Spelling suggestions: "subject:"géométrie"" "subject:"éométrie""
11 |
Modélisation dans l'espace : obstacles du passage du 2D au 3DFurtuna, Carmen Daniela January 2008 (has links) (PDF)
Notre recherche vise l'enseignement de la géométrie au secondaire, en particulier le passage de la géométrie plane (2D) à la géométrie de l'espace (3D). À cet effet nous avons fait une courte analyse du programme d'étude visant l'enseignement de la géométrie de l'espace. Le cadre théorique développé par Houdement et Kuzniak (2005, 2006, 2007) nous a permis de réaliser l'analyse du programme d'étude. Nous avons constaté un manque de continuité à cet égard dans l'enseignement de la géométrie. Le référentiel théorique de la géométrie plane est construit dans l'esprit de la géométrie euclidienne du type GII - 2D, alors que le référentiel théorique de la géométrie de l'espace, qui est une géométrie du type GI - 3D, n'est pas un référentiel organisé selon un modèle mathématique. Nous avons constaté que l'espace de travail de la géométrie plane est un espace du type ETG -GII -2D, alors que pour la géométrie de l'espace, l'espace de travail correspond à un ETG -GI -3D, construit sans égard à un éventuel ETG - GII -3D. À partir de ces constats, nous nous sommes surtout intéressés à l'articulation 2D - 3D. Nous avons construit une séquence qui s'intéresse spécifiquement au passage de la géométrie plane à la géométrie de l'espace. Un autre cadre théorique, plus flexible, s'avérait nécessaire dans l'analyse de la situation-problème proposée à tous les élèves du secondaire. Brousseau et Galvez (1985) ont développé une théorie qui montre la pertinence de l'étude entre un sujet et trois types d'espaces: micro, méso et macro. Ensuite, Berthelot et Salin (2000) développent cette théorie en adaptant aux trois types d'espace les concepts élémentaires de la géométrie qui correspondent en grand partie aux conceptions des élèves dans leur pratique de la géométrie. L'analyse de la situation-problème nous a permis de remarquer que le passage du micro-espace, l'espace de la feuille de papier, au méso-espace, l'espace qui nous entoure, n'est pas fait de façon spontanée. Un ancrage dans l'espace de la feuille de papier, l'espace micro, ne permet pas une bonne articulation avec l'espace méso. Nous remarquons l'importance de développer dans la conscience de l'élève la connaissance « espace » pour développer un vrai sens spatial. Nous allons donc conclure par l'importance de choisir un espace de travail pour la géométrie de l'espace qui soit en continuité avec la géométrie plane: ETG -GII - 2D passant par un ETG - GI - 3D construit de façon à mener plus naturellement et logiquement vers un ETG - GII - 3D. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Enseignement de mathématiques, Secondaire, Géométrie, Espace de travail.
|
12 |
Analyse du développement de la notion de preuve dans une collection du secondaireTanguay, Denis January 2002 (has links) (PDF)
En élaborant le présent mémoire, nous avons cherché à mieux comprendre comment se développe la notion de preuve dans le cheminement d'apprentissage d'un élève du secondaire. Dans cette optique, nous avons d'abord fait le point sur notre propre expérience d'enseignement et sur nos réflexions personnelles, suscitées entre autres par deux expérimentations conduites par nous dans le cadre du cours d'Initiation à la recherche en didactique des mathématiques.
Nous avons ensuite cherché à retracer quels objectifs des programmes du MEQ se rapportent à l'apprentissage de la preuve, et que suggèrent ces programmes pour que ces objectifs soient atteints. Nous avons pu constater que cet apprentissage y passe avant tout par l'étude de la géométrie. La lecture de deux articles de R. Thom et R. Bkouche nous a permis de mieux cerner les liens privilégiés entre géométrie et apprentissage de la preuve. Ceux-ci sont profonds, incontournables, entre autres parce que les concepts et raisonnements géométriques occupent une position charnière entre le « sensible » et le « formel ».
