• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 298
  • 31
  • 28
  • 21
  • 18
  • 18
  • 18
  • 18
  • 18
  • 18
  • 14
  • 6
  • 6
  • 6
  • 5
  • Tagged with
  • 588
  • 588
  • 161
  • 154
  • 63
  • 59
  • 52
  • 48
  • 36
  • 34
  • 34
  • 32
  • 32
  • 31
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
521

Graded blocks of group algebras

Bogdanic, Dusko January 2010 (has links)
In this thesis we study gradings on blocks of group algebras. The motivation to study gradings on blocks of group algebras and their transfer via derived and stable equivalences originates from some of the most important open conjectures in representation theory, such as Broue’s abelian defect group conjecture. This conjecture predicts the existence of derived equivalences between categories of modules. Some attempts to prove Broue’s conjecture by lifting stable equivalences to derived equivalences highlight the importance of understanding the connection between transferring gradings via stable equivalences and transferring gradings via derived equivalences. The main idea that we use is the following. We start with an algebra which can be easily graded, and transfer this grading via derived or stable equivalence to another algebra which is not easily graded. We investigate the properties of the resulting grading. In the first chapter we list the background results that will be used in this thesis. In the second chapter we study gradings on Brauer tree algebras, a class of algebras that contains blocks of group algebras with cyclic defect groups. We show that there is a unique grading up to graded Morita equivalence and rescaling on an arbitrary basic Brauer tree algebra. The third chapter is devoted to the study of gradings on tame blocks of group algebras. We study extensively the class of blocks with dihedral defect groups. We investigate the existence, positivity and tightness of gradings, and we classify all gradings on these blocks up to graded Morita equivalence. The last chapter deals with the problem of transferring gradings via stable equivalences between blocks of group algebras. We demonstrate on three examples how such a transfer via stable equivalences is achieved between Brauer correspondents, where the group in question is a TI group.
522

Un formalisme pour la traçabilité des transformations

Lemoine, Mathieu 12 1900 (has links)
Dans le développement logiciel en industrie, les documents de spécification jouent un rôle important pour la communication entre les analystes et les développeurs. Cependant, avec le temps, les changements de personel et les échéances toujours plus courtes, ces documents sont souvent obsolètes ou incohérents avec l'état effectif du système, i.e., son code source. Pourtant, il est nécessaire que les composants du système logiciel soient conservés à jour et cohérents avec leurs documents de spécifications pour faciliter leur développement et maintenance et, ainsi, pour en réduire les coûts. Maintenir la cohérence entre spécification et code source nécessite de pouvoir représenter les changements sur les uns et les autres et de pouvoir appliquer ces changements de manière cohérente et automatique. Nous proposons une solution permettant de décrire une représentation d'un logiciel ainsi qu'un formalisme mathématique permettant de décrire et de manipuler l'évolution des composants de ces représentations. Le formalisme est basé sur les triplets de Hoare pour représenter les transformations et sur la théorie des groupes et des homomorphismes de groupes pour manipuler ces transformations et permettrent leur application sur les différentes représentations du système. Nous illustrons notre formalisme sur deux représentations d'un système logiciel : PADL, une représentation architecturale de haut niveau (semblable à UML), et JCT, un arbre de syntaxe abstrait basé sur Java. Nous définissons également des transformations représentant l'évolution de ces représentations et la transposition permettant de reporter les transformations d'une représentation sur l'autre. Enfin, nous avons développé et décrivons brièvement une implémentation de notre illustration, un plugiciel pour l'IDE Eclipse détectant les transformations effectuées sur le code par les développeurs et un générateur de code pour l'intégration de nouvelles représentations dans l'implémentation. / When developing software system in industry, system specifications are heavily used in communication among analysts and developers. However, system evolution, employee turn-over and shorter deadlines lead those documents either not to be up-to-date or not to be consistent with the actual system source code. Yet, having up-to-date documents would greatly help analysts and developers and reduce development and maintenance costs. Therefore, we need to keep those documents up-to-date and consistent. We propose a novel mathematical formalism to describe and manipulate the evolution of these documents. The mathematical formalism is based on Hoare triple to represent the transformations and group theory and groups homomorphisms to manipulate these transformations and apply them on different representations. We illustrate our formalism using two representation of a same system: PADL, that is an abstract design specification (similar to UML), and JCT, that is an Abstract Syntax Tree for Java. We also define transformations describing their evolutions, and transformations transposition from one representation to another. Finally, we provide an implementation of our illustration, a plugin for the Eclipse IDE detecting source code transformations made by a developer and a source code generator for integrating new representations in the implementation.
523

