Spelling suggestions: "subject:"géométrie"" "subject:"éométrie""
81 |
Géométrie de l'espace d'Urysohn et théorie descriptive des ensemblesMelleray, Julien 02 December 2005 (has links) (PDF)
Le point de départ de ce travail est l'étude de la géométrie d'un espace polonais remarquable construit par Urysohn en 1925, presque oublié pendant 60 ans puis très étudié depuis 1986, date à laquelle Katětov en a donné une nouvelle construction. Celle-ci est basée sur l'espace E(X) des fonctions de Katětov sur un espace métrique X. Ces fonctions sont l'outil majeur de cette thèse; nous caractérisons les polonais X tels que E(X) est séparable, puis utilisons E(X) pour montrer (répondant à une question d'A.S Kechris) que tout groupe compact métrisable est isométrique au groupe d'isométries d'un espace métrique compact. Nous utilisons ensuite ces techniques pour donner de nouveaux résultats sur la géométrie de l'espace d'Urysohn et sur ses isométries. Nous appliquons également notre travail à l'étude de divers problèmes de classification « définissables » ; en particulier, nous calculons la complexité borélienne de la relation d'isométrie entre espaces de Banach séparables.
|
82 |
De l'hyperbolique au globalement hyperboliqueBarbot, Thierry 28 November 2005 (has links) (PDF)
Mes travaux ont portés successivement sur:<br />- les flots d'Anosov en dimension 3,<br />- l'étude des (G,X)-structures, avec en premier plan les structures affines plates,<br />- la géométrie lorentzienne en courbure constante et leus aspects causaux.<br />Ce long mémoire recouvre tous ces sujets, en mettant en évidence leurs interconnexions.
|
83 |
Sur le volume des simplexes hyperboliques idéauxPEREYROL, Richard 21 December 2001 (has links) (PDF)
Le volume des simplexes hyperboliques joue un rôle important dans la connaissance du volume des variétés hyperboliques ainsi que dans d'autres domaines des mathématiques comme par exemple en arithmétique. Mais il est beaucoup plus difficile à calculer que le volume des simplexes euclidiens, et les résultats connus sont toujours partiels. Dans cette thèse, nous démontrons une généralisation aux simplexes hyperboliques finis et idéaux d'une formule utilisée par A. Connes pour calculer l'aire des triangles euclidiens et hyperboliques. Cette formule intégrale ne permet pas de calculer des valeurs précises, mais plutôt d'étudier des propriétés analytiques de la fonction volume des simplexes hyperboliques idéaux. C'est du moins l'application que nous en faisons. Cela se fait en paramétrant un simplexe idéal par ses sommets sur une sphère -- cette sphère sera le bord de l'espace hyperbolique dans les modèles de la boule de Poincaré ou de Klein. Plus précisément, nous développons une méthode de décomposition en harmoniques sphériques -- après en avoir décrit une base -- du volume d'un simplexe idéal en fonction de ses sommets. Nous détaillons ensuite cette méthode en dimensions 2 et 3, sans toutefois obtenir des formules définitives synthétiques. Nous avons en effet recours au logiciel de calcul formel Maple pour obtenir les premiers coefficients de la décomposition.
|
84 |
Complexité des pavages apériodiques : calculs et interprétationsJulien, Antoine 10 December 2009 (has links) (PDF)
La théorie des pavages apériodiques a connu des développements rapides depuis les années 1980, avec la découvertes d'alliages métalliques cristallisant dans une structure quasi-périodique.Dans cette thèse, on étudie particulièrement deux méthodes de construction de pavages : par coupe et projection, et par substitution. Deux angles d'approche sont développés : l'étude de la fonction de complexité, et l'étude métrique de l'espace de pavages.Dans une première partie, on calcule l'asymptotique de la fonction de complexité pour des pavages coupe et projection, généralisant ainsi des résultats connus en dynamiques symbolique pour la dimension 1. On montre que pour un pavage coupe et projection canonique N sur d sans période, la complexité croît (à des constantes près) comme n à la puissance a, où a est un entier compris entre d et N-d.Ensuite, on se base sur une construction de Pearson et Bellissard qui construisent un triplet spectral sur les ensembles de Cantor ultramétriques. On suit leur construction dans le cas d'ensembles de Cantor auto-similaires. Elle s'applique en particulier aux transversales d'espaces de pavages de substitution.Enfin, on fait le lien entre la distance usuelle sur l'enveloppe d'un pavage et la complexité de ce pavage. Les liens entre complexité et métrique permettent de donner une preuve directe du fait suivant : la complexité des pavages de substitution apériodiques de dimension d croît comme n à la puissance d.La question de liens entre la complexité et la topologie (et pas seulement avec la distance) reste ouverte. Nous apportons cependant des réponses partielles dans cette direction.
