• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 67
  • 26
  • 3
  • Tagged with
  • 90
  • 23
  • 22
  • 17
  • 15
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Structuration des génomes par sélection indirecte de la variabilité mutationnelle : une approche de modélisation et de simulation

Knibbe, Carole 04 December 2006 (has links) (PDF)
A long terme, le succès évolutif d'une lignée ne dépend pas seulement de la valeur adaptative de ses fondateurs. Il dépend également de la capacité des descendants à transmettre le génotype ancestral sans mutation délétère, tout en découvrant parfois des mutations favorables. Un niveau intermédiaire de variabilité mutationnelle peut donc être, de fait, indirectement sélectionné. En simulant, à l'aide d'un modèle individu-centré, l'évolution de génomes soumis à la fois à des mutations locales et à des réarrangements chromosomiques, nous montrons que la structure du génome est un levier d'ajustement du degré de variabilité : le nombre de gènes et, de façon plus surprenante, la quantité de non codant s'ajustent en fonction du taux de mutation et de l'impact moyen des mutations géniques, maintenant ainsi un niveau constant de variabilité mutationnelle. L'émergence de ces couplages surprenants suggère que les génomes ne sont pas seulement façonnés par les biais mutationnels et les coûts sélectifs directs, mais aussi, à plus long terme, par des pressions plus indirectes.
82

Différenciation génétique des populations humaines pour les gènes de la réponse aux médicaments

Patillon, Blandine 16 July 2014 (has links) (PDF)
Tous les individus ne répondent pas de la même façon à un même traitement médicamenteux, tant sur le plan pharmacologique (efficacité) que sur le plan toxicologique (effets indésirables). Des facteurs génétiques affectant la pharmacocinétique et la pharmacodynamie des médicaments jouent un rôle déterminant dans cette variabilité interindividuelle de réponse. Certains de ces facteurs sont distribués de manière hétérogène entre les populations humaines. Ces différences s'expliquent en partie par des phénomènes d'adaptation locale des populations à leur environnement. Au cours de son histoire, l'homme a dû en effet faire face à des changements de son environnement chimique, qui ont entraîné des pressions de sélection naturelle sur les gènes intervenant dans la réponse de l'organisme aux xénobiotiques. Ce sont ces mêmes gènes qui, aujourd'hui, influencent la réponse aux médicaments.La formidable accélération des progrès de la génétique donne accès aujourd'hui à la variabilité génétique des populations humaines sur l'ensemble du génome, facilitant la découverte et la compréhension des mécanismes génétiques à l'origine des traits complexes comme la réponse aux médicaments. Les outils de la génétique des populations permettent notamment d'identifier des variants affichant un niveau de différenciation génétique inhabituel entre les populations humaines et de déterminer dans quelle mesure la sélection naturelle a joué un rôle dans les profils atypiques observés.Dans cette thèse, nous avons appliqué ces outils à des données de génotypage et de séquençage pour analyser les profils de différenciation génétique des populations humaines pour les gènes de la réponse aux médicaments. Nous avons ainsi démontré qu'une sélection positive récente en Asie de l'Est dans la région génomique du gène VKORC1 était responsable d'une hétérogénéité de distribution du variant fonctionnel de VKORC1, à l'origine des différences de sensibilité génétique aux anticoagulant oraux de type antivitamine K entre les populations humaines. Puis, en étendant notre analyse à l'ensemble des pharmacogènes majeurs, nous avons identifié de nouveaux variants potentiellement intéressants en pharmacogénétique pour expliquer les différences de réponse aux médicaments entre les populations humaines et les individus. Enfin, l'étude approfondie du gène NAT2 nous a permis de révéler un processus de sélection homogénéisante ciblant un variant fonctionnel associé à un phénotype d'acétylation très lent. Ces résultats soulignent l'influence déterminante de la sélection naturelle dans la variabilité de réponse aux médicaments entre les populations et les individus. Ils montrent l'apport de la génétique des populations pour une meilleure compréhension de la composante génétique de la réponse aux médicaments et des traits complexes.
83

L'exploration des génomes par l'outil ICEFinder révèle la forte prévalence et l'extrême diversité des ICE et des IME de streptocoques / Genomic exploration using the ICEFinder tool reveals the strong predominance and extreme diversity of streptococcal ICEs and IMEs

