• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 22
  • 17
  • 8
  • 8
  • 5
  • 3
  • 1
  • Tagged with
  • 99
  • 99
  • 37
  • 22
  • 17
  • 17
  • 16
  • 14
  • 14
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Grape powder attenuates the negative effects of GLP-1 receptor antagonism by exendin-3 (9-39) in a normoglycemic mouse model

Haufe, Thomas Carl 20 May 2016 (has links)
Prediabetes is a condition affecting 35% of US adults and about 50% of US adults age 65+. Foods rich in polyphenols, including flavanols and other flavonoids, have been studied for their putative beneficial effects on many different health conditions including type 2 diabetes mellitus and prediabetes. Studies have shown that some flavanols increase glucagon-like peptide 1 (GLP- 1) levels. GLP-1 is a feeding hormone that increases insulin secretion after carbohydrate consumption and increased GLP-1 levels may be responsible for some of the beneficial effects on glycemic control after flavanol consumption. The present study explored the effects of grape powder consumption on metrics of glycemic health in normoglycemic and prediabetic C57BL/6J mice; additionally, the mechanism of action of grape powder was investigated. Grape powder significantly reduced (p<0.01) blood glucose levels following oral glucose gavage after GLP-1 receptor antagonism by exendin-3 (9-39) compared to sugar-matched control; indicating that it was able to attenuate the hyperglycemic effects of GLP-1 receptor antagonism. Grape powder was employed in acute (1.6 g grape powder/kg bodyweight) and long-term high fat diet (grape powder incorporated into treatment diets at 5% w/w) feeding studies in normoglycemic and prediabetic (diet-induced obesity) mice; grape powder did not improve glycemic control in these studies versus sugar-matched control. The mechanisms by which grape powder ameliorates the deleterious effects of GLP-1 receptor antagonism warrants further study. / Master of Science in Life Sciences
72

Mécanismes et contrôle de la réaction inflammatoire précoce au cours de la greffe d'îlots pancréatiques dans un modèle de lignée de cellules bêta de rat : rôle et modulation de la libération des microparticules / Mechanisms and control of the early inflammatory reaction in islet graft using in vitro model of rat beta cells : role and modulation of microparticles shedding

Gleizes, Céline 23 October 2014 (has links)
La greffe d’îlots pancréatiques est caractérisée par une réponse inflammatoire et procoagulante précoce, connue sous le nom d’IBMIR (Instant Blood Mediated Inflammatory Reaction). Les microparticules (MPs) porteuses de facteur tissulaire (TF) sont le témoin d’un important remodelage membranaire et constituent des acteurs centraux dans la dissémination du stress de l’IBMIR. Nous avons exploré l’effet d’un stress inflammatoire sur la survie et la fonction de la cellule β dans un modèle de communication cellulaire médiée par les MPs. La modulation pharmacologique par les analogues du GLP-1 a été évaluée, la par la mesure de la sécrétion d’insuline, de l’activité TF et l'analyse du remodelage de la membrane plasmique. Nos résultats décrivent les MPs comme des effecteurs autocrines et indiquent que les MPs sont des cibles potentielles pour les analogues du GLP-1 au cours de l'IBMIR. Les données apportent de nouvelles pistes sur les mécanismes cellulaires mis en jeu lors des phénomènes d’ischémie reperfusion durant l’IBMIR. / Pancreatic islets graft is characterized by early inflammatory and procoagulant events known as Instant Blood Mediated Inflammatory Reaction (IBMIR). Tissue factor (TF) bearing microparticles (MPs) are surrogates of important membrane remodeling and key players in the systemic and local dissemination of such stress.We investigated the effect of inflammatory stress on β cell survival and function in a MP-mediated cell crosstalk model. Pharmacological modulation by GLP-1 analogues was evaluated by measurement of insulin secretion, TF activity and assessment of plasma membrane remodeling. Our data evidenced MPs as autocrine effectors and possible new target for GLP-1 analogues. They bring new hints on the cellular mechanisms prompted by ischemia reperfusion during IBMIR.
73

[en] CENTRAL NERVOUS SYSTEM RESPONSE TO SATIETY HORMONES: A STUDY OF MAGNETIC RESONANCE IMAGING / [pt] RESPOSTA DO SISTEMA NERVOSO CENTRAL A HORMÔNIOS DE SACIEDADE: UM ESTUDO DE IMAGENS DE RESSONÂNCIA MAGNÉTICA

