1 |
A propos d'une structure complexe sur un espace de twisteurs pour certaines variété symplectiquesStienon, Mathieu January 2004 (has links)
Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
2 |
Métriques presque-kählériennes extrémalesLejmi, Mehdi 07 1900 (has links) (PDF)
Le thème principal de cette thèse est l'étude des métriques presque-kählériennes extrémales compatibles sur une variété symplectique compacte. Nous allons généraliser les notions d'invariant de Futaki et du champ de vecteurs extrémal sur une variété kählérienne compacte au cas presque-kählérien. Nous allons montrer la périodicité du champ de vecteurs extrémal quand la forme symplectique représente une classe cohomologique entière modulo torsion. Nous donnerons une formule explicite de la courbure scalaire hermitienne en coordonnées de Darboux. Ceci nous permettra, en dimension 4, de construire des exemples de métriques strictement presque-kählériennes qui satisfont l'égalité dans les estimations de LeBrun. Nous allons étudier la stabilité sous déformations des métriques presque-kählériennes extrémales en dimension 4. Étant donné un chemin lisse de métriques presque-kählériennes compatibles avec une forme symplectique fixe, tel que au temps zéro la métrique est kählérienne et extrémale, nous prouverons, pour un temps assez petit et sous une certaine condition, l'existence d'une famille de métriques presque-kählériennes extrémales, compatibles avec la même forme symplectique, telle que chaque structure presque-complexe induite est difféomorphe à celle induite par le chemin. En particulier, le difféomoprhisme est l'identité au temps zéro. Sur une variété torique, nous allons discuter de l'unicité et la stabilité des métriques presque-kählériennes extrémales invariantes par un tore dans l'orbite 'complexifié' par l'action du groupe des hamiltoniens.
______________________________________________________________________________
|
3 |
Ondes en milieux hétérogènes discrets et continus : propagation, diffusion, cloaking / Waves in discrete and continuous heterogeneous media : propagation, scattering, cloakingFuthazar, Grégory 11 December 2013 (has links)
Dans la première partie, on s'intéresse à la multi-diffusion d'une onde acoustique avec une matrice homogène 2D contenant N inclusions. Dans le cas particulier de deux inclusions, on met alors en évidence l'importance du contraste matrice/inclusion dans les termes d'interactions entre inclusions. Le cas général de la multi-diffusion, pour distribution aléatoire de N inclusions, est ensuite développé dans l'esprit de Foldy-Lax basé sur des moyennes d'ensembles. Ainsi on cherche à déterminer le nombre d'onde effectif de l'onde effective, définie comme la moyenne du champ total, dans le cas d'une onde incidente émise par un point source. La deuxième partie est consacrée au cloaking actif dans une plaque. On détermine ainsi les amplitudes modales des sources multipolaires afin d'éteindre une onde plane ou émise par un point source, dans une région donnée. En outre, cette méthode peut s'appliquer pour éteindre l'onde diffractée par un défaut. Enfin dans la dernière partie, on se propose d'étudier la propagation d'onde au sein d'un milieu comportant des dislocations. On utilise la géométrie de Riemann-Cartan afin de modéliser ce milieu continu. Afin d'illustrer les différences que peuvent induire deux définitions possibles de la déformation (spatiale et matérielle), nous étudions la propagation d'ondes 3D dans l'exemple simple d'un milieu continu avec une densité uniforme et stationnaire de défauts. L'anisotropie et l'atténuation sont présentes dans les deux modèles mais sous forme différente. Enfin la déformation matérielle induit des modes de respiration et, en régime haute fréquence, des ondes transverses qui suivent l'escalier en spirale de Cartan. / In the first part, we investigate the multiple scattering of an acoustic wave within an homogeneous matrix containing N obstacles. In the particular case with 2 obstacles, we show the importance of the contrast matrix /obstacle in the coupling terms between inclusions. The general case of multiple scattering by N obstacles randomly distributed is then developed following the Foldy-Lax theory based on ensemble averaging. We aim to evaluate the effective wavenumber of the effective wave, defined as the average of the total field, in the case where the incoming wave is emitted by a point-like source. The second part is dedicated to the active cloaking in a thin plate. Hence we determine the modal amplitudes of the sources in order to extinct an incoming wave in a given region. This method can be applied to extinct the wave scattered by an obstacle. Finally, in the last part, the Riemann-Cartan geometry is used to model continuum with dislocations. In order to illustrate the differences induced by two possible definitions for the strain (spatial or material) in this framework, propagation of 3D waves is studied for a simple example of infinite continuum with uniform and stationary defects density. Anisotropy and attenuation are caught by both models even if these effects are quite different. Furthermore the material strain uniform breathing modes and, in the high frequency regime, transverse waves which follow the Cartan's spiral staircase.
