501 |
On the geometry of the O'Nan groupConnor, Thomas 07 July 2015 (has links)
La classification des groupes simples finies achevée en 2004 par Aschbacher et Smith au terme de décennies de travaux par des centaines de mathématiciens livre 18 familles infinies et 26 groupes appelés sporadiques. Ces derniers sont dotés de propriétés singulières. Dans ma thèse de doctorat, nous étudions le groupe sporadique de O'Nan -- usuellement dénoté O'N -- d'un point de vue géométrique, dans la lignée des travaux des Professeurs Buekenhout, Dehon et Leemans.<p><p>Nous abordons essentiellement quatre facettes de la géométrie de O'N. Tout d'abord, nous produisons la classification complète des géométries Buekenhout--Cara--Dehon--Leemans (BCDL) de O'N, une tâche commencée par Leemans en 2010. Les géomé-tries BCDL sont caractérisées par des axiomes inspirés de la Théorie des Immeubles de Jacques Tits. La majorité des groupes simples finis sont caractérisés par un immeuble et un diagramme. Parmi les exceptions se trouvent les groupes sporadiques. Une géométrie BCDL est plus générale qu'un immeuble, mais s'en rapproche.<p><p>Ensuite, nous étudions une géométrie pour le groupe d'automorphismes de O'N construite à partir de paires d'involutions commutantes. Les involutions jouent un rôle majeur dans la théorie des groupes simples finis. Ces travaux sont inspirés de la construction d'une tour de géométries pour les groupes de Fischer construite à partir de paires d'involutions commutantes due à Buekenhout.<p><p>Nous poursuivons en étudiant les polytopes abstraits réguliers sur lesquels O'N agit. Nous produisons la classification des polytopes de rang maximum, à savoir 4.<p><p>Enfin, nous étudions O'N sous le spectre des cartes régulières. Tout polyèdre abstrait régulier est une carte régulière, mais la réciproque n'est pas vraie. Nous donnons un algorithme permettant d'énumérer par type les cartes régulières pour un groupe fini donné. Ceci nous permet de borner le nombre de polyèdres abstraits réguliers sur lesquels O'N agit.<p><p>Nous produisons également les treillis de sous-groupes de O'N et de son groupe d'automorphismes. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
502 |
Um grupo de Richard Thompson e seu invariante homotopico sigma / A Richard Thompson group and its homotopical sigma invariantRabelo, Lonardo, 1983- 08 May 2008 (has links)
Orientador: Dessislava H. Kochloukova / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-11T14:04:12Z (GMT). No. of bitstreams: 1
Rabelo_Lonardo_M.pdf: 1106165 bytes, checksum: 2bbac38aebd1bf1d09d9f3bc26c12171 (MD5)
Previous issue date: 2008 / Resumo: Neste projeto de mestrado, estudamos um dos grupos de Richard Thompson e apresentamos os cálculos de seu invariante homotópico Sigma, em qualquer dimensão m, onde m é um inteiro positivo. O grupo de Richard Thompson, denotado por F, foi por ele definido em 1965 e ficou conhecido, mais tarde, por suas propriedades homotópicas e homológicas interessantes. Por exemplo, F é tipo FP8 ([04]). Além disso, F pode ser descrito de maneiras distintas, o que o torna ainda mais interessante. A teoria de invariantes (homotópicos e homológicos) Sigma foi desenvolvida nas últimas décadas do século vinte por R. Bieri, J. Groves, R. Geoghegan, H. Meinert, R. Strebel e outros e está relacionada com propriedades FPm de grupos. O Invariante _1(F) foi obtido em [03]. Recentemente, o caso geral do invariante _m(F) e _m(F, Z) (homotópico e homológico, respectivamente), m = 2, foi descrito por R. Bieri, R. Geoghegan e D. Kochloukova. Nesta dissertação, apresentamos a versão homotópica deste resultado / Abstract: In this project we study one of the Richard Thompson's Group F e its Homotopical m-dimensional Sigma Invariant. The Richard Thompson Group F is very known by its interesting homological and homotopical properties, for example, it is of type FP8 ([04]). Also, F has the property of being defined in several distinct ways. The Sigma Invariant Theory was developed in last decades of twentieth century by R. Bieri, J. Groves, R. Geoghegan, H. Meinert, R. Strebel and others and is related to FPm properties of groups. The _1(F) was obtained in [03]. Recently the general case of _m(F) and _m(F, Z) (homotopical and homological versions, respectively), m = 2, were described by R. Bieri, R. Geoghegan and D. Kochloukova. Here, we present the homotopical version of this result / Mestrado / Algebra / Mestre em Matemática
|
503 |
Grupos abelianos-por-(nilpotentes de classe 2) / Abelian-by-(nilpotent of class 2) groupsSilva, Leonardo de Amorin e, 1980- 26 August 2018 (has links)