Nous avons alors arrêté l'objet précis de notre étude : l'apprentissage de la preuve, tel que véhiculé par les problèmes de géométrie synthétique, dans une collection du secondaire. Dans le but d'élaborer une grille d'analyse, nous avons dégagé la notion de « schéma de bipolarisation » des réflexions sur la preuve d'É. Barbin, de G. Hanna, G. Brousseau, N. Balacheff et N. Rouche. À partir des schémas de bipolarisation suggérés par leurs travaux, nous avons édifié notre propre typologie des preuves et par suite, notre grille d'analyse des problèmes. Après une classification des problèmes de la collection à l'étude selon cette grille, nous avons interprété et analysé cette classification, pour conclure sur les aspects de l'apprentissage de la preuve que nous évaluons comme mal « gérés » dans la collection : transition non suffisamment graduelle du sensible au formel (très peu de problèmes qui sollicitent une validation hybride, niveau de formalisation trop longtemps stationnaire, rôle ambigu de la géométrie des transformations dans le processus de formalisation, etc.), prépondérance des applications directes et des déductions locales sur les séquences déductives, intérêt et mode de présentation des résultats qui ne favorisent pas une « attitude de preuve », etc.
|
13 |
Cobordismes Lagrangiens des noeuds LegendriensChantraine, Baptiste January 2009 (has links) (PDF)
Nous proposons et commençons ici l'étude des cobordismes lagrangiens reliant deux noeuds legendriens dans la symplectisation d'une variété de contact (M,ξ). En étudiant l'homomorphisme naturel du groupe des contactomorphismes de (M, ξ) vers les symplectomorphsimes de sa symplectisation, nous démontrons que l'existence d'un tel cobordisme ne dépend que de la classe d'isotopie des noeuds legendriens en question. Nous étudions ensuite le comportement des invariants classiques sous la relation de cobordisme lagrangien. A l'aide de l'inégalité de Bennequin et de ses généralisations, nous étudions les liens existants entre cette relation et la topologie des noeuds, notamment nous obtenons un critère pour calculer le 4-genre d'un noeud dans certaines situations. Nous en concluons notamment une nouvelle preuve de la conjecture locale de Thom. Parmi les applications nous donnons le lien entre les cobordismes lagrangiens et les cobordismes symplectiques via les chirurgies legendriennes. Nous démontrons aussi l'existence d'un homomorphisme induit en homologie de contact incluant cette relation dans le tableau global de la théorie symplectique des champs. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Géométrie de contact et symplectique, Lagrangien, Legendrien, Conjecture locale de Thom, Homologie de contact.
|
14 |
Extracting cell complexes from 4-dimensional digital images / Généralisation à dimension 4 des méthodes pour manipuler des images numériques binairesPacheco-Martínez, Ana María 10 July 2012 (has links)
Une image numérique peut être définie comme un ensemble de n-xels sur une grille constituée de n-cubes. La segmentation consiste à calculer une partition d'une image en régions. Les n-xels ayant des caractéristiques similaires (couleur, intensité, etc.) sont regroupés. Schématiquement, à chaque n-xel est attribuée une étiquette, et chaque région de l'image est constituée de n-xels de même étiquette. Les méthodes "de type" Marching cubes et Kenmochi et al. construisent des complexes représentant la topologie de la région d'intérêt d'une image numérique binaire de dimension 3. Dans la première méthode, l'algorithme construit un complexe simplicial, dont 0-cellules sont des points des arêtes de la grille duale. Dans la deuxième méthode, les auteurs construisent un complexe cellulaire sur une grille duale, c.a.d les 0-cellules du complexe sont des sommets de la grille duale. Afin de construire le complexe, Kenmochi et al. calculent (à rotations près) les différentes configurations de sommets blancs et noirs d'un cube, puis, ils construisent les enveloppes convexes des points noirs de ces configurations. Ces enveloppes convexes définissent les cellules du complexe, à rotations près. Le travail développé dans cette thèse étend la méthode de Kenmochi et al. en dimension 4. L'objectif est de construire un complexe cellulaire à partir d'une image numérique binaire définie sur une grille duale. Nous calculons d'abord les différentes configurations de sommets blancs et noirs d'un 4-cube (à isométries près), puis, nous construisons des enveloppes convexes définies par ces configurations. Ces enveloppes convexes sont construites par déformation du 4-cube d'origine, et nous distinguon / A digital image can be defined as a set of n-xels on a grid made up by n-cubes. Segmentation consists in computing a partition of an image into regions. The n-xels having similar characteristics (color, intensity, etc.) are regrouped. Schematically, each n-xel is assigned a label, and each region of the image is made up by n-xels with the same label. The methods "type" Marching cubes and Kenmochi et al. construct complexes representing the topology of the region of interest of a 3-dimensional binary digital image. In