|
4 |
Sur quelques questions de géométrie différentielle liées à la théorie des corps et des fils élastiquesSZOPOS, Marcela 09 May 2005 (has links) (PDF)
Le but de cette thèse est d'étudier des questions issues de la théorie de l'élasticité en utilisant des méthodes d'analyse mathématique et de géométrie différentielle. Dans le cas mono-dimensionnel, qui est lié à l'étude des fils élastiques, nous prouvons des résultats d'existence, d'unicité et de stabilité d'une courbe dans des espaces de Sobolev. Nous traitons ensuite le cas général d'une immersion de dimension et de co-dimension quelconques d'une sous-variété dans l'espace euclidien. Nous montrons ainsi que le résultat classique d'existence et d'unicité d'une telle immersion peut être étendu jusqu'au bord de la sous-variété, sous une hypothèse de régularité peu restrictive sur celui-ci. En outre, nous montrons que l'application ainsi construite est localement lipschitzienne pour les topologies appropriées. Enfin, nous revenons à l'étude des fils élastiques, pour obtenir des inégalités de Korn linéaires et non linéaires pour les courbes en dimension 3.
|
5 |
Quelques problèmes liés a la discrétisation des surfacesCohen-Steiner, David 21 January 2004 (has links) (PDF)
Un nombre croissant d'applications n'ecessite d'opérer des traitements algorithmiques sur des objets tridimensionnels. Le plus souvent, ceux-ci sont représentés par des surfaces triangulées. Cette thèse aborde trois problèmes posés par la manipulation de ces surfaces. On donne d'abord un algorithme qui, étant donnée une surface triangulée, construit une triangulation de Delaunay volumique la contenant comme sous-complexe. De telles triangulations sont utiles par exemple pour le calcul scientifique. Puis, on donne une généralisation de la courbure s'appliquant à des surfaces non nécessairement lisses, donc en particulier aux surfaces triangulées, et on étudie sa stabilité. Celle-ci est ensuite utilisée dans un algorithme de remaillage de surfaces triangulées visant à optimiser le rapport complexité/distortion. Enfin, on donne un algorithme de maillage de surfaces implicites garantissant que l'approximation produite a la même topologie que la surface initiale.
|
6 |
On the minimal number of periodic Reeb orbits on a contact manifoldGutt, Jean 27 June 2014 (has links) (PDF)
Le sujet de cette thèse est la question du nombre minimal d'orbites de Reeb distinctes sur une variété de contact qui est le bord d'une variété symplectique compacte. L'homologie symplectique $S^1$-équivariante positive est un des outils principaux de cette thèse; elle est construite à partir d'orbites périodiques de champs de vecteurs hamiltoniens sur une variété symplectique dont le bord est la variété de contact considérée. Nous analysons la relation entre les différentes variantes d'homologie symplectique d'une variété symplectique exacte compacte (domaine de Liouville) et les orbites de Reeb de son bord. Nous démontrons certaines propriétés de ces homologies. Pour un domaine de Liouville plongé dans un autre, nous construisons un morphisme entre leurs homologies. Nous étudions ensuite l'invariance de ces homologies par rapport au choix de la forme de contact sur le bord. Nous utilisons l'homologie symplectique $S^1$-équivariante positive pour donner une nouvelle preuve d'un théorème de Ekeland et Lasry sur le nombre minimal d'orbites de Reeb distinctes sur certaines hypersurfaces dans $\R^{2n}$. Nous indiquons comment étendre au cas de certaines hypersurfaces dans certains fibrés en droites complexes négatifs. Nous donnons une caractérisation et une nouvelle façon de calculer l'indice de Conley-Zehnder généralisé, défini par Robbin et Salamon pour tout chemin de matrices symplectiques. Ceci nous a mené à développer de nouvelles formes normales de matrices symplectiques.