Orientador: Dessislava Hristova Kochloukova / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica / Made available in DSpace on 2018-08-26T02:25:15Z (GMT). No. of bitstreams: 1
Silva_LeonardodeAmorine_D.pdf: 582293 bytes, checksum: ed3c907af5279b8923c782d730bcf1d4 (MD5)
Previous issue date: 2014 / Resumo: Nesta tese consideramos uma extensão cindida G de um grupo abeliano A por um grupo nilpotente (de classe 2) Q e provamos dois resultados. Primeiro, se Q age nilpotentemente sobre A e G tem tipo FP2, calculamos o sigma invariante de G em dimensão 2. Segundo, se G tem tipo FP4, mostramos que cada quociente de G tem tipo FP4 / Abstract: In this thesis we consider a split extension G of an abelian group A by a nilpotent group (class 2) Q and prove two results. First, if Q acts nilpotently on A and G has type FP2, compute the sigma invariant of G in dimension 2. Second, if G has type FP4, we show that every quotient G has type FP4 / Doutorado / Matematica / Doutora em Matemática
|
504 |
Caractérisation topologique de tresses virtuelles / Topological characterization of virtual braidsCisneros de la Cruz, Bruno Aarón 03 June 2015 (has links)
Le but de cette thèse est de fournir une caractérisation topologique de tresses virtuelles. Les tresses virtuelles sont des classes d’équivalence de diagrammes de type tresses tracés sur le plan. La relation d’équivalence est générée par l’isotopie, les mouvements de Reidemeister et les mouvements de Reidemeister virtuels. L’ensemble des tresses virtuelles est munie d’une opération de groupe. On parlera alors du groupe de tresses virtuelles. Dans le Chapitre 1, nous introduisons les notions de base de la théorie de noeuds virtuels, nous évoquons certains propriétés du groupe tresses virtuelles, et des liens qu’il a avec le groupe de tresses classiques. Dans le Chapitre 2, nous introduisons la notion de diagramme de Gauss tressé (ou diagramme de Gauss horizontal), et on démontre qu’il s’agit là d’une bonne réinterprétation combinatoire pour les tresses virtuelles. On généralise en particulier certains résultats connus en théorie de noeuds virtuels. Un application est de retrouver la présentation classique du groupe de tresses virtuelles pures à l’aide des diagrammes de Gauss tressés. Dans le Chapitre 3, on introduit les tresses abstraites et on montre qu’elles sont en correspondance bijective avec les tresses virtuelles. Les tresses abstraites sont des classes d’équivalence des diagrammes de type tresses tracés sur une surface orientable avec deux composantes de bord. La relation d’équivalence est générée par l’isotopie, la compatibilité, la stabilité et les mouvements de Reidemeister. La compatibilité est la relation d’équivalence générée par les difféomorphismes préservant l’orientation. La stabilité est la relation d’équivalence générée par l’addition ou la suppression d’anses à la surface, dans le complémentaire du diagramme. Dans le Chapitre 4, on démontre que tout tresse abstraite admets une unique représentant de genre minimal, à compatibilité et mouvements de Reidemeister prés. En particulier, les tresses classiques se plongent dans les tresses abstraites. / The purpose of this thesis is to give a topological characterization of virtual braids. Virtual braids are equivalence classes of planar braid-like diagrams identified up to isotopy, Reidemeister and virtual Reidemeister moves. The set of virtual braids admits a group structure and is called the virtual braid group. In Chapter 1 we present a general introduction to the theory of virtual knots, and we discuss some properties of virtual braids and their relations with classical braids. In Chapter 2 we introduce braid-Gauss dia- grams, and we prove that they are a good combinatorial reinterpretation of virtual braids. In particular this generalizes some results known in virtual knot theory. As an application, we use braid-Gauss diagrams to recover a well known presentation of the pure virtual braid group. In Chapter 3 we introduce abstract braids and we prove that they are in a bijective cor- respondence with virtual braids. Abstract braids are equivalence classes of braid-like diagrams on an orientable surface with two boundary components. The equivalence relation is generated by isotopy, compatibility, stability and Reidemeister moves. Compatibility is the equivalence relation generated by orientation preserving diffeomorphisms. Stability is the equivalence relation generated by adding handles to or deleting handles from the surface in the complement of the braid-like diagram. In Chapter 4 we prove that for any abstract braid, there is a unique representative of minimal genus, up to compatibility and Reidemeister equivalence. In particular this implies that classical braids embed in abstract braids.