Coluzzi, Charles 20 December 2017 (has links)
Les éléments génétiques mobiles contribuent grandement à la diversité et à l’évolution des génomes bactériens par le biais du transfert horizontal. Parmi eux, les éléments intégratifs conjugatifs (ICE) codent leur propre excision, leur transfert par conjugaison et leur intégration. En revanche, les éléments intégratifs et mobilisables (IME) ne sont autonomes que pour leur excision et intégration et ne codent seulement que certaines des protéines/fonctions (oriT) dont ils ont besoin pour leur transfert conjugatif. Par conséquent, les IME ont besoin d’un élément conjugatif « helper » pour se transférer. Malgré leur impact sur le flux des gènes et l’évolution des génomes, la prévalence des ICE reste peu étudiée et seulement très peu d’IME avaient été identifiés au début de cette étude. De plus, bien que plusieurs méthodes de détection des ilots génomiques existent, aucune d’elles n’est dédiée aux ICE ou aux IME. Ce qui ne facilite pas l’analyse exhaustive de ces éléments. Le genre Streptococcus appartient au phylum des firmicutes. La quasi-totalité des streptocoques sont des bactéries commensales ou pathogènes de l’homme et d’autres animaux. Aussi, 2 espèces de streptocoques sont utilisées en tant que ferments lactiques lors la production de laits fermentés et divers fromages. Globalement, le genre streptocoques représente un groupe d’intérêt pour l’homme, l’étude du flux de gènes au sein de ces organismes et l’impact qu’il peut avoir sur leur mode vie est primordiale. Au cours de cette thèse, nous avons recherché les ICE et les IME dans 124 souches de streptocoques appartenant à 27 espèces en utilisant une base de données de référence comportant des protéines dites « signatures » d’IME et d’ICE (de leurs modules de conjugaison/mobilisation et d’integration/excision). Cette analyse exhaustive a permis l’identification et la délimitation de 131 ICE ou ICE légèrement dégénérés et 144 IME. Tous ces éléments ont été délimités, ce qui nous a permis de déterminer leur spécificité d’intégration dans les génomes. Au total, 17 spécificités d’intégration ont été identifiées pour les ICE dont 8 encore jamais décrites (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG and ybaB/EbfC) et 18 spécificités pour les IME dont seulement 5 étaient connues chez les firmicutes. Les modules d’intégration des ICE codent soit une intégrase à tyrosine pouvant avoir une faible spécificité (1 famille d’intégrase) ou une forte spécificité (13 spécificités différentes), soit des intégrases à sérine seule ou en triplet (4 spécificités différentes), soit une transposase à DDE. Les IME codent soit des intégrases à tyrosine (10 spécificités différentes) soit des intégrases à serine seule (8 spécificités différentes). Les ICE ont été groupés en 7 familles distinctes selon les protéines codées par leur module de conjugaison. Les IME présentaient une très forte diversité au sein de leur module de mobilisation, empêchant ainsi leur regroupement en famille selon les gènes portés par ce module. Les analyses phylogénétiques des protéines signature codées par tous les ICE et les IME ont montré des échanges de modules d’intégration entre les ICE et les IME et de nombreux échanges entre les modules de mobilisation des IME. L’ensemble de ces résultats révèle la forte prévalence et l’extrême diversité des ICE et des IME au sein des génomes de streptocoques. Une meilleure connaissance et compréhension de ces éléments nous a incité à construire un outil informatique semi-automatisé de détection des ICE et des IME de Streptocoques ainsi que leurs sites d’insertion / Mobile genetic elements largely contribute to the evolution and diversity of bacterial genomes through horizontal gene transfer. Among them, the integrative and conjugative elements (ICEs) encode their own excision, conjugative transfer and integration. On the other hand, integrative mobilizable elements (IMEs) are autonomous for excision and integration but encode only some of the proteins needed for their conjugative transfer. IMEs therefore need a “helper” conjugative element to transfer. Despite their impact on gene flow and genome dynamics, the prevalence of ICEs remains largely underscored and very few IMEs were identified at the beginning of this study. Furthermore, although several in silico methods exist to detect genomic islands, none are dedicated to ICEs or IMEs, thus complicating exhaustive examination of these mobile elements. The Streptococcus genus belongs to the firmicutes’ phylum. Almost all streptococci are commensal bacteria or pathogenes to men and animals. Two species of Streptococcus are also used in the dairy industry as lactic ferments in order to produce fermented milk and different types of cheese. Studying the gene flux of the Steptococci genus and the impact it can have on the lifestyle of these organisms is essential, as it has a lot of interest for human health and activities. In this work, we searched for ICEs and IMEs in 124 strains of streptococci belonging to 27 species using a reference database of ICE and IME signature proteins (from their conjugation, mobilization and integration/excision modules). This exhaustive analysis led to the identification and delimitation of 131 ICEs or slightly decayed ICEs and 144 IMEs. All these elements were delimited, which allowed us to identify their integration specificities in the genomes. In total, 17 ICE integration specificities were identified. Among them, 8 had never been described before (ftsK, guaA, lysS, mutT, rpmG, rpsI, traG and ybaB/EbfC). 18 specificities were also identified for IMEs, among which only 5 were known for the firmicutes. ICEs encode high or low-specificity tyrosine integrases (13 different specificities), single serine intégrases (1 specificity), triplet of serine integrases (3 different specificities), or DDE transposases while IMEs encode either tyrosine integrases (10 different specificities) or single serine integrases (8 different specificities). ICE were grouped in 7 distinct families according to the proteins encoded by their conjugation module whereas the mobilization modules of IMEs were highly diverse, preventing them from grouping into families according to their mobilization modules. The phylogenetic analysis of the signature proteins encoded by all ICEs and IMEs showed integration module exchanges between ICEs and IMEs and several mobilization module exchanges between IMEs. The overall results reveal a strong prevalence and extreme diversity of these elements among Streptococci genomes. Better understanding and knowledge of ICEs and IMEs prompted us to build a semi-automated command-line tool to identify streptococcal ICEs and IMEs as well as to determine their insertion site
84