ANDRE SENA MACHADO 05 September 2022 (has links)
[pt] O agonista do receptor do peptídeo semelhante ao glucagon 1 (GLP-1), melhora o controle glicêmico, reduz o apetite e o peso corporal, sendo usado para o tratamento de diabetes tipo 2 (DM2). Também se mostrou associado a alterações nas respostas cerebrais, relacionadas a estímulos alimentares. Entretanto, seus efeitos na conectividade funcional intrínseca do cérebro não são conhecidos. Com objetivo de melhor entender o papel do GLP-1 na conectividade intrínseca do cérebro em pacientes DM2, dados de ressonância magnética funcional (RMf) de redes do estado de repouso relevantes para o comportamento alimentar foram analisados em dois estudos. Em ambos, todas as imagens foram adquiridas após um jejum noturno (8-12 horas). O estudo 1 teve como meta investigar o efeito agudo do bloqueio de GLP-1 na conectividade funcional. Foram adquiridas imagens de RMf durante o estado de repouso, em dois dias separados, de 20 pacientes DM2 sem complicações e 20 controles saudáveis, primeiro sob infusão de solução salina e, posteriormente, sob a infusão de antagonista do receptor de GLP-1. Já o estudo 2 teve como objetivo investigar, em pacientes DM2, se haveria diferenças na conectividade intrínseca, quando comparados os tratamentos com agonista do GLP1 liraglutida e com insulina glargina. Os mesmos pacientes DM2, participantes do estudo 1, foram tratados, em ordem aleatória, por 12 semanas com liraglutida e por 12 semanas com insulina glargina. Os dados de RMf em estado de repouso foram coletados antes do início do tratamento, após 10 dias e após 12 semanas. As análises de neuroimagem foram corrigidas para múltiplas comparações com o Family-wise error, as correlações foram feitas com coeficiente de correlação de Pearson. Os resultados do estudo 1 mostraram que, durante a infusão da solução salina, pacientes DM2 apresentaram maior conectividade comparados a controles na ínsula esquerda e opérculo, relacionada à maior perda de peso, mediada pelo agonista de GLP-1 após 10 dias e 12 semanas. Além disso, a conectividade foi maior em pacientes DM2 versus controles no polo frontal, córtex frontal medial, no giro cingulado anterior e no giro paracingulado, a qual se correlacionou com menor perda de peso, mediada por agonista de GLP-1, após 10 dias (todos P(FWE) menor que 0,05). Não houve efeito da infusão do antagonista do receptor de GLP-1 ou do tratamento com agonista de GLP-1, na conectividade (todos P(FWE) maior que 0,05). Em conclusão, a conectividade basal em estado de repouso mostrou estar relacionada à mudança de peso, mediada pelo agonista do GLP-1, com maior conectividade frontal correlacionando com menos perda de peso durante o tratamento com agonista do GLP-1, enquanto maior conectividade na ínsula esquerda, correlacionou com maior perda de peso, mediada pelo GLP-1, indicando relação entre a conectividade intrínseca dessas redes e o efeito de perda de peso do tratamento com GLP-1. / [en] The glucagon-like peptide 1 (GLP-1) receptor agonist is used for the treatment of type 2 diabetes (DM2) as it improves glycemic control, reduces appetite and body weight. It is also related to altered brain responses to food stimuli, but its effects on intrinsic brain connectivity are unknown. With the goal of better understanding GLP-1 s role in the intrinsic brain connectivity of DM2 patients, functional resonance imaging (fMRI) data of resting-state networks relevant for eating behavior was analyzed in two studies. In both, all images were acquired after an overnight fast (8-12 hours). Study 1 aimed to investigate the acute effect of GLP1 blockade on functional connectivity. On two separate days, fMRI data was acquired from 20 DM2 patients and 20 healthy controls, first under saline infusion and thereafter under GLP-1 antagonist infusion. Study 2 aimed to investigate, in DM2 patients, if there were any between treatment differences in intrinsic connectivity when comparing GLP-1 receptor agonist liraglutide with insulin glargine. The same DM2 participants in study 1 were thus treated in random order for 12 weeks with liraglutide and insulin glargine, fMRI data was collected at the start of treatment, after 10 days and after 12 weeks. Study 1 results showed that, during saline infusion, DM2 patients had greater connectivity compared to controls in the left insula and operculum, which related to greater GLP-1 mediated weightloss after 10 days and 12 weeks. Also, connectivity was greater in DM2 patients versus controls in the frontal pole, frontal medial cortex, anterior cingulate and paracingulate giry, which related to less GLP-1 mediated weight-loss after 10 days (all P(FWE) less than 0.05). There was no effect on connectivity for GLP-1 antagonist, and no long-term differences between treatments (all P(FWE) less than 0.05). In conclusion, baseline resting-state connectivity was shown to be related to GLP-1 mediated weightchange, with greater frontal connectivity relating to less weight loss during GLP-1 treatment, while higher left insula connectivity correlated to greater weight loss during GLP-1 treatment, indicating a relationship between baseline intrinsic connectivity in these regions and weight loss during GLP-1 treatment.
74