|
505 |
Quantum multiplicative hypertoric varieties and localizationCooney, Nicholas January 2014 (has links)
In this thesis, we consider q-deformations of multiplicative Hypertoric varieties, where q∈𝕂<sup>x</sup> for 𝕂 an algebraically closed field of characteristic 0. We construct an algebra D<sub>q</sub> of q-difference operators as a Heisenberg double in a braided monoidal category. We then focus on the case where q is specialized to a root of unity. In this setting, we use D<sub>q</sub> to construct an Azumaya algebra on an l-twist of the multiplicative Hypertoric variety, before showing that this algebra splits over the fibers of both the moment and resolution maps. Finally, we sketch a derived localization theorem for these Azumaya algebras.
|
506 |
Symmetric representations of elements of finite groupsKasouha, Abeir Mikhail 01 January 2004 (has links)
This thesis demonstrates an alternative, concise but informative, method for representing group elements, which will prove particularly useful for the sporadic groups. It explains the theory behind symmetric presentations, and describes the algorithm for working with elements represented in this manner.
|
507 |
Algebraic and Topological Properties of Unitary Groups of II_1 FactorsDowerk, Philip 21 April 2015 (has links)
The thesis is concerned with group theoretical properties of unitary groups, mainly of II_1 factors. The author gives a new and elementary proof of an result on extreme amenability, defines the bounded normal generation property and invariant automatic continuity property and proves these for various unitary groups of functional analytic types.
|
508 |
Magnetické vlastnosti R2TIn8 a příbuzných tetragonálních sloučenin / Magnetic properties of R2TIn8 and related tetragonal compoundsČermák, Petr January 2014 (has links)
Title: Magnetic properties of R2TIn8 and related tetragonal compounds Author: Petr Čermák Department / Institute: Department of Condensed Matter Physics Supervisor of the doctoral thesis: doc. Mgr. Pavel Javorský, Dr., Department of Condensed Matter Physics Abstract: Intermetallic compounds R2TIn8 (R = rare earth, T = transition metal), commonly called "218" because of stoichiometry, are structurally related to a class of well- known Ce-based heavy-fermions like CeCoIn5 or CeRhIn5. They are located between fully 3D cubic compound (e.g. CeIn3) and quasi-2D "115" superconductors, which makes them ideal candidates to study structural dimensionality effects on various properties. Recent developments in this field showed that it is possible to grow compounds with T = Pd or Pt with "218" stoichiometry. Therefore further study of "218" compounds is desired since much less is known about them compared to "115" compounds. We have focused mainly on the determination of magnetic structures and crystal field effects along the series of Rh based "218" compounds for various rare-earth elements. The single crystals of compounds with R = Nd, Tb, Dy, Ho, Er, Tm, La, Lu, Y were successfully grown. Results of bulk measurements (specific heat, susceptibility) together with magnetic structures determined from several neutron...
|
509 |
Classifying Triply-Invariant SubspacesAdams, Lynn I. 13 September 2007 (has links)
No description available.
|
510 |
New horizons for strong interactions beyond the Standard Model: Models, signatures, and constraintsMurphy, Taylor January 2022 (has links)
No description available.
|
Page generated in 0.0315 seconds