Homologia simplicial e a característica de Euler-Poincaré / Simplicial homology and the Euler-Poincaré characteristic

Gonçalves, André Gomes Ventura 30 May 2019 (has links)
Desenvolvemos as ideias centrais da Homologia Simplicial e provamos a invariância topológica dos grupos de homologia para espaços homeomorfos. Discutimos também a invariância topológica da característica de Euler-Poincaré mostrando a sua relação com os grupos de homologia através dos números de Betti. Adicionalmente apresentamos conceitos da Álgebra Abstrata, especificamente da teoria de Grupos, importantes para o entendimento formal da álgebra homológica. Ao final, propomos atividades didáticas com objetivo de trazer as ideias de triangulação e invariância topológica ao contexto da sala de aula. / We develop central ideas of Simplicial Homology and prove the topological invariance of homology groups for homeomorphic spaces. We also discuss topological invariance of Euler- Poincaré characteristic showing its relation with the homology groups through Betti numbers. In addition, we present concepts of abstract algebra, specifically of group theory, which are important to formal understanding of homological algebra. In the end, we propose didactic activities in order to bring the ideas of triangulation and topological invariance to context of math classes on basic education.
524

Fragmentation et propriétés algébriques des groupes d'homéomorphismes / Fragmentation and algebraic properties of homeomorphisms groups

Militon, Emmanuel 26 October 2012 (has links)
Dans cette thèse, nous nous intéressons à diverses propriétés algébriques des groupes d'homéomorphismes et de difféomorphismes de variétés. On appelle fragmentation la possibilité d'écrire un homéomorphisme en tant que composé d'homéomorphismes supportés dans des boules. Tout d'abord, nous étudions la longueur des commutateurs sur le groupe des homéomorphismes du tore et de l'anneau, ainsi que la norme de fragmentation, qui associe à tout homéomorphisme le nombre minimal de facteurs nécessaires pour écrire cet homéomorphisme en tant que composé d'homéomorphismes supportés dans des boules. Dans une deuxième partie de la thèse, nous abordons una autre propriété algébrique des groupes d'homéomorphismes et de difféomorphismes : la distorsion. Celle-ci est reliée de manière surprenante à des propriétés de fragmentation des homéomorphismes. / In this thesis, we are interested in various algebraic properties of groups of homeomorphisms and diffeomorphisms of manifolds. We call fragmentation the possibility to write a homeomorphism as a composition of homeomorphisms supported in balls. First, we study the commutator length on the group of homeomorphisms of the torus and of the annulus, as well as the fragmentation norm, which associates to any homeomorphism the minimal number of factors necessary to write this homeomorphism as a composition of homeomorphisms supported in balls. In a second part of this thesis, we deal with another algebraic property of homeomorphism and diffeomorphism groups: the distortion. This last notion is surprisingly related to fragmentation properties of homeomorphisms.
525

Application des marches aleatoires a l'etude des sous-groupes des groupes lineaires / Application of random walks to the study of subgroups of linear groups

