• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pincement spectral en courbure positive

Bertrand, Jerome 19 September 2003 (has links) (PDF)
Sur l'ensemble des variétés riemanniennes compactes à courbure de Ricci positive (on normalise par $Ric \geq (n-1)g$), la première valeur propre non nulle du laplacien agissant sur les fonctions atteint son minimum uniquement pour la sphère canonique. Dans cette thèse, nous caractérisons, à l'aide de la distance de Gromov-Hausdorff, les variétés riemanniennes à courbure positive dont les premières valeurs propres du laplacien sont proches de celles de la sphère canonique. Cette propriété de minimimalité du spectre de la sphère s'étend par un procédé de symétrisation, au spectre de Dirichlet des boules géodésiques de la sphère parmi les domaines de variétés à courbure de Ricci positive. Nous étudions les domaines de variétés à courbure de Ricci positive dont la première valeur propre de Dirichlet est presque minimimale. En particulier, nous montrons qu'un domaine convexe dont la première valeur propre de Dirichlet est proche de celle d'un hémisphèere est Gromov-Hausdorff proche d'un hémisphère d'un sinus produit tordu.
2

Apprentissage de variétés et applications au traitement de formes et d'images

Thorstensen, Nicolas 26 November 2009 (has links) (PDF)
Grâce aux bases de données en ligne, le volume de données ne cesse d accroitre. Non seulement la quantité de donnes augmente mais aussi la complexité des donnes est hautement complexe. Ce fait nécessite le développement d algorithmes performants. Récemment, une nouvelle classe de méthodes connue sous le nom de: "apprentissage de variétés" a été introduite. Ces méthodes présentent un formalisme intéressant et performant pour l analyse de données à très haute dimension. Ces méthode assument que les degrés de liberté dans les données sont bien plus petit que la dimension de l espace des données. Le but de ces algorithmes est retrouve une variété plongée dans un espace à haute dimension (voire infinie). La sortie d un tel algorithme est une fonction transformant les données dans un espace (espace de feature) où l'analyse devient plus facile. Souvent cette fonction est considère comme une para métrisation de la variété. Dans la première partie de ce manuscrit, nous allons introduire les idées principales ainsi que la théorie des espaces métriques. Ceci nous fournira les outils de bases pour les méthodes d'apprentissage de variétés. Par la suite nous présenterons des méthodes linéaires et non- linéaires pour l'apprentissage de variétés et analyserons leurs points forts et faibles. La deuxième partie développera deux applications en utilisant l'apprentissage des variétés. Dans les deux cas l'apprentissage de variétés est appliqué pour approximer le métrique dans l espace initiale. Ainsi la distance entre points dans l'espace originale peut être approximé en utilisant la métrique dans l'espace feature. Ainsi nous pouvant résoudre des problèmes d optimisation basée sur les distances entre points. Dans cette idée nous regardons le premier problème connu sous le nom "problème de la pré-image". Nous analyserons ce problème dans le contexte de la ACP a noyau and la technique des di
3

Analysis and Geometry of RCD spaces via the Schrödinger problem / Analyse et géométrie des espaces RCD par le biais du problème de Schrödinger

Tamanini, Luca 29 September 2017 (has links)
Le but principal de ce manuscrit est celui de présenter une nouvelle méthode d'interpolation entre des probabilités inspirée du problème de Schrödinger, problème de minimisation entropique ayant des liens très forts avec le transport optimal. À l'aide de solutions au problème de Schrödinger, nous obtenons un schéma d'approximation robuste jusqu'au deuxième ordre et différent de Brenier-McCann qui permet d'établir la formule de dérivation du deuxième ordre le long des géodésiques Wasserstein dans le cadre de espaces RCD* de dimension finie. Cette formule était inconnue même dans le cadre des espaces d'Alexandrov et nous en donnerons quelques applications. La démonstration utilise un ensemble remarquable de nouvelles propriétés pour les solutions au problème de Schrödinger dynamique :- une borne uniforme des densités le long des interpolations entropiques ;- la lipschitzianité uniforme des potentiels de Schrödinger ;- un contrôle L2 uniforme des accélérations. Ces outils sont indispensables pour explorer les informations géométriques encodées par les interpolations entropiques. Les techniques utilisées peuvent aussi être employées pour montrer que la solution visqueuse de l'équation d'Hamilton-Jacobi peut être récupérée à travers une méthode de « vanishing viscosity », comme dans le cas lisse.Dans tout le manuscrit, plusieurs remarques sur l'interprétation physique du problème de Schrödinger seront mises en lumière. Cela pourra aider le lecteur à mieux comprendre les motivations probabilistes et physiques du problème, ainsi qu'à les connecter avec la nature analytique et géométrique de la dissertation. / Main aim of this manuscript is to present a new interpolation technique for probability measures, which is strongly inspired by the Schrödinger problem, an entropy minimization problem deeply related to optimal transport. By means of the solutions to the Schrödinger problem, we build an efficient approximation scheme, robust up to the second order and different from Brenier-McCann's classical one. Such scheme allows us to prove the second order differentiation formula along geodesics in finite-dimensional RCD* spaces. This formula is new even in the context of Alexandrov spaces and we provide some applications.The proof relies on new, even in the smooth setting, estimates concerning entropic interpolations which we believe are interesting on their own. In particular we obtain:- equiboundedness of the densities along the entropic interpolations,- equi-Lipschitz continuity of the Schrödinger potentials,- a uniform weighted L2 control of the Hessian of such potentials. These tools are very useful in the investigation of the geometric information encoded in entropic interpolations. The techniques used in this work can be also used to show that the viscous solution of the Hamilton-Jacobi equation can be obtained via a vanishing viscosity method, in accordance with the smooth case. Throughout the whole manuscript, several remarks on the physical interpretation of the Schrödinger problem are pointed out. Hopefully, this will allow the reader to better understand the physical and probabilistic motivations of the problem as well as to connect them with the analytical and geometric nature of the dissertation.
4

Théorie de Ramsey structurale et applications en dynamique topologique via la correspondance de Kechris-Pestov-Todorcevic

Nguyen Van Thé, Lionel 09 December 2013 (has links) (PDF)
Le but de ce mémoire est d'effectuer un survol de mes travaux effectués depuis janvier 2007. Le sujet d'étude se situe à l'une des intersections entre la combinatoire, la dynamique topologique et la logique via le formalisme des structures ultrahomogènes et de la théorie de Fraïssé. Ce domaine a récemment connu un essor considérable grâce à deux contributions majeures par Kechris, Pestov et Todorcevic, et par Kechris et Rosendal. Mon travail part de la première de ces contributions et se concentre autour des deux thèmes suivants : Théorie de Ramsey structurale et dynamique topologique des groupes de transformation associés.

Page generated in 0.0621 seconds