indicecs géométriques de résistance osseuse (CSA et Z) au niveau de la hanche. Chez les sujets de sexe masculin, le CMO CE, le rapport CMO CE/taille, la DMO CE et la DMO du Radius ultra-distal étaient significativement inférieurs chez le groupe obèse par rapport aux groupes en surpoids et normo-pondérés après ajustement pour le poids (en utilisant une analyse de covariance). Chez les sujets de sexe féminin, après ajustement pour le poids (en utilisant une analyse de covariance), la DMO du rachis lombaire était inférieure chez le groupe obèse par rapport au groupe normo-pondéré alors qu'il n'y avait aucune différence entre les trois groupes (obèse, en surpoids et normo-pondéré) au niveau des indices géométriques de résistance osseuse de la hanche. Cette thèse montre donc que la DMO de certains sites osseux n'est pas correctement adaptée à l'excès de poids chez les jeunes obèses. / The aims of this thesis were to explore the effects of obesity and overweight on bone mineral content (BMC), bone mineral density (BMD) and hip geometry in a group of Lebanese adolescents and young adults. 131 Lebanese subjects (67males and 64 female) whose ages range between 13 and 30 years participated in this study. Informed written consent was obtained from participants. Weight and height were measured, and body mass index (BMI) was calculated. Body composition, whole body bone mineral content (WB BMC), whole body bone mineral density (WB BMD), lumbar spine bone mineral density (L2-L4 BMD), hip BMD and forearm BMD were measured by DXA. To evaluate hip bone strength, DXA scans were analyzed by the hip structure analysis (HSA) program. Cross-sectional area (CSA), section modulus (Z), cross-sectional moment of inertia (CSMI), cortical thickness (CT) and buckling ratio (BR) were measured from hip bone mass profiles using the HSA software. In both sexes, obesity and overweight were associated with higher crude BMC, BMD and geometric indices of hip bone strengh values (CSA and Z). In males, obese group displayed lower WB BMC, WB BMC/height, WB BMD and ultra-distal Radius BMD values in comparison to overweight and normal-weight groups after adjustement for weight (using a one-way analysis of covariance). In females, after adjusting for body weight (using a one-way analysis of covariance), lumbar spine BMD was lower in the obese group compared to the normal-weight group while there were no significant differences among the three groups (obses, overweight and normal-weight) regarding geometric indicesof hip bone strength. This study shows that BMD of some skeletal sites is not well adapted to the increased body weight in young obese.
|
Page generated in 0.036 seconds