Utilisation d'outils bio-informatiques pour l'étude de pathogènes émergents / Use of bioinformatics tools for the study of emerging pathogens

Benamar, Samia 06 July 2017 (has links)
La recherche en bactériologie et virologie est à la fois de nature cognitive et appliquée. Elle consiste à fédérer et mettre en place une capacité de recherche multidisciplinaire et pouvoir l'intégrer sur un champ très vaste de microorganismes et de maladies. Les nouvelles avancées conceptuelles et technologiques dans le domaine de la génomique, notamment les avancées dans les techniques à haut débit (séquençage, PCR...) permettent actuellement d’avoir rapidement des génomes bactériens et viraux entiers, ou seulement sur quelques gènes d’une grande population. Les progrès dans ce domaine permettent l’accès à ces informations en évitant une combinaison de plusieurs méthodologies, et à moindre coûts. Dans notre travail de thèse, nous avons été porté à analyser et traiter les données de deux études genomiques et métagenomiques, mettant en évidence avantages, limites et attentes liés à ces techniques. La première étude porte sur l'analyse génomique de nouveaux virus géants et chlamydia infectant Vermamoeba vermiformis. La deuxième étude concerne le pyroséquençage 16S de microbiote intestinal de nouveau-nés atteint de l'entérocolite nécrosante. Pour le premier projet du travail de thèse, nous avons analysé les génomes de trois nouvelles espèces de Chlamydiae et onze virus giants (premiers membres de deux probables nouvelles familles) qui se multiplient naturellement dans Vermamoeba vermiformis. L'objectif étant de mettre en évidence les caractéristiques génétiques spécifiques à ces micro-organismes. La deuxième partie a été consacrée à l'analyse des données de pyroséquençage 16S des selles de nouveau-nés atteints de l'entérocolite nécrosante. / Research in bacteriology and virology is both cognitive and applied. It involves federating and developing a multidisciplinary research capacity and being able to integrate it into a very broad field of microorganisms and diseases. New genomic and conceptual advances in genomics, including advances in high-throughput techniques, now permit rapid bacterial and viral genomes, or only a few genes of a large population. Progress in this area allows access to this information by avoiding a combination of several methodologies and at lower costs. In our thesis work, we were led to analyze and process the data of two genomic and metagenomic studies, highlighting advantages, limitations and expectations related to these techniques. The first study focuses on the genomic analysis of new giant viruses and chlamydia infecting Vermamoeba vermiformis. The second study concerns the 16S pyrosequencing of intestinal microbiota of neonates with necrotizing enterocolitis. The first project of the thesis work analyzed the genomes of three new species of Chlamydiae and eleven giant viruses (first members of two probable new families) which naturally multiply in Vermamoeba vermiformis. The objective is to highlight the genetic characteristics specific to these microorganisms. The second part was devoted to the analysis of 16S pyrosequencing data from neonatal enterocolitis neonatal stools. The goal was to identify an agent responsible for this disease.
85

Organisation et expression des gènes de résistance aux métaux lourds chez Cupriavidus metallidurans CH34