Rôle du récepteur nucléaire FXR dans la régulation de la production de GLP-1 : nouvelle cible thérapeutique dans le traitement du diabète de type 2 ? / Role of the nuclear receptor FXR on the regulation of GLP-1 production by L-cells : a new therapeutic target for type 2 diabetes ?

Trabelsi, Mohamed-Sami 01 April 2015 (has links)
L’homéostasie énergétique ou ‘balance énergétique’ est l’équilibre qui s’établit chez l’Homme et l’animal adulte entre la prise quotidienne de nutriments sous la forme de glucides, de lipides ou de protéines et leur oxydation pour ne produire que la quantité énergétique strictement nécessaire. Pour maintenir cette balance l’organisme doit recueillir en permanence des signaux nerveux, métaboliques ou hormonaux de la part de cellules spécifiques. Ces senseurs des besoins énergétiques transmettent alors à des centres régulateurs leurs informations qui en retour, par voie hormonale ou nerveuse, informent les organes effecteurs des mesures à prendre pour stocker, produire ou consommer l’énergie. Les trois principaux centres de cette balance sont 1/ le cerveau, centre intégrateur de l’information ; 2/ un groupe d’organes effecteurs parmi lesquels le foie, le tissu adipeux, les muscles squelettiques, le pancréas et 3/ un centre senseur de la qualité et de la quantité des aliments, le tractus gastrointestinal (Migrenne 2006). En plus d’être la source d’énergie nécessaire à la vie des cellules, les nutriments tels que les acides gras, le cholestérol ou encore le glucose sont aussi des molécules de signalisation cellulaire à la fois par leur fixation à des récepteurs membranaires mais aussi via des récepteurs nucléaires. Un déséquilibre dans l’homéostasie énergétique dû à une alimentation déséquilibrée, à un manque d’exercice physique ou à des facteurs génétiques est une caractéristique de l’obésité et de complications telles que le diabète de type 2 et les maladies cardiovasculaires (Hill, 2006). Au cours de ma thèse je me suis intéressé à l’intestin pour son rôle de régulateur de l’homéostasie énergétique dans un contexte physiologique ou physiopathologique d’obésité via sa capacité à sécréter l’incrétine Glucagon-Like Peptide-1 (GLP-1) en réponse au glucose et aux acides biliaires. J’ai étudié plus particulièrement le rôle du récepteur nucléaire en tant que senseurs moléculaires des acides biliaires FXR dans les cellules sécrétrices de cette incrétine car à l’heure actuelle rien n’était connu quant à son rôle ni même quant à son expression dans la cellule L. Pour cela, j’ai utilisé des lignées cellulaires murines et humaines où j’ai mis au point les conditions expérimentales pour répondre aux questions posées. Grâce à des ARN d’intestins issus de différents modèles de souris la relevance chez le rongeur a été testée. La relevance de ces résultats sur des biopsies intestinales humaine a également été testée. Grâce à ces outils, j'ai pu montré que FXR dans les cellules L était fonctionnel et que son activation interférait avec la voie de la glycolyse entrainant moins de synthèse et de sécrétion de GLP-1. Cela nous a permis de proposer un nouveau mécanisme moléculaire par lequel les séquestrants des acides biliaires exercent leur effets bénéfiques chez des patients atteints de diabète de type 2. / Originally identified as dietary lipid detergents, bile acids (BA) are now recognized as signaling molecules which bind to the transmembrane receptor TGR5 and the nuclear receptor FXR (Farnesoid X Receptor). Upon binding to TGR5 at the surface of enteroendocrine L cells, bile acids (BA) promote the secretion of the incretin GLP-1 which potentiates the glucose-induced insulin secretion by pancreatic beta-cells. More than 50% of the insulin secretion in response to glucose is mediated by GLP-1 and the other incretin Glucose-dependent Insulinotropic Polypeptide (GIP). Once secreted, GLP-1 is rapidly (2-3 minutes) degraded by the endothelial enzyme Dipeptydil Peptidase 4 (DPP4). GLP-1 analogues and DPP4 inhibitors are successfully used for the treatment of T2D. FXR is a ligand-activated nuclear receptor highly expressed in the liver and in the distal intestine. FXR controls BA, lipid and glucose metabolism. Whether FXR is expressed, functional in intestinal enteroendocrine L cells and in which extend its activation affects GLP-1 production are not yet reported. Encouraging data were obtained during my M2 training course. The aim of my thesis was thus to assess whether FXR in enteroendocrines cells could participate in the control of the deregulation of glucose homeostasis. Multiple in vitro, ex vivo and in vivo human and murine models allowed us to show that FXR is present and functional in L cells. FXR activation decreases GLP-1 production and secretion in L cells by inhibiting glycolysis pathway through an interference with the carbohydrate responsive transcription factor ChREBP. Finally, I identified an additional mechanism of action of the bile acid sequestrant Colesevelam, a molecule currently successfully used in USA for treating type 2 diabetic patients.
75