|
7 |
Analysis of geometric and functional shapes with extensions of currents : applications to registration and atlas estimation / Analyse de formes géométriques et fonctionnelles via des extensions de la notion de courant : applications au recalage difféomorphique et à l'estimation d'atlas en anatomie numériqueCharon, Nicolas 14 November 2013 (has links)
Cette thèse s'articule autour de problématiques liées au domaine récent de l'anatomie numérique dont l'objet est de fournir des cadres à la fois mathématiques et numériques pour estimer la variabilité statistique au sein de populations de formes géométriques. Dans ce travail, on s'intéresse dans un premier temps au cas d'ensemble de courbes, de surfaces ou sous-variétés avec pour premier objectif de définir une représentation et des termes d'attache aux données adéquats pour les problèmes de recalage par grande déformation (LDDMM). Les précédentes approches reposant sur le cadre des courants qui traite le cas d'objets orientés, nous proposons une extension pour des formes géométriques non-orientées via la représentation des varifolds issue de la théorie géométrique de la mesure. Dans un second temps, ce travail se penche sur l'étude d'objets géométrico-fonctionnels aussi baptisés 'formes fonctionnelles', c'est à dire de fonctions ou de signaux définis sur des supports géométriques variables entre les individus. On définit notamment la notion de métamorphoses géométrico-fonctionnelles pour généraliser celle de déformation à ce contexte ainsi que la notion de courant fonctionnel pour mesurer la dissimilarité entre deux formes fonctionnelles. Ceci débouche assez naturellement sur un tout nouveau cadre mathématique et algorithmique permettant d'étendre les outils usuels de recalage difféomorphique. Enfin, on s'intéresse à la situation plus générale de l'estimation et l'analyse d'atlas pour des ensembles de telles structures en proposant en particulier une formulation mathématique bien posée pour de tels problèmes ainsi qu'un algorithme d'estimation simultanée géométrie/fonction puis des outils pour l'analyse statistique et la classification. Ces méthodes sont illustrées sur quelques jeux de données synthétiques et d'autres issues de l'imagerie biomédicale. / This thesis addresses several questions related to the recent field of computational anatomy. Broadly speaking, computational anatomy intends to analyse shape variability among populations of anatomical structures. In this work, we are focused, in the first place, on the case of datasets of curves, surfaces and more generally submanifolds. Our goal is to provide a mathematical and numerical setting to build relevant data attachment terms between those objects in the purpose of embedding it into the large diffeomorphic metric mapping (LDDMM) model for shape registration. Previous approaches have been relying on the concept of currents that represents oriented submanifolds. We first propose an extension of these methods to the situation of non-oriented shapes by adapting the concept of varifolds from geometric measure theory. In the second place, we focus on the study of geometrico-functional structures we call 'functional shapes' (or fshapes), which combine varying geometries across individuals with signal functions defined on these shapes. We introduce the new notion of fshape metamorphosis to generalize the idea of deformation groups in the pure geometrical case. In addition, we define the extended setting of 'functional currents' to quantify dissimilarity between fshapes and thus perform geometrico-functional registration between such objects. Finally, in the last part of the thesis, we move on to the issue of analyzing entire groups of individuals (shapes or fshapes) together. In that perspective, we introduce an atlas estimation variational formulation that we prove to be mathematically well-posed and build algorithms to estimate templates and atlases from populations, as well as tools to perform statistical analysis and classification. All these methods are evaluated on several applications to synthetic datasets on the one hand and real datasets from biomedical imaging on the other.