Monchy, Sébastien 04 June 2007 (has links)
Cupriavidus metallidurans CH34 est une béta-protéobactérie, résistante aux métaux lourds, isolée des sédiments d'une usine de métallurgie non-ferreuse en Belgique. <p>Le génome de cette bactérie contient un chromosome (3.6 Mb), un mégaplasmide (2.6 Mb) et deux plasmides pMOL28 (171 kb) et pMOL30 (234 kb) déjà connus pour porter des gènes de résistance aux métaux lourds. <p>Nous avons d'abord fait le catalogue des gènes impliqués dans la résistance aux métaux lourds et, ensuite, cherché à mesurer leur expression par deux approches transcriptomiques :RT-PCR et puces à ADN.<p> L'analyse du génome montre au moins 170 gènes relatifs à la résistance aux ions métalliques localisés sur les 4 réplicons, principalement sur les deux plasmides. Ces gènes codent essentiellement pour des systèmes d'efflux tel que les HME-RND (transport chimioosmotique avec flux de protons à contresens), les ATPases de type P ou encore pour le système de résistance aux ions Cu(II). Dans le génome de C. metallidurans, nous avons identifié 13 opérons qui codent pour des systèmes HME-RND, seuls trois, localisés sur les plasmides, sont surexprimés en présence de métaux lourds. Huit gènes codent pour des ATPases de type P, dont deux appartiennent à une classe dont les substrats ne sont pas métalliques. Deux ATPases appartiennent à une famille spécialisée pour l'efflux du Cu(II) et les quatre autres à une autre grande famille impliquée dans l'efflux des ions Cd(II), Pb(II) et Zn(II). Les analyses transcriptomiques montrent la surexpression des deux premières classes d'ATPases P en présence des métaux lourds. La mutagenèse du gène zntA (mégaplasmide), codant pour l'une des ATPases, provoque une diminution de la viabilité en présence de Zn(II), Cd(II) et dans une moindre mesure de Pb(II), Tl(I) et Bi(III). <p>Sur pMOL30, la résistance au cuivre implique un groupe de 19 gènes cop codant pour la résistance au cuivre au niveau du périplasme et du cytoplasme, et vraisemblablement pour une forme de stockage du cuivre essentiel. Ces 19 gènes sont surexprimés en présence de cuivre, mais une quinzaine de gènes proches semblent aussi requis pour une expression optimale de la résistance au cuivre. <p>L'annotation des plasmides a mis en évidence la parenté du plasmide pMOL28 avec le plasmide pHG1 (hydrogénotrophie, fixation du CO2) de C. eutrophus H16 et le plasmide pSym (fixation de l'azote) de C. taiwanensis, et chez pMOL30, la présence de deux îlots génomiques concentrant la plupart des résistances aux métaux lourds. Les puces montrent la surexpression de 83 sur 164 gènes dans pMOL28, et de 143 sur 250 gènes dans pMOL30. Elles montrent aussi que les gènes présents sur les deux plasmides sont davantage surexprimés que ceux localisés sur les deux mégaréplicons. Parmi les gènes surexprimés les plus intéressants du plasmide pMOL30, il faut mentionner des transposases tronquées et des gènes impliqués dans la synthèse des membranes (glycosyltransférases). L'analyse de l'expression des gènes plasmidiens de résistance aux métaux lourds montre la surexpression en présence de plusieurs ions métalliques ajoutés indépendamment et pas seulement par les substrats métalliques de ces opérons, ce qui suggère l'intervention de deux types de régulation dont les gènes correspondants sont aussi localisés sur le chromosome et le mégaplasmide.<p>Ce travail met en évidence la spécialisation de la bactérie dans la réponse à un grand spectre de concentrations de métaux lourds, jusqu'à la limite majeure de la toxicité observée pour les bactéries mésophiles hétérotrophes. Cette spécialisation correspond bien aux biotopes industriels de divers continents dans lesquels on l'a trouvée. <p> / Doctorat en sciences, Spécialisation biologie moléculaire / info:eu-repo/semantics/nonPublished
86

Evolutionary mechanisms of plant adaptation illustrated by cytochrome P450 genes under purifying or relaxed selection / Mécanismes évolutifs de l'adaptation des plantes illustrés par les gènes de P450s sous sélection purifiante ou pression de sélection relâchée

Liu, Zhenhua 21 March 2014 (has links)
Les plantes produisent une remarquable diversité de métabolites pour faire face aux contraintes d’un environnement en constante fluctuation. Cependant la manière dont les plantes ont atteint un tel degré de complexité métabolique et les forces responsables de cette diversité chimique reste largement incomprise. On considère généralement que le mécanisme de duplication des gènes contribue pour une grande part à l’évolution naturelle. En absence de transfert horizontal, les gènes d’évolution récente se cantonnent généralement chez quelques espèces et sont soumis à une évolution rapide, alors que les gènes conservés et plus anciens ont une distribution beaucoup plus large et sont porteurs de fonctions essentielles. Il est donc intéressant d’étudier l’adaptation des plantes en analysant parallèlement les gènes qui présentent soit une large distribution taxonomique, soit une distribution plus restreinte, de type lignée-spécifique. Les cytochromes P450 (CYP) constituent l’une des plus vastes familles de protéines chez les plantes, présentant des phylogénies très conservées ou très branchées qui illustrent la plasticité métabolique et la diversité chimique. Pour illustrer l’évolution des fonctions des cytochromes P450 dans le métabolisme végétal, nous avons sélectionné trois gènes, l’un très conservé au cours de l’évolution, CYP715A1 et les deux autres, CYP98A8 et CYP98A9, très récemment spécialisés de manière lignée spécifique chez les Brassicaceae. Les gènes appartenant à la famille CYP715 ont évolué avant la divergence entre gymnospermes et angiospermes, et sont le plus souvent présent en copie unique dans les génomes végétaux. Ceci suggère que leur fonction est essentielle et très conservée chez les plantes à graines (spermaphytes). Sur la base d’une analyse transcriptionnelle et de l’expression du gène GUS sous le contrôle du promoteur de CYP715A1, il est apparu que ce gène est spécifiquement exprimé au cours du développement floral, dans les cellules tapétales des jeunes boutons floraux ainsi que dans les filaments lors de l’anthèse. CYP715A1 est également fortement induit dans les cellules du péricycle de la zone d’élongation racinaire en réponse au stress salin. L’induction par le sel nécessite une région promotrice située entre 2 et 3 kb en amont de la région codante (i.e ; codon START), ce qui suggère la présence d’un facteur cis à cet endroit. Afin de déterminer la fonction de CYP715A1 chez Arabidopsis thaliana, j’ai identifié deux mutants d’insertion de T-DNA par génotypage et complémenté ces mutants avec le gène natif. La perte de fonction de CYP715A1 n’a pas d’impact sur la croissance et la fertilité de la plante en conditions de laboratoire. Cependant, une analyse par microscopie électronique en transmission montre un phénotype d’intine ondulée. La perte de fonction du gène CYP715A1 a également entraîné une réduction de la taille des pétales et un défaut d’anthèse. [...] / Plants produce a remarkable diversity of secondary metabolites to face continually challenging and fluctuating environmental constraints. However, how plants have reached such a high degree of metabolic complexity and what are the evolutionary forces responsible for this chemodiversity still remain largely unclarified. Gene evolution based on gene birth and extinction has been reported to nicely reflect the natural evolution. Without horizontal gene transfer, young genes are often restricted to a few species and have undergone rapid evolution, whereas old genes can be broadly distributed and are always indicative of essential housekeeping functions. It is thus of interest to study plant adaptation with parallel focus on both taxonomically widespread and lineage-specific genes. P450s are one of the largest protein families in plants, featuring both conserved and branched phylogenies. Examples of P450 properties reflecting metabolic versatility, chemodiversity and thus plant adaptation have been reported. To illustrate evolution of P450 functions in plant metabolism, we selected two P450 genes, one evolutionary conserved CYP715A1 and the second a recently specialized lineage-specific gene CYP98A9 in Arabidopsis thaliana.CYP715s evolved before the divergence between gymnosperms and angiosperms and are present in single copy in most sequenced plant genomes, suggesting an essential housekeeping function highly conserved across seed plants. Based on transcriptome analysis and promoter-driven GUS expression, CYP715A1 is selectively expressed in tapetal cells of young buds and filaments of open flowers during flower development. In addition, CYP715A1 is highly induced in the pericycle cells of the root elongation zone upon salt stress. The salt induction relies on the 2-3kb region of CYP715A1 promoter, suggesting some salt-response elements may exist in this area. To characterize the function of CYP715A1 in Arabidopsis, I identified two T-DNA insertion mutants by genotyping and confirmed by complementation with native CYP715A1 gene. Loss of function of CYP715A1 has no impact on plant growth and fertility in laboratory conditions. However, transmission electron microscopy (TEM) analysis has shown constant undulated intine phenotype in two knockout mutants and also the petal growth is significantly inhibited. These two phenotypes nicely match the native expression pattern of CYP715A1. Gene co-expression analysis suggests involvement of CYP715A1 in gibberellin (GA) metabolism under salt treatment. GAs profiling on mutant flowers also indicates reduced accumulation specific GAs. Unfortunately, no significant phenotype either related to root growth or root architecture under salt treatment can be observed. Recombinant expression of the CYP715A1 enzyme in yeast so far does not allow confirming GAmetabolism. However, metabolic profiling of inflorescences in mutants and over-expression lines, together with transcriptome analysis of the loss of function cyp715a1 mutants strongly support a CYP715A1 role in signaling, hormone homeostasis and volatile emission in agreement with the purifying selection leading to gene conservation observed in spermatophytes.[...]
87