Identifying Novel Protein Interactors of the Glucagon Superfamily of Receptors

Gaisano, Gregory 19 January 2010 (has links)
G-protein coupled receptors (GPCRs) have been shown to act as part of GPCR associated protein complexes (GAPCs) which are required to appropriately transduce downstream signaling pathways leading to specific cellular actions. I hypothesize that there are distinct molecular effectors that couple to the glucagon superfamily of B-class GPCRs (glucagon, GLP-1, GLP-2, GIP receptors) to effect the myriad of reported actions in numerous target cells including regulation of insulin secretion, intestinal growth and appetite suppression. GLP-1R, GIPR, GLP-2R and GCGR were screened using a newly developed membrane-based split-ubiquitin yeast two-hybrid (MYTH) system to reveal 181 novel candidate protein interactors associated with signal transduction, transport, metabolism and cell survival. Each candidate was validated using yeast two-hybrid prey retransformation tests and by co-purification to confirm coupling to each receptors. The present work is the first demonstration of a split-ubiquitin interaction screen using in situ membrane expressed GPCRs of the secretin-like B class.
76

Identifying Novel Protein Interactors of the Glucagon Superfamily of Receptors

Gaisano, Gregory 19 January 2010 (has links)
G-protein coupled receptors (GPCRs) have been shown to act as part of GPCR associated protein complexes (GAPCs) which are required to appropriately transduce downstream signaling pathways leading to specific cellular actions. I hypothesize that there are distinct molecular effectors that couple to the glucagon superfamily of B-class GPCRs (glucagon, GLP-1, GLP-2, GIP receptors) to effect the myriad of reported actions in numerous target cells including regulation of insulin secretion, intestinal growth and appetite suppression. GLP-1R, GIPR, GLP-2R and GCGR were screened using a newly developed membrane-based split-ubiquitin yeast two-hybrid (MYTH) system to reveal 181 novel candidate protein interactors associated with signal transduction, transport, metabolism and cell survival. Each candidate was validated using yeast two-hybrid prey retransformation tests and by co-purification to confirm coupling to each receptors. The present work is the first demonstration of a split-ubiquitin interaction screen using in situ membrane expressed GPCRs of the secretin-like B class.
77

Improving the bioartificial pancreas: Investigation of the effects of pro-survival and insulinotropic factor delivery and the development of PEGylated alginate microcapsules to support the function and survival of encapsulated islets and beta cells