the first method, the algorithm constructs a simplicial complex, whose 0-cells are points of the edges of the dual grid. Inthe second one, the authors construct a cell complex on a dual grid, i.e. the 0-cells of the complex are vertices of the dual grid. In order to construct the complex, Kenmochi et al. compute (up to rotations) the different configurations of white and black vertices of a cube, and then, they construct the convex hulls of the black points of these configurations. These convex hulls define the cells of the complex, up to rotations. The work developed in this thesis extends Kenmochi et al. method todimension 4. The goal is to construct a cell complex from a binary digital image defined on a dual grid. First, we compute the different configurations of white and black vertices of a 4-cube, up to isometries, and then, we construct the convex hulls defined by these configurations. These convex hulls are constructed by deforming the original 4-cube, and we distinguishseveral basic construction operations (deformation, degeneracy of cells, etc.). Finally, we construct the cell complex corresponding to the dual image by assembling the cells so o / Una imagen digital puede ser definida como un conjunto de n–xeles en un mallado constituido de n–cubos. Los n–xeles pueden ser identificados con: (1) los n–cubos del mallado, o con (2) los puntos centrales de estos n–cubos. En el primer caso, trabajamos con un mallado primal, mientras que en el segundo, trabajamos con un mallado dual construido a partir del mallado primal. La segmentación consiste en calcular una partición de una imagen en regiones. Los n–xeles que tienen características similares (color, intensidad, etc.) son reagrupados. Esquemáticamente, a cada n–xel se le asocia una etiqueta, y cada región de la imagen está constituida de n–xeles con la misma etiqueta. En particular, si las únicas etiquetas permitidas para los n–xeles son “blanca” y “negra”, la segmentación se dice binaria: los n–xeles negros forman el primer plano (foreground) o región de interés en cuestión de análisis de la imagen, y los n–xeles blancos forman el fondo (background). Ciertos modelos, como los Grafos de Adyacencia de Regiones (RAGs), los Grafos Duales (DGs) y la carta topológica, han sido propuestos para representar las particiones en regiones, y en particular para representar la topología de estas regiones, es decir las relaciones de incidencia y/o adyacencia entre las diferentes regiones. El RAG [27] es un precursor de este tipo de modelos, y ha sido una fuente de inspiración de los DGs [18] y de la carta topológica [9, 10]. Un RAG representa una imagen primal etiquetada por un grafo: los vértices del grafo corresponden a regiones de la imagen, y las aristas del grafo representan las relaciones de adyacencia entre la regiones. Los DGs son un modelo que permite resolver ciertos inconvenientes de los RAGs para representar imágenes de dimensión 2. La carta topológica es una extensión de los modelos anteriores definida para manipular imágenes primales de dimensión 2 y 3, representando no solamente las relaciones topológicas, sino también las relaciones geométricas.
|
15 |
Randomisation, sphères et déplacements de robotsDevillers, Olivier 23 November 1993 (has links) (PDF)
Ce mémoire d'habilitation présente 14 articles différents, structurés en trois parties : algorithmes randomisés, algorithmes sur les sphères et placements de robots.<br /><br />Les algorithmes randomisés ont été un des sujets ``chauds'' de ces dernières années et nous proposons ici des travaux ayant trait à des algorithmes dynamiques ou semi-dynamiques : tout d'abord un schéma général d'algorithmes semi-dynamiques avec des applications aux diagrammes de Voronoï, aux diagrammes de Voronoï d'ordre k aux arrangements, et ensuite deux algorithmes dynamiques (permettant d'insérer et de supprimer des données) pour la triangulation de Delaunay et le calcul d'un arrangement de segments. D'autres résultats concernent des algorithmes statiques, notamment le calcul du squelette d'un polygone simple en temps O(n log* n).<br /><br />La deuxième partie explore différentes modélisations des sphères. On peut en déduire notamment un algorithme en O(tk log n) pour la triangulation de Delaunay de n points appartenant à k plans en 3 dimensions, si t désigne la taille du résultat; dans la cas de deux plans cet algorithme atteint une complexité optimale de O(t+n log n). Nous proposons également un algorithme de complexité O(n^ ceil(d/2) +n log n) pour le calcul de l'enveloppe convexe de n sphères en dimension d, et un algorithme optimal (quadratique) pour le calcul de la surface de Connolly.<br /><br />La dernière partie traite de problèmes spécifiques à la planification de trajectoires, un premier chapitre concerne le cas de plusieurs robots polygonaux en translation dans le plan: certaines configurations appellées double-contacts peuvent jouer un rôle particulier dans certains cas. Ensuite deux résultats à propos de robots à pattes : l'analyse d'un cas simple que nous avons baptisé robot araignée, et l'étude de la stabilité d'un robot un peu plus complexe.