CORE-SINE : une nouvelle classe de rétroposons des génomes eucaryotes

Gilbert, Nicolas 03 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / Chez l'humain, près de 30% de la masse génomique est constituée de séquences répétées dispersées qui se sont amplifiées par le mécanisme de rétroposition. Ce processus, présent dans tous les génomes eucaryotes, implique la transcription inverse de l'ARN d'un élément répété et l'intégration de l'ADNc qui en résulte dans une nouvelle localisation génomique. Les "Long Interspersed Elements" (LINE) codent pour les activités spécifiques de la rétroposition, telles que la transcriptase inverse et l'endonucléase. A l'inverse les "Short Interspersed Elements" (SINE) ne codent pour aucune activité enzymatique et sont considérés comme des "satellites" des éléments LINE. Nous avons caractérisé 5 nouvelles familles de rétroposon SINE chez les mammifères. Celles-ci font partie des SINE dérivés d'ARNt et ont, comme caractéristique commune, un domaine central nommé "core". Les régions 3 sont distinctes pour chacune des familles, mais fortement identiques aux extrémités 3' de différents LINE. D'autres séquences SINE possédant ces mêmes critères sont présentes dans les génomes d'oiseaux, de reptiles, de poissons et de céphalopodes. Nous avons ainsi identifié une nouvelle "superfamille" de rétroposon appelée CORE-SINE présente chez tous les vertébrés. L'étude du rôle de chaque segment des CORE-SINE ; région dérivée d'ARNt, "core" et région dérivée de LINE, nous a permis de donner de nouveaux éléments de réponse sur l'évolution des rétroposons dans les génomes eucaryotes. Enfin, nous avons décrit la présence d'un nouvel élément LINE dans les génomes de marsupiaux. Celui-ci est fortement identique au rétroposon Bov-B des génomes bovins et reptiles. Sa présence dans ces différents génomes soulève la possibilité d'un transfert horizontal de cet élément. / Almost 30% of the human genome consists of copies of interspersed repeats that amplified by retroposition, a process widely spread among eukaryotic taxa. Retroposition involves reverse transcription of the transcribed copies and reintegration of the resulting cDNAs into the host genome. Retroposition requires specific activities in addition to the enzymatic machinery commonly found in the host cells. The reverse transcriptase as well as the endonuclease involved in the cDNA synthesis and integration, are coded by the actively retroposing long elements such as LINEs. In contrast, short elements (SINEs) do not encode any protein facilitating their proliferation. However, these elements must have used both host-specific and retroposition-specific activities provided in trans to secure their efficient amplification. We have characterised 5 new SINE retroposon families from mammalian genomes. They belong to tRNA-derived SINEs and have also a common central domain called "core". The 3 end regions of all families are distinct but they display high identity with the 3'extremities of different LINEs. Several SINEs with the same characteristics have been found in bird, reptile, fish, and cephalopod genomes. These data point to the existence of a new "super-family" of SINE retroposons, named CORE-SINE, present in all vertebrate genomes. The study of each CORE-SINE segments, i.e. tRNA-derived region, "core" and LINE-derived region, gave new insight into the evolution of retroposon in eukaryotic genomes. Finally, we also described a new LINE element from marsupial genomes. It presents high identity with the Bov-B element from bovine and reptile genomes, which raises the possibility of a horizontal transfer of this element between genomes.
88