|
8 |
Analyse et modélisation de la surface corticale et de l'architecture sous-jacente des axonesSt-Onge, Etienne January 2016 (has links)
L'imagerie par résonance magnétique (IRM) est la seule technique non invasive d'imagerie médicale qui permet la reconstruction de l'architecture neuronale du cerveau. Cette approche est fondamentale pour le domaine des neurosciences, qui tente continuellement de développer de nouveaux outils et modèles pour mieux détecter et étudier les maladies mentales et neurodégénératives, les troubles du développement, les tumeurs, les commotions, ainsi que plusieurs autres pathologies du cerveau humain. L'IRM de diffusion (IRMd) combinée à la tractographie rend possible l'extraction de l'information structurelle sur les fibres nerveuses. Ces méthodes permettent de visualiser, d'analyser et d'évaluer l'intégrité de la matière blanche, ceci afin d'identifier la présence d'anomalies le long des axones, causées par la démyélinisation, la mort axonale ou d'autres détériorations. La problématique est que ces méthodes ont une faible résolution comparée à une surface ou une image anatomique IRM. L'IRMd est limitée par son faible rapport signal sur bruit (SNR) et l'effet de volume partiel causé par la discrétisation. Certains modèles géométriques ont récemment été utilisés pour mieux modéliser l'expansion corticale, la topologie des plis corticaux et l'organisation des couches de la matière grise. Toutefois, ces modèles fournissent seulement de l'information sur l'organisation du cortex et non pas sur la matière blanche comme telle, ni sur la structure des neurones. Cette recherche vise à modéliser la structure complexe des fibres de la matière blanche à l'aide d'équations différentielles et de flots géométriques. Ce mémoire présente différents modèles mathématiques (surface et flot) ainsi que leur intégration avec la méthode des différences finies. Nous proposons également d'utiliser un maillage de la surface corticale afin d'améliorer la précision de l'IRMd et de limiter l'effet de volume partiel. Validée qualitativement et quantitativement avec l'aide d'acquisitions hautes résolutions du Human Connectome Project (HCP) et d'un jeu de données de reproductibilité de test-retest, cette méthode permet d'améliorer la tractographie. Les résultats de ces travaux permettront de faire le pont entre l'imagerie de diffusion (IRMd) et les modalités propres à l'imagerie fonctionnelle (EEG, MEG, IRMf et TMS), pour lesquelles la structure des axones situés sous le cortex est essentielle pour bien modéliser et comprendre le fonctionnement cérébral.
|
9 |
Etude théorique et numérique des équations de Vlasov-Maxwell dans le formalisme covariant.Back, Aurore 07 November 2011 (has links) (PDF)
Un nouvel point de vue est proposé pour la simulation des plasmas utilisant le modèle cinétique qui couple les équations de Vlasov pour la distribution des particules et les équations de Maxwell pour la contribution des champs électromagnétique. On part du principe que les équations de la Physique sont des objets mathématiques qui mettent en relation des objets géométriques. Afin de conserver les propriètés géométriques des différents objets intervenant dans une équation, on utilise, pour l'étude théorique et numérique, la géométrie différentielle. Il s'avère que toutes les équations de la Physique peuvent s'écrire à l'aide des formes différentielles et que sous ce point de vue celles-ci sont indépendantes du choix des coordonnées. On propose alors une discrétisation des formes différentielles en utilisant les B-splines comme fonctions d'interpolation. Afin d'être cohérent avec la théorie, on proposera également une discrétisation des différentes opérations de la géométrie différentielle agissant sur les formes différentielles. On teste notre schéma tout d'abord sur les équations de Maxwell avec plusieurs conditions aux bords et puisque ce schéma numérique obtenu est indépendant du système de coordonnées, on le teste également lorsque l'on effectue un changement de coordonnées. Enfin, on applique la même méthode sur les équations de Vlasov-Poisson 1D et on propose plusieurs schémas numériques.
|
10 |
On fillability of contact manifoldsNiederkrüger, Klaus 11 December 2013 (has links) (PDF)
The aim of this text is to give an accessible overview to some recent results concerning contact manifolds and their symplectic fillings. In particular, we work out the weakest compatibility conditions between a symplectic manifold and a contact structure on its boundary to still be able to obtain a sensible theory (Chapter II), furthermore we prove two results (Theorem A and B in Section I.4) that show how certain submanifolds inside a contact manifold obstruct the existence of a symplectic filling or influence its topology. We conclude by giving several constructions of contact manifolds that for different reasons do not admit a symplectic filling.
|
Page generated in 0.0169 seconds