|
16 |
Courbes rationnelles et applications à quelques problèmes de géométrie algébrique complexeDruel, Stéphane 26 September 2008 (has links) (PDF)
Les courbes sur une variété sont apparues ces vingt dernières années comme un outil très efficace pour étudier les propriétés géométriques de la variété. On donne, dans ce texte de synthèse, quelques exemples de problèmes abordés de ce point de vue.
|
17 |
Des notions sur la géométrie hyperbolique complexeJari, Tarik January 2008 (has links) (PDF)
Le texte est reparti comme suit : Dans le premier chapitre, nous rappelons le lemme de Schwarz-Pick, le théorème d'uniformisation, le théorème d'Ascoli et de Weierstrass et de Hurwitz, le domaine d'homolorphie, variété taut. Dans le deuxiéme chapitre, nous énoncerons la définition et des propriétés sur l'hyperbolicité au sens de Kobayashi sur une variété complexe, ainsi que les théorèmes de prolongements du type grand théorème de Picard dû à Kwak et Kiernan, et nous établissons que si la courbure sectionelle d'une variété hermitienne est bornée par une constante négative alors la variété est hyperbolique au sens de Kobayashi. Enfin, nous traiterons la description de la métrique et la relation avec le volume. Dans le troisième chapitre, nous étudions le concept d'hyperbolicité au sens de Brody sur une variété complexe et ses applications. Dans le quatrième chapitre je discute la propriété de Landeau-Shottky et la fonction de Bloch.
|
18 |
Origines algébrique et géométrique des nombres complexes et leur extension aux quaternions : fondements de la géométriePoitras, Luc 08 1900 (has links) (PDF)
La première partie de ce mémoire relève les principaux problèmes de nature algébrique et géométrique qu'ont dû résoudre les mathématiciens avant d'accepter l'existence des nombres complexes; l'une des conséquences de cet exercice est de proposer l'esquisse d'une approche plus adéquate à l'enseignement des nombres complexes au collégial. La deuxième partie présente l'approche géométrique des quaternions, tel que formulée par leur inventeur (Hamilton), puis démontre leurs principales propriétés géométriques dans le contexte de l'algèbre linéaire. Dans la troisième partie, l'axiomatisation de l'intuition géométrique est abordée dans le contexte des fondements proposés par Hilbert en regard des géométries non euclidiennes.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : Histoire des nombres complexes, quaternions, fondements de la géométrie.