Étude structurale du mode de liaison des protéines Whirly de plantes à l’ADN monocaténaire

Cappadocia, Laurent 12 1900 (has links)
Les plantes doivent assurer la protection de trois génomes localisés dans le noyau, les chloroplastes et les mitochondries. Si les mécanismes assurant la réparation de l’ADN nucléaire sont relativement bien compris, il n’en va pas de même pour celui des chloroplastes et des mitochondries. Or il est important de bien comprendre ces mécanismes puisque des dommages à l’ADN non ou mal réparés peuvent entraîner des réarrangements dans les génomes. Chez les plantes, de tels réarrangements dans l’ADN mitochondrial ou dans l’ADN chloroplastique peuvent conduire à une perte de vigueur ou à un ralentissement de la croissance. Récemment, notre laboratoire a identifié une famille de protéines, les Whirly, dont les membres se localisent au niveau des mitochondries et des chloroplastes. Ces protéines forment des tétramères qui lient l’ADN monocaténaire et qui accomplissent de nombreuses fonctions associées au métabolisme de l’ADN. Chez Arabidopsis, deux de ces protéines ont été associées au maintien de la stabilité du génome du chloroplaste. On ignore cependant si ces protéines sont impliquées dans la réparation de l’ADN. Notre étude chez Arabidopsis démontre que des cassures bicaténaires de l’ADN sont prises en charge dans les mitochondries et les chloroplastes par une voie de réparation dépendant de très courtes séquences répétées (de cinq à cinquante paires de bases) d’ADN. Nous avons également montré que les protéines Whirly modulent cette voie de réparation. Plus précisément, leur rôle serait de promouvoir une réparation fidèle de l’ADN en empêchant la formation de réarrangements dans les génomes de ces organites. Pour comprendre comment les protéines Whirly sont impliquées dans ce processus, nous avons élucidé la structure cristalline d’un complexe Whirly-ADN. Nous avons ainsi pu montrer que les Whirly lient et protègent l’ADN monocaténaire sans spécificité de séquence. La liaison de l’ADN s’effectue entre les feuillets β de sous-unités contiguës du tétramère. Cette configuration maintient l’ADN sous une forme monocaténaire et empêche son appariement avec des acides nucléiques de séquence complémentaire. Ainsi, les protéines Whirly peuvent empêcher la formation de réarrangements et favoriser une réparation fidèle de l’ADN. Nous avons également montré que, lors de la liaison de très longues séquences d’ADN, les protéines Whirly peuvent s’agencer en superstructures d’hexamères de tétramères, formant ainsi des particules sphériques de douze nanomètres de diamètre. En particulier, nous avons pu démontrer l’importance d’un résidu lysine conservé chez les Whirly de plantes dans le maintien de la stabilité de ces superstructures, dans la liaison coopérative de l’ADN, ainsi que dans la réparation de l’ADN chez Arabidopsis. Globalement, notre étude amène de nouvelles connaissances quant aux mécanismes de réparation de l’ADN dans les organites de plantes ainsi que le rôle des protéines Whirly dans ce processus. / Plants must protect the integrity of three genomes located respectively in the nucleus, the chloroplasts and the mitochondria. Although DNA repair mechanisms in the nucleus are the subject of multiple studies, little attention has been paid to DNA repair mechanisms in chloroplasts and mitochondria. This is unfortunate since mutations in the chloroplast or the mitochondrial genome can lead to altered plant growth and development. Our laboratory has identified a new family of proteins, the Whirlies, whose members are located in plant mitochondria and chloroplasts. These proteins form tetramers that bind single-stranded DNA and play various roles associated with DNA metabolism. In Arabidopsis, two Whirly proteins maintain chloroplast genome stability. Whether or not these proteins are involved in DNA repair has so far not been investigated. Our studies in Arabidopsis demonstrate that DNA double-strand breaks are repaired in both mitochondria and chloroplasts through a microhomology-mediated repair pathway and indicate that Whirly proteins affect this pathway. In particular, the role of Whirly proteins would be to promote accurate repair of organelle DNA by preventing the repair of DNA double-strand breaks by the microhomology-dependant pathway. To understand how Whirly proteins mediate this function, we solved the crystal structure of Whirly-DNA complexes. These structures show that Whirly proteins bind single-stranded DNA with low sequence specificity. The DNA is maintained in an extended conformation between the β-sheets of adjacent protomers, thus preventing spurious annealing with a complementary strand. In turn, this prevents formation of DNA rearrangements and favors accurate DNA repair. We also show that upon binding long ssDNA sequences, Whirly proteins assemble into higher order structures, or hexamers of tetramers, thus forming spherical particles of twelve nanometers in diameter. We also demonstrate that a lysine residue conserved among plant Whirly proteins is important for the stability of these higher order structures as well as for cooperative binding to DNA and for DNA repair. Overall, our study elucidates some of the mechanisms of DNA repair in plant organelles as well as the roles of Whirly proteins in this process.
89