|
85 |
La périodicité dans les enseignements scientifiques en France et au Vietnam : une ingénierie didactique d'introduction aux fonctions périodiques par la modélisationNguyen Thi, Nga 01 September 2011 (has links) (PDF)
L'objet central de l'étude est la modélisation mathématique de phénomènes périodiques dans l'enseignement secondaire, plus particulièrement celle des phénomènes périodiques temporels. L'étude part d'un constat établi en comparant les enseignements secondaires français et vietnamien : soit on évite l'enseignement de la modélisation mathématique en concevant le rapport des mathématiques aux autres disciplines scientifiques comme un rapport d'application (Viêt Nam), soit on préconise la prise en compte de la modélisation mathématique sans donner les moyens aux enseignants de mathématiques de l'enseigner (France). La périodicité est le concept central dans le processus de modélisation des phénomènes cycliques et des phénomènes oscillatoires. Dans la genèse scientifique de ce concept, les fonctions périodiques, notamment les fonctions trigonométriques, se sont constituées progressivement comme modèles de grandeurs variables en général en fonction du temps, qui retournent régulièrement et indéfiniment au même état. A partir d'une enquête épistémologique sur les phénomènes périodiques temporels étudiés par la Physique, nous repérons deux modèles mathématiques, C (mouvements circulaires uniformes) et O (oscillations harmoniques) avec leurs différents registres, graphique et algébrique. Une analyse institutionnelle examine et compare la présence de ces deux modèles dans les enseignements secondaires de mathématiques et de physique, en France et au Viêt Nam. Cette analyse met en évidence la faiblesse de l'articulation entre ces deux modèles et l'absence de technique pour effectuer le passage de l'un des modèles à l'autre, alors qu'il s'agit d'un des enjeux de la modélisation elle-même. Le dispositif expérimental se compose d'un questionnaire aux élèves vietnamiens et d'une ingénierie didactique qui organise, dans un environnement de géométrie dynamique et en articulant les deux modèles C et O, la construction de fonctions périodiques comme modèles de phénomènes de co-variations périodiques.
|
86 |
Résolution de contraintes géométriques par rigidifications récursive et propagation d'intervallesJermann, Christophe 20 December 2002 (has links) (PDF)
Les problèmes de satisfaction de contraintes géométriques (GCSP) sont omniprésents dans les applications de CAO, de robotique ou de biologie moléculaire. Ils consistent à chercher les positions, orientations et dimensions d'objets géométriques soumis à des relations géométriques. Le but de la thèse était de proposer une méthode complète et efficace pour la résolution de GCSP. Dans la première partie, nous comparons des méthodes de résolution et de décomposition, et optons pour la décomposition de Hoffmann et al. et la résolution par intervalles. Nous définissons un cadre général pour l'étude de la rigidité, concept central dans les techniques de décomposition géométrique. Dans la seconde partie, nous analysons la méthode de Hoffmann et al., et les limites inhérentes à toute approche géométrique structurelle. Nous proposons le concept de degré de rigidité pour surmonter certaines de ces limites. Nous introduisons une nouvelle méthode de décomposition, et sa combinaison avec les techniques de réslution par intervalles.