Aoun, Richard 27 May 2011 (has links)
Dans cette thèse, nous utilisons et contribuons à la théorie des produits de matrices aléatoires afin d'étudier des propriétés génériques des éléments et des sous-groupes des groupes linéaires. Notre premier résultat donne une version probabiliste de l'alternative de Tits : nous montrons que si M_n et M'_n sont deux marches aléatoires indépendantes sur un groupe linéaire de type fini non virtuellement résoluble alors presque sûrement les deux marches finiront par engendrer un sous-groupe libre non abélien à deux générateurs. Cela répond par l'affirmative à une question de Guivarc'h et de Gilman, Miasnikov et Osin. Plus précisément, nous montrons que la probabilité que M_n et M'_n n'engendrent pas un sous-groupe libre décroit exponentiellement vite vers zéro. Notre outil principal est la théorie des produits de matrices aléatoires. Durant la preuve, nous établissons de nouveaux théorèmes limites dans cette théorie, d'une part en généralisant des résultats connus dans le cadre des produits de matrices à valeurs dans les corps archimédiens à tout corps local, d'autre part en donnant des résultats qui sont nouveaux même sur R. Par exemple, nous montrons que sous des hypothèses naturelles sur la marche aléatoire, les composantes suivant K de M_n dans la décomposition KAK deviennent asymptotiquement indépendantes avec vitesse exponentielle. Dans la deuxième partie de la thèse, nous utilisons ces résultats pour étudier la transience des sous-variétés des groupes algébriques. Un de nos résultats peut être formulé comme suit: soient H un sous-groupe non élémentaire de SL_2(R), une probabilité adaptée sur H ayant un moment exponentiel, alors pour toute sous-variété algébrique propre V de SL_2(R), la probabilité que la marche aléatoire appartienne à V décroit exponentiellement vite vers zéro. Par conséquent, la sous-variété algébrique V est transiente pour la marche aléatoire. Nous généralisons cet énoncé au cas ou la marche aléatoire est adaptée sur un groupe Zariski dense des points réels d'un groupe algébrique défini et déployé sur R. Ces résultats sont à comparer avec des travaux récents de Kowalski et de Rivin. / In this thesis, we use and contribute to the theory of random matrix products in order to study generic properties of elements and subgroups of linear groups. Our first result gives a probabilistic version of the Tits alternative : we show that two independent random walks M_n and M'_n on a non virtually solvable finitely generated linear group will eventually generate a non abelian free subgroup. This answers a question of Guivarc'h and Gilman, Miasnikov and Osin. We show in fact that the probability that M_n and M'_n do not generate a free subgroup decreases exponentially fast to zero. Our methods rely deeply on random matrix products theory. During the proof we give some new limit theorems concerning this theory, some of them will be the generalization of known results for matrices taking value in archimedean fields to arbitrary local fields, others will be new even over R. For example, we show that under natural assumptions on the random walk, the K-parts of M_n in the KAK decomposition become asymptotically independent with exponential speed. Next, we use these properties to study the transience of algebraic subvarieties in algebraic groups. One of our results can be formulated as follows: let H be a non elementary subgroup of SL_2(R), a probability measure with an exponential moment whose support generates H, then for every proper algebraic subvariety V of SL_2(R), the probability that the random walk lies in V decreases exponentially fast to zero. This shows that every proper algebraic subvariety is transient for the random walk. We generalize this result to the case where the support of the probability measure generates a Zariski dense subgroup of the real points of an algebraic group defined and split over R. These results share common flavor with recent works of Kowalski and Rivin
526

Automorphismes des groupes d'Artin à angles droits

Toinet, Emmanuel 11 May 2012 (has links) (PDF)
Cette thèse a pour objet l'étude des automorphismes des groupes d'Artin à angles droits. Etant donné un graphe simple fini $\Gamma$, le groupe d'Artin à angles droits $G_\Gamma$ associé à $\Gamma$ est le groupe défini par la présentation dont les générateurs sont les sommets de $\Gamma$, et dont les relateurs sont les commutateurs $[v,w]$, où {$v$,$w$} est une paire de sommets adjacents. Le premier chapitre est conçu comme une introduction générale à la théorie des groupes d'Artin à angles droits et de leurs automorphismes. Dans un deuxième chapitre, on démontre que tout sous-groupe sous-normal d'indice une puissance de $p$ d'un groupe d'Artin à angles droits est résiduellement $p$-séparable. Comme application de ce résultat, on montre que tout groupe d'Artin à angles droits est résiduellement séparable dans la classe des groupes nilpotents sans torsion. Une autre application de ce résultat est que le groupe des automorphismes extérieurs d'un groupe d'Artin à angles droits est virtuellement résiduellement $p$-fini. On montre également que le groupe de Torelli d'un groupe d'Artin à angles droits est résiduellement nilpotent sans torsion, et, par suite, résiduellement $p$-fini et bi-ordonnable. Dans un troisième chapitre, on établit une présentation du sous-groupe $Conj(G_\Gamma)$ de $Aut(G_\Gamma)$ formé des automorphismes qui envoient chaque générateur sur un conjugué de lui-même.
527