Différenciation génétique des populations humaines pour les gènes de la réponse aux médicaments / Genetic Differentiation of Human Populations for Genes Involved in Drug Response

Patillon, Blandine 16 July 2014 (has links)
Tous les individus ne répondent pas de la même façon à un même traitement médicamenteux, tant sur le plan pharmacologique (efficacité) que sur le plan toxicologique (effets indésirables). Des facteurs génétiques affectant la pharmacocinétique et la pharmacodynamie des médicaments jouent un rôle déterminant dans cette variabilité interindividuelle de réponse. Certains de ces facteurs sont distribués de manière hétérogène entre les populations humaines. Ces différences s’expliquent en partie par des phénomènes d’adaptation locale des populations à leur environnement. Au cours de son histoire, l’homme a dû en effet faire face à des changements de son environnement chimique, qui ont entraîné des pressions de sélection naturelle sur les gènes intervenant dans la réponse de l’organisme aux xénobiotiques. Ce sont ces mêmes gènes qui, aujourd’hui, influencent la réponse aux médicaments.La formidable accélération des progrès de la génétique donne accès aujourd’hui à la variabilité génétique des populations humaines sur l’ensemble du génome, facilitant la découverte et la compréhension des mécanismes génétiques à l’origine des traits complexes comme la réponse aux médicaments. Les outils de la génétique des populations permettent notamment d’identifier des variants affichant un niveau de différenciation génétique inhabituel entre les populations humaines et de déterminer dans quelle mesure la sélection naturelle a joué un rôle dans les profils atypiques observés.Dans cette thèse, nous avons appliqué ces outils à des données de génotypage et de séquençage pour analyser les profils de différenciation génétique des populations humaines pour les gènes de la réponse aux médicaments. Nous avons ainsi démontré qu’une sélection positive récente en Asie de l’Est dans la région génomique du gène VKORC1 était responsable d’une hétérogénéité de distribution du variant fonctionnel de VKORC1, à l’origine des différences de sensibilité génétique aux anticoagulant oraux de type antivitamine K entre les populations humaines. Puis, en étendant notre analyse à l’ensemble des pharmacogènes majeurs, nous avons identifié de nouveaux variants potentiellement intéressants en pharmacogénétique pour expliquer les différences de réponse aux médicaments entre les populations humaines et les individus. Enfin, l’étude approfondie du gène NAT2 nous a permis de révéler un processus de sélection homogénéisante ciblant un variant fonctionnel associé à un phénotype d’acétylation très lent. Ces résultats soulignent l’influence déterminante de la sélection naturelle dans la variabilité de réponse aux médicaments entre les populations et les individus. Ils montrent l’apport de la génétique des populations pour une meilleure compréhension de la composante génétique de la réponse aux médicaments et des traits complexes. / Response to drug treatment can be highly variable between individuals, both in terms of therapeutic effect (efficacy) and of adverse reactions (toxicity).Genetic factors affecting drug pharmacodynamics and pharmacokinetics play a major role in this inter-individual variability. Some of these factors are heterogeneously distributed among human populations. Local adaptation of populations to their environment partly explained those differences. Indeed,during human evolution, populations had to cope with changes in their chemical environment that triggered selective pressures on genes involved in xenobiotic response. Those genes are the same ones that influence drug response today.The tremendous recent advances in genotyping and sequencing technologies now provide access to the genome-wide patterns of genetic variation in a growing number of human populations, facilitating our understanding of the genetic mechanisms underlying complex traits such as drug response. Population genetic tools allow the identification of variants showing an unusual pattern of genetic differentiation among human populations and the determination of the role played by natural selection in shaping the atypical patterns observed.In this thesis, we have applied these tools on both SNP-chip genotyping data and Next Generation Sequencing data to analyze the genetic differentiation patterns of human populations for genes involved in drug response. We show that a nearly complete selective sweep in East Asia in the genomic region of the VKORC1 gene is responsible for an heterogeneous distribution of theVKORC1 functional variant and can explain the inter-population genetic differences in response to oral anti-vitamin K anticoagulants. Extending the analysis to all major pharmacogenes, we have identified new variants of potential relevance to pharmacogenetics which could explain inter-population and inter-individual differences in drug response. Finally, by a comprehensive analysis of the NAT2 gene, we evidence a homogenizing selection process targeting a functional variant associated with a very slow acetylation phenotype. These results emphasize the crucial role of natural selection in the inter-population and inter-individual drug response variability.They also illustrate the relevance of population genetics studies for a better understanding of the genetic component underlying drug response and complex traits.
90