|
87 |
Modélisation par automates cellulaires de brèches hydrothermalesLalonde, Martin January 2006 (has links) (PDF)
Une brèche est un ensemble de blocs anguleux noyés dans un ciment de nature variable. Les brèches hydrothermales sont générées par un processus de fracturation, de dissolution des fragments, ainsi que des changements de composition causés par des eaux souterraines sous pression à haute température. La nature de la majorité des processus impliqués dans la formation des brèches hydrothermales est bien comprise d'un point de vue géochimique et plusieurs modèles basés sur cette perspective existent. Par contre, il n'existe pas de modèles approchant ces processus d'un point de vue géométrique. Dans ce mémoire, nous proposons un modèle basé sur les automates cellulaires, capable de simuler les principaux processus qui interviennent dans la formation des brèches. Un automate cellulaire est un modèle discret qui consiste en une grille de cellules pouvant chacune prendre à un instant donné un nombre fini d'états. Le temps est également discret et l'état d'une cellule au temps t est fonction de l'état au temps t -1 d'un nombre fini de cellules appelé son voisinage. À chaque nouvelle unité de temps, les mêmes règles sont appliquées pour toutes les cellules de la grille, produisant une nouvelle génération de cellules dépendant entièrement de la génération précédente. Cette approche est compatible avec l'aspect discret de la dissolution des minéraux et permet l'étude de l'évolution géométrique de fragments de roche virtuelle. Plus spécifiquement, on veut mesurer la complexité morphologique des fragments par leur dimension fractale de bordure, une méthode de mesure utilisée sur des échantillons réels et permettant de valider notre modèle avec des données analogiques. Un simulateur a été conçu pour mettre en oeuvre un tel modèle. Celui-ci est codé en Java et l'interface graphique est en HTML. Des expériences sur le simulateur ont mis en évidence deux régimes de dissolution: l'un limité par la diffusion (Diffusion Limited Regime -DLR), l'autre cinétique. Le premier régime dépend de la surface exposée et on y observe l'arrondissement et le lissage progressif des fragments. Le second régime est indépendant de la surface et on observe la formation de cavités dendritiques et une augmentation progressive de la complexité morphologique. D'un point de vue géochimique, le régime DLR est dit «contrôlé par la surface» alors que le régime cinétique est dit «contrôlé par le transport». Les extensions possibles au modèle sont variées et nombreuses. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Brèche hydrothermale, Automate cellulaire, Modélisation, Dissolution, Dimension
fractale.
|
88 |
Métriques presque-kählériennes extrémalesLejmi, Mehdi 07 1900 (has links) (PDF)
Le thème principal de cette thèse est l'étude des métriques presque-kählériennes extrémales compatibles sur une variété symplectique compacte. Nous allons généraliser les notions d'invariant de Futaki et du champ de vecteurs extrémal sur une variété kählérienne compacte au cas presque-kählérien. Nous allons montrer la périodicité du champ de vecteurs extrémal quand la forme symplectique représente une classe cohomologique entière modulo torsion. Nous donnerons une formule explicite de la courbure scalaire hermitienne en coordonnées de Darboux. Ceci nous permettra, en dimension 4, de construire des exemples de métriques strictement presque-kählériennes qui satisfont l'égalité dans les estimations de LeBrun. Nous allons étudier la stabilité sous déformations des métriques presque-kählériennes extrémales en dimension 4. Étant donné un chemin lisse de métriques presque-kählériennes compatibles avec une forme symplectique fixe, tel que au temps zéro la métrique est kählérienne et extrémale, nous prouverons, pour un temps assez petit et sous une certaine condition, l'existence d'une famille de métriques presque-kählériennes extrémales, compatibles avec la même forme symplectique, telle que chaque structure presque-complexe induite est difféomorphe à celle induite par le chemin. En particulier, le difféomoprhisme est l'identité au temps zéro. Sur une variété torique, nous allons discuter de l'unicité et la stabilité des métriques presque-kählériennes extrémales invariantes par un tore dans l'orbite 'complexifié' par l'action du groupe des hamiltoniens.