Sur les propriétés extrémales de polytopes de Coxeter hyperboliques et de leurs groupes de réflexion

Kolpakov, Alexander 19 November 2012 (has links) (PDF)
Cette thèse est centrée sur l'étude des polytopes hyperboliques, des groupes de réflexions et invariants associes. Soit G un groupe de Coxeter, sous-groupe de Isom Hn. Alors, il existe un domaine fondamental P ⊂ Hn qui est naturellement associe 'a ce groupe G. Le domaine P est un polytope de Coxeter. Réciproquement, chaque polytope de Coxeter P engendre un groupe de Coxeter agissant sur Hn: le groupe engendre par les réflexions par rapport a ses facettes. Ces réflexions forment un ensemble naturel de générateurs pour le groupe G. On peut donc exprimer la série de d'accroissement fS (t) du groupe G par rapport a l'ensemble S. Par un resultat de R. Steinberg, la série d'accroissement associée correspond a la série de Taylor d'une fonction rationnelle. Le taux d'accroissement τ de G est l'inverse du rayon de convergence de cette dernière. Le taux de convergence est un entier algébrique et, par un resultat de J. Milnor, τ > 1. Par un résultat de W. Parry, si G agit sur H2 de fa¸con co-compacte, son taux d'accroissement est un nombre de Salem. Par un résultat de W. Floyd, il existe un lien géométrique entre les taux d'accroissement des groupes de Coxeter cocompacts et ceux des groupes a co-volume fini agissant sur H2. Ce lien correspond a une image géométrique de la convergence d'une suite de nombres de Salem vers un nombre de Pisot. Dans cette thèse, on verra un phénomène analogue en dimension 3. En dimension n ≥ 4, le taux d'accroissement d'un groupe de Coxeter agissant de fa¸con cocompacte sur Hn n'est plus un nombre de Salem, ni un nombre de Pisot. Nous nous intéressons a une classe particulière de groupes de Coxeter est celle des groupes de Coxeter rectangulaires. Dans ce cas, les domaines fondamentaux sont des poly- topes aux angles diedres droits. Concernant la classe de polytopes rectangulaires compacts (respectivement, 'a volume fini, id'eaux) dans H4, on pose les problèmes suivants: - déterminer le volume minimal dans ces familles, - déterminer le nombre minimal de composante combinatoire (facettes, faces, arêtes, sommets) dans ces familles. Dans le cas des polytopes rectangulaires a volume fini, la solution a été donnée par E. Vinberg, L. Potyagailo et par B. Everitt, J. Ratcliffe, S. Tschantz. Pour les polytopes rectangulaires compacts, il existe seulement une conjecture. Dans cette these, nous repondons a ces questions dans le cas des polytopes rectangulaires id'eaux.
528

Large scale group network optimization

Shim, Sangho 17 November 2009 (has links)
Every knapsack problem may be relaxed to a cyclic group problem. In 1969, Gomory found the subadditive characterization of facets of the master cyclic group problem. We simplify the subadditive relations by the substitution of complementarities and discover a minimal representation of the subadditive polytope for the master cyclic group problem. By using the minimal representation, we characterize the vertices of cardinality length 3 and implement the shooting experiment from the natural interior point. The shooting from the natural interior point is a shooting from the inside of the plus level set of the subadditive polytope. It induces the shooting for the knapsack problem. From the shooting experiment for the knapsack problem we conclude that the most hit facet is the knapsack mixed integer cut which is the 2-fold lifting of a mixed integer cut. We develop a cutting plane algorithm augmenting cutting planes generated by shooting, and implement it on Wong-Coppersmith digraphs observing that only small number of cutting planes are enough to produce the optimal solution. We discuss a relaxation of shooting as a clue to quick shooting. A max flow model on covering space is shown to be equivalent to the dual of shooting linear programming problem.
529