|
19 |
Combinatoire des mots, géométrie discrète et pavagesProvençal, Xavier January 2008 (has links) (PDF)
L'objet de cette thèse est d'étudier les liens entre la géométrie discrète et la combinatoire des mots. Le fait que les figures discrètes soient codées par des mots sur l'alphabet à quatre lettres Σ = {0.1.0,1}, codage introduit par Freeman en 1961, justifie l'utilisation de la combinatoire des mots dans leur étude. Les droites discrètes sont des objets bien connus des combinatoriciens, car étant identifiés par les mots Sturmiens. dont on trouve déjà une description assez complète dans les travaux de Christoffel à la fin du XIXe siècle à la suite de travaux précurseurs de Bernouilli et Markov. Alors que l'on comprend bien la structure des droites discrètes, on connait beaucoup moins bien les courbes en général. Cet ouvrage porte sur l'étude de propriétés géométriques de courbes fermées, codées sur l'alphabet Σ . On s'intéresse tout d'abord à la représentation des chemins dans le plan discret Z² et de ceux qui codent les polyominos. Dans un premier temps, l'emploi d'une structure arborescente quaternaire permet d'élaborer un algorithme optimal afin de tester si un mot quelconque sur Σ code un polyomino ou non. Ce résultat est fondamental d'abord parce qu'il est nouveau, élégant et qu'il se généralise en dimension supérieure. En outre, la linéarité de ce test rend les algorithmes subséquents vraiment
efficaces. À la suite de résultats précurseurs de Lyndon. Spitzer et Viennot sur la factorisation des mots, il existe une interprétation combinatoire de la convexité discrète. En géométrie algorithmique,
des algorithmes linéaires furent établis par McCallum et Avis en 1979, puis par Melkman
en 1987, pour calculer l'enveloppe convexe d'un polygone. Debled-Rennesson et al. ont obtenu en 2003, un algorithme linéaire pour décider de la convexité discrète d'un polyomino par des méthodes arithmétiques. Nous avons obtenu grâce aux propriétés spécifiques des mots de Lyndon et de Christoffel un algorithme linéaire pour tester si un polyomino est digitalement convexe. L'algorithme obtenu est extrêmement simple et s'avère dix fois plus rapide que celui de Debled-Rennesson et al. Finalement, le calcul de la plus longue extension commune à deux mots en temps constant -obtenu par Gusfield à l'aide des arbres suffixes -et le théorème de Fine et Wilf permettent d'élaborer de nouveaux algorithmes qui, grâce à la caractérisation de Beauquier-Nivat, testent si un polyomino pave le plan par translation. En particulier, on obtient un algorithme optimal en O(n) pour détecter les pseudo-carrés. Dans le cas des pseudo-hexagones ayant des facteurs carrés pas trop longs on obtient également un algorithme linéaire optimal, tandis que pour les pseudo-hexagones quelconques nous avons obtenu un algorithme en O(n(log n)³) que nous croyons ne pas être optimal. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Combinatoire des mots, Géométrie discrète, Droites digitales, Pavages du plan, Algorithmique.
|
20 |
Sous-variétés spéciales des variétés spinorielles complexes / Special submanifolds of Spinc manifoldsNakad, Roger 09 May 2011 (has links)
Le sujet principal de cette thèse est d'exploiter les structures Spinc dans le but d'étudier la géométrie de certaines sous-variétés. Dans un premier temps, nous commençons par établir des résultats de base pour l'opérateur de Dirac Spinc. On donne ainsi des inégalités de type Hijazi en terme du tenseur d'énergie-impulsion. Ce tenseur intervient dans l'étude des variations du spectre de l'opérateur de Dirac et dans les équations de Dirac-Einstein. L'étude des hypersurfaces des variétés Spinc permet de mieux comprendre ce tenseur puisque ce dernier est le tenseur de Weingarten de l'immersion. Étant des structures naturelles sur les variétés homogènes de dimension 3 dont le groupe d'isométries est de dimension 4, les structures Spinc permettent d'aborder des problèmes riemanniens sur les hypersurfaces de ces variétés. En effet, on donne une correspondance de Lawson pour les surfaces à courbure moyenne constante. Finalement, on caractérise les structures complexes et CR sur une variété par les structures Spinc admettant un champ de spineurs spécial appelé un spineur pur ou bien un spineur transversal. / In this thesis, we aim to make use of Spinc geometry to study special submanifolds. We start by establishing basic results for the Spinc Dirac operator. We give then inequalities of Hijazi type involving the energy-momentum tensor. Studying the energy-momentum tensor on a Spinc manifold is related to several geometric situations. Indeed, it appears in the study of the variations of the spectrum of the Dirac operator and in the Einstein-Dirac equation. The study of hypersurfaces of Spinc manifolds allows us for a better understanding of this tensor since it is the second fundamental form of the immersion. Being natural structures on the 3-homogeneous manifolds with 4-dimensional isometry group, Spinc structures will be investigated in the study of some Riemannian problems on hypersurfaces of these manifolds. In fact, we prove a Lawson correspondence for constant mean curvature surfaces. Finally, we characterize complex structures and CR structures by Spinc structures admitting a special spinor, called pure spinor or transversal spinor
|
Page generated in 0.0451 seconds