______________________________________________________________________________
|
89 |
À l'intersection de la combinatoire des mots et de la géométrie discrète : palindromes, symétries et pavagesBlondin Massé, Alexandre 02 1900 (has links) (PDF)
Dans cette thèse, différents problèmes de la combinatoire des mots et de géométrie discrète sont considérés. Nous étudions d'abord l'occurrence des palindromes dans les codages de rotations, une famille de mots incluant entre autres les mots sturmiens et les suites de Rote. En particulier, nous démontrons que ces mots sont pleins, c'est-à-dire qu'ils réalisent la complexité palindromique maximale. Ensuite, nous étudions une nouvelle famille de mots, appelés mots pseudostandards généralisés, qui sont générés à l'aide d'un opérateur appelé clôture pseudopalindromique itérée. Nous présentons entre autres une généralisation d'une formule décrite par Justin qui permet de générer de façon linéaire et optimale un mot pseudostandard généralisé. L'objet central, le f-palindrome ou pseudopalindrome est un indicateur des symétries présentes dans les objets géométriques. Dans les derniers chapitres, nous nous concentrons davantage sur des problèmes de nature géométrique. Plus précisément, nous donnons la solution à deux conjectures de Provençal concernant les pavages par translation, en exploitant la présence dé palindromes et de périodicité locale dans les mots de contour. À la fin de plusieurs chapitres, différents problèmes ouverts et conjectures sont brièvement présentés.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : Palindrome, pseudopalindrome, clôture pseudopalindromique itérée, codages de rotations, symétries, chemins discrets, pavages.
|
90 |
Structure des pavages, droites discrètes 3D et combinatoire des motsLabbé, Sébastien 05 1900 (has links) (PDF)
Cette thèse, constituée d'une série d'articles, considère des questions issues de la géométrie discrète en les traitant du point de vue de la combinatoire des mots qui s'avère un outil puissant et approprié pour les résoudre. Nous utilisons les mots soit pour représenter un chemin dans Z2 ou Z3, soit pour coder la suite des virages d'un chemin ou le contour d'une figure discrète fermée. Parmi les thèmes abordés, on compte les pavages du plan par polyominos, la notion de complexité en facteurs palindromes et la génération de droites discrètes 3D. La première partie concerne les pavages du plan où nous étudions le nombre de pavages réguliers du plan par une tuile carrée, c'est-à-dire une tuile ayant quatre tuiles adjacentes identiques. Il s'avère que certaines tuiles carrées pavent le plan de deux façons distinctes et elles sont appelées doubles carrées. Nous démontrons d'abord qu'il y a au plus deux tels pavages réguliers par une tuile carrée. Ensuite, nous considérons deux familles particulières de tuiles doubles carrées : les tuiles de Christoffel et les tuiles de Fibonacci. Ces deux familles décrivent les plus petits exemples de tuiles doubles carrées et peuvent être définies à partir des mots de Christoffel et du mot de Fibonacci par des règles de substitution et de concaténation. Les tuiles de Fibonacci définissent aussi une fractale, obtenue par un chemin auto-évitant, dont nous avons calculé plusieurs statistiques, comme le rapport de l'aire de la fractale sur l'aire de son enveloppe convexe. Dans l'article suivant, nous démontrons que tout double carré indécomposable est invariant sous une rotation de 180 degrés. Cette propriété géométrique est équivalente au fait que le mot de contour de la tuile se factorise en un produit de palindromes. Notre preuve repose sur une méthode de génération exhaustive des tuiles doubles carrées. La deuxième partie concerne la complexité palindromique - le nombre de facteurs palindromes distincts -, un sujet propre à la combinatoire des mots. Nous y considérons quatre classes de complexité palindromique qui découlent naturellement de la notion de défaut. Nous caractérisons notamment les mots de complexité palindromique minimale sur un alphabet à deux lettres et nous démontrons que les mots infinis obtenus par codage de rotations sur deux intervalles atteignent la complexité palindromique maximale. Dans une troisième partie, nous proposons une méthode basée sur des algorithmes de fractions continues multidimensionnelles pour la génération de droite discrètes 3D 6-connexes. Les expérimentations illustrent que la complexité en facteurs des mots ainsi générés serait linéaire. Cela se compare avantageusement aux autres définitions de droites discrètes 3D 6-connexes dont la complexité en facteurs est quadratique.
______________________________________________________________________________
MOTS-CLÉS DE L’AUTEUR : combinatoire des mots, géométrie discrète, pavage, polyomino, complexité palindromique, droite discrète, algorithme de fractions continues multidimensionnelles.
|
Page generated in 0.0299 seconds