Un formalisme pour la traçabilité des transformations

Lemoine, Mathieu 12 1900 (has links)
Dans le développement logiciel en industrie, les documents de spécification jouent un rôle important pour la communication entre les analystes et les développeurs. Cependant, avec le temps, les changements de personel et les échéances toujours plus courtes, ces documents sont souvent obsolètes ou incohérents avec l'état effectif du système, i.e., son code source. Pourtant, il est nécessaire que les composants du système logiciel soient conservés à jour et cohérents avec leurs documents de spécifications pour faciliter leur développement et maintenance et, ainsi, pour en réduire les coûts. Maintenir la cohérence entre spécification et code source nécessite de pouvoir représenter les changements sur les uns et les autres et de pouvoir appliquer ces changements de manière cohérente et automatique. Nous proposons une solution permettant de décrire une représentation d'un logiciel ainsi qu'un formalisme mathématique permettant de décrire et de manipuler l'évolution des composants de ces représentations. Le formalisme est basé sur les triplets de Hoare pour représenter les transformations et sur la théorie des groupes et des homomorphismes de groupes pour manipuler ces transformations et permettrent leur application sur les différentes représentations du système. Nous illustrons notre formalisme sur deux représentations d'un système logiciel : PADL, une représentation architecturale de haut niveau (semblable à UML), et JCT, un arbre de syntaxe abstrait basé sur Java. Nous définissons également des transformations représentant l'évolution de ces représentations et la transposition permettant de reporter les transformations d'une représentation sur l'autre. Enfin, nous avons développé et décrivons brièvement une implémentation de notre illustration, un plugiciel pour l'IDE Eclipse détectant les transformations effectuées sur le code par les développeurs et un générateur de code pour l'intégration de nouvelles représentations dans l'implémentation. / When developing software system in industry, system specifications are heavily used in communication among analysts and developers. However, system evolution, employee turn-over and shorter deadlines lead those documents either not to be up-to-date or not to be consistent with the actual system source code. Yet, having up-to-date documents would greatly help analysts and developers and reduce development and maintenance costs. Therefore, we need to keep those documents up-to-date and consistent. We propose a novel mathematical formalism to describe and manipulate the evolution of these documents. The mathematical formalism is based on Hoare triple to represent the transformations and group theory and groups homomorphisms to manipulate these transformations and apply them on different representations. We illustrate our formalism using two representation of a same system: PADL, that is an abstract design specification (similar to UML), and JCT, that is an Abstract Syntax Tree for Java. We also define transformations describing their evolutions, and transformations transposition from one representation to another. Finally, we provide an implementation of our illustration, a plugin for the Eclipse IDE detecting source code transformations made by a developer and a source code generator for integrating new representations in the implementation.
530

Graphes et marches aléatoires

De Loynes, Basile 06 July 2012 (has links) (PDF)
L'étude des marches aléatoires fait apparaître des connexions entre leurs propriétés algébriques, géométriques ou encore combinatoires et leurs propriétés stochastiques. Si les marches aléatoires sur les groupes - ou sur des espaces homogènes - fournissent beaucoup d'exemples, il serait appréciable d'obtenir de tels résultats de rigidité sur des structures algébriques plus faibles telles celles de semi-groupoide ou de groupoide. Dans cette thèse il est considéré un exemple de semi-groupoide et un exemple de groupoide, tous les deux sont définis a partir de sous-graphes contraints du graphe de Cayley d'un groupe - le premier graphe est dirige alors que le second ne l'est pas. Pour ce premier exemple, on précise un résultat de Campanino et Petritis (ils ont montre que la marche aléatoire simple était transiente pour cet exemple de graphe dirigé) en déterminant la frontière de Martin associée à cette marche et établissant sa trivialité Dans le second exemple apparaissant dans ce manuscrit, on considère des pavages quasi-périodiques de l'espace euclidien obtenus à l'aide de la méthode de coupe et projection. Nous considérons la marche aléatoire simple le long des arêtes des polytopes constituant le pavage, et nous répondons a la question du type de celle-ci, c'est-à-dire nous déterminons si elle est récurrente ou transiente. Nous montrons ce résultat en établissant des inégalités isopérimétriques Cette stratégie permet d'obtenir des estimées de la vitesse de décroissance du noyau de la chaleur, ce que n'aurait pas permis l'utilisation d'un critère de type Nash-Williams.

Page generated in 0.0366 seconds