Duncanson, Stephanie 21 September 2015 (has links)
The development of a bioartificial pancreas (BAP) has the potential to substantially improve the treatment of insulin-dependent diabetes. Composed of insulin-secreting cells encapsulated in a hydrogel material, a BAP may provide superior glycemic regulation compared with conventional exogenous insulin-delivery therapies. Towards this goal, β- cells or islets encapsulated in alginate microcapsules remain a promising approach. Due to the limited supply of human islets, alternative cell sources are under investigation for incorporation into a BAP, including porcine islets and β- cell lines. Several challenges remain to clinical implementation, including loss of islet or β- cell function and viability following transplantation and host response to the transplanted microcapsules. The objective of this work was to evaluate strategies to improve a BAP by supporting the function and survival of encapsulated islets and β -cells. Towards this goal, two areas were explored: 1) the provision of pro-survival and insulinotropic factors, namely, CXCL12 and GLP-1 (or a GLP-1 analog, Exendin-4), to encapsulated islets and β-cells and 2) modification of the alginate microcapsule to confer long-term resistance to host cell adhesion. To achieve the first objective, methods to deliver both pro-survival and insulinotropic factors to a BAP were developed and their effects on encapsulated β-cells and porcine islets were studied, both in vitro and in vivo. Results demonstrate that delivery of pro-survival and insulinotropic factors is a promising strategy to prolong the survival and function of a BAP. To reduce host cell adhesion to the microcapsule, we employed covalent conjugation of PEG to the surface of alginate-PLL capsules to replace the un-crosslinked layer of alginate used in traditional alginate-PLL-alginate (APA) microcapsules. Results demonstrate that while PEGylation of alginate-PLL microcapsules initially reduced host cell adhesion over 2 weeks in vivo compared with APA capsules, the PEG coating did not provide long-term protection over 3 months. Taken together, these studies represent a multipronged approach towards improving the duration of BAP function, with the ultimate goal of advancing this technology to the clinic.
78

Carbonic anhydrase 8 (CAR8) negatively regulates GLP-1 secretion from enteroendocrine cells in response to long-chain fatty acids / 炭酸脱水酵素8(CAR8)は腸管内分泌細胞からの長鎖脂肪酸応答性GLP-1分泌を負に制御する

Fujiwara, Yuta 26 July 2021 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13429号 / 論医博第2233号 / 新制||医||1053(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 長船 健二, 教授 妹尾 浩, 教授 川口 義弥 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
79

Diabetes-Induced Expression and Regulation of GLP-1 levels by Bile Acid Receptors (TGR5 & FXR)

Spengler, Joseph R 01 January 2017 (has links)
Diabetes Mellitus has continued to drastically affect the health of the world and many complications can prove fatal. As long as this metabolic disease persist, research discoveries will need to continue to be made so that patient outcomes and healthcare are dramatically enhanced. In recent years, GLP-1 has been the topic of conversation for diabetes research, due to its promising effects in promoting insulin sensitivity. Furthermore, bile acids and their receptors (TGR5 & FXR) have shown promise in their actions in the regulation of GLP-1, and thus glucose homeostasis. Here we have shown the detection and increased expression of TGR5 and GLP-1, and decreased expression of FXR in diabetic mouse intestinal mucosa tissues. We have also shown the detection and increased expression of these receptors in STC-1 cells. More importantly we have linked the connection of increased glucose concentration (hyperglycemia) to increased TGR5 activation to increased GLP-1 release, thus leading to increased insulin sensitivity and altered diabetic outcomes.
80

Short and Long Chain Free Fatty Acids Differentially Regulate Glucagon-like Peptide-1 and Peptide YY Transcript Levels in Enteroendocrine Cells (STC-1)

Catherman, Colin M 01 January 2017 (has links)
The regulation of glucagon-like peptide-1 and peptide YY hormone levels are regulated based on different influential factors, but primarily levels are dependent upon ingested food content. As meals today become more fat-enriched, there is greater requirement for evaluation of these hormones that regulate insulin and satiety levels within the body. We have shown that the gene expression transcript production of glucagon-like peptide-1 and peptide YY are modulated by different concentrations, and times of short-chain fatty acids and long-chain fatty acids. Although the peptide hormone levels have the influential physiological role on effector tissue, the regulation of these hormones begins at the transcript levels. Recent research indicates that glucagon-like peptide-1 and peptide YY hormones are altered in response to different free-fatty acids. The present investigation generally demonstrated an overall decrease in both hormones after chronic exposure to fatty acids. Intestinal secretin tumor cell line (STC-1 cells) was used as a representative for intestinal L-cells. Quantitative real-time PCR analysis was used to determine the changes in RNA transcripts. Overall, there was a decrease in the 3-hour timeline, which continued to decrease in the 16-hour and 24-hour timelines for glucagon-like peptide-1. Peptide YY transcript expression in 3-hours increased significantly after exposure to propionate, a significant decrease after exposure to acetate, and no significant increase or decrease after exposure to butyrate. However, there was a significant decrease in peptide YY once reaching 24-hour exposure. It was determined there is a threshold for different concentrations of free-fatty acids to influence glucagon-like peptide-1 and peptide YY production, which was present in the different concentrations of butyrate. Lastly, exposure to both concentrations of linolenic acid caused a significant decrease in glucagon-like peptide-1 and peptide YY.

Page generated in 0.0431 seconds