Étude structurale du mode de liaison des protéines Whirly de plantes à l’ADN monocaténaire

Cappadocia, Laurent 12 1900 (has links)
Les plantes doivent assurer la protection de trois génomes localisés dans le noyau, les chloroplastes et les mitochondries. Si les mécanismes assurant la réparation de l’ADN nucléaire sont relativement bien compris, il n’en va pas de même pour celui des chloroplastes et des mitochondries. Or il est important de bien comprendre ces mécanismes puisque des dommages à l’ADN non ou mal réparés peuvent entraîner des réarrangements dans les génomes. Chez les plantes, de tels réarrangements dans l’ADN mitochondrial ou dans l’ADN chloroplastique peuvent conduire à une perte de vigueur ou à un ralentissement de la croissance. Récemment, notre laboratoire a identifié une famille de protéines, les Whirly, dont les membres se localisent au niveau des mitochondries et des chloroplastes. Ces protéines forment des tétramères qui lient l’ADN monocaténaire et qui accomplissent de nombreuses fonctions associées au métabolisme de l’ADN. Chez Arabidopsis, deux de ces protéines ont été associées au maintien de la stabilité du génome du chloroplaste. On ignore cependant si ces protéines sont impliquées dans la réparation de l’ADN. Notre étude chez Arabidopsis démontre que des cassures bicaténaires de l’ADN sont prises en charge dans les mitochondries et les chloroplastes par une voie de réparation dépendant de très courtes séquences répétées (de cinq à cinquante paires de bases) d’ADN. Nous avons également montré que les protéines Whirly modulent cette voie de réparation. Plus précisément, leur rôle serait de promouvoir une réparation fidèle de l’ADN en empêchant la formation de réarrangements dans les génomes de ces organites. Pour comprendre comment les protéines Whirly sont impliquées dans ce processus, nous avons élucidé la structure cristalline d’un complexe Whirly-ADN. Nous avons ainsi pu montrer que les Whirly lient et protègent l’ADN monocaténaire sans spécificité de séquence. La liaison de l’ADN s’effectue entre les feuillets β de sous-unités contiguës du tétramère. Cette configuration maintient l’ADN sous une forme monocaténaire et empêche son appariement avec des acides nucléiques de séquence complémentaire. Ainsi, les protéines Whirly peuvent empêcher la formation de réarrangements et favoriser une réparation fidèle de l’ADN. Nous avons également montré que, lors de la liaison de très longues séquences d’ADN, les protéines Whirly peuvent s’agencer en superstructures d’hexamères de tétramères, formant ainsi des particules sphériques de douze nanomètres de diamètre. En particulier, nous avons pu démontrer l’importance d’un résidu lysine conservé chez les Whirly de plantes dans le maintien de la stabilité de ces superstructures, dans la liaison coopérative de l’ADN, ainsi que dans la réparation de l’ADN chez Arabidopsis. Globalement, notre étude amène de nouvelles connaissances quant aux mécanismes de réparation de l’ADN dans les organites de plantes ainsi que le rôle des protéines Whirly dans ce processus. / Plants must protect the integrity of three genomes located respectively in the nucleus, the chloroplasts and the mitochondria. Although DNA repair mechanisms in the nucleus are the subject of multiple studies, little attention has been paid to DNA repair mechanisms in chloroplasts and mitochondria. This is unfortunate since mutations in the chloroplast or the mitochondrial genome can lead to altered plant growth and development. Our laboratory has identified a new family of proteins, the Whirlies, whose members are located in plant mitochondria and chloroplasts. These proteins form tetramers that bind single-stranded DNA and play various roles associated with DNA metabolism. In Arabidopsis, two Whirly proteins maintain chloroplast genome stability. Whether or not these proteins are involved in DNA repair has so far not been investigated. Our studies in Arabidopsis demonstrate that DNA double-strand breaks are repaired in both mitochondria and chloroplasts through a microhomology-mediated repair pathway and indicate that Whirly proteins affect this pathway. In particular, the role of Whirly proteins would be to promote accurate repair of organelle DNA by preventing the repair of DNA double-strand breaks by the microhomology-dependant pathway. To understand how Whirly proteins mediate this function, we solved the crystal structure of Whirly-DNA complexes. These structures show that Whirly proteins bind single-stranded DNA with low sequence specificity. The DNA is maintained in an extended conformation between the β-sheets of adjacent protomers, thus preventing spurious annealing with a complementary strand. In turn, this prevents formation of DNA rearrangements and favors accurate DNA repair. We also show that upon binding long ssDNA sequences, Whirly proteins assemble into higher order structures, or hexamers of tetramers, thus forming spherical particles of twelve nanometers in diameter. We also demonstrate that a lysine residue conserved among plant Whirly proteins is important for the stability of these higher order structures as well as for cooperative binding to DNA and for DNA repair. Overall, our study elucidates some of the mechanisms of DNA repair in plant organelles as well as the roles of Whirly proteins in this process.

Page generated in 0.0349 seconds