• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 26
  • 16
  • 14
  • 7
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 167
  • 167
  • 35
  • 25
  • 24
  • 24
  • 21
  • 21
  • 21
  • 19
  • 17
  • 17
  • 17
  • 14
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Development of a binary mixture gas composition instrument for use in a confined high temperature environment

Cadell, Seth R. 28 November 2012 (has links)
With recent advancements in material science, industrial operations are being conducted at higher and higher temperatures. This is apparent in the nuclear industry where a division of the field is working to develop the High Temperature Gas Reactor and the Very High Temperature Gas Reactor concurrently. Both of these facilities will have outlet gas temperatures that are at significantly higher temperatures than the typical water cooled reactor. These increased temperatures provide improved efficiency for the production of hydrogen, provide direct heating for oil refineries, or more efficient electricity generation. As high temperature operations are being developed, instruments capable of measuring the operating parameters must be developed concurrently. Within the gas reactor community there is a need to measure the impurities within the primary coolant. Current devices will not survive the temperature and radiation environments of a nuclear reactor. An instrument is needed to measure the impurities within the coolant while living inside the reactor, where this instrument would measure the amount of the impurity within the coolant. There are many industrial applications that need to measure the ratio of two components, whether it be the amount of particulate in air that is typical to pneumatic pumping, or the liquid to gas ratio in natural gas as it flows through a pipeline. All of the measurements in these applications can be met using a capacitance sensor. Current capacitance sensors are built to operate at ambient temperatures with only one company producing a product that will handle a temperature of up to 400 °C. This maximum operating temperature is much too low to measure the gas characteristics in the High Temperature Gas Reactor. If this measurement technique were to be improved to operate at the expected temperatures, the coolant within the primary loop could be monitored for water leaks in the steam generator, carbon dust buildup entrained in the flow, or used to measure the purity of the coolant itself. This work details the efforts conducted to develop such an instrument. While the concept of designing a capacitance sensor to measure a gas mixture is not unique, the application of using a capacitance sensor within a nuclear reactor is a new application. This application requires the development of an instrument that will survive a high temperature nuclear reactor environment and operate at a sensitivity not found in current applications. To prove this technique, instrument prototypes were built and tested in confined environments and at high temperatures. This work discusses the proof of concept testing and outlines an application in the High Temperature Test Facility to increase the operational understanding of the instrument. This work is the first step toward the ultimate outcome of this work, which is to provide a new tool to the gas reactor community allowing real-time measurements of coolant properties within the core. / Graduation date: 2013
142

Electronic and Magnetic Properties of Two-dimensional Nanomaterials beyond Graphene and Their Gas Sensing Applications: Silicene, Germanene, and Boron Carbide

Mehdi Aghaei, Sadegh 28 June 2017 (has links)
The popularity of graphene owing to its unique properties has triggered huge interest in other two-dimensional (2D) nanomaterials. Among them, silicene shows considerable promise for electronic devices due to the expected compatibility with silicon electronics. However, the high-end potential application of silicene in electronic devices is limited owing to the lack of an energy band gap. Hence, the principal objective of this research is to tune the electronic and magnetic properties of silicene related nanomaterials through first-principles models. I first explored the impact of edge functionalization and doping on the stabilities, electronic, and magnetic properties of silicene nanoribbons (SiNRs) and revealed that the modified structures indicate remarkable spin gapless semiconductor and half-metal behaviors. In order to open and tune a band gap in silicene, SiNRs were perforated with periodic nanoholes. It was found that the band gap varies based on the nanoribbon’s width, nanohole’s repeat periodicity, and nanohole’s position due to the quantum confinement effect. To continue to take advantage of quantum confinement, I also studied the electronic and magnetic properties of hydrogenated silicene nanoflakes (SiNFs). It was discovered that half-hydrogenated SiNFs produce a large spin moment that is directly proportional to the square of the flake’s size. Next, I studied the adsorption behavior of various gas molecules on SiNRs. Based on my results, the SiNR could serve as a highly sensitive gas sensor for CO and NH3 detection and a disposable gas sensor for NO, NO2, and SO2. I also considered adsorption behavior of toxic gas molecules on boron carbide (BC3) and found that unlike graphene, BC3 has good sensitivity to the gas molecules due to the presence of active B atoms. My findings divulged the promising potential of BC3 as a highly sensitive molecular sensor for NO and NH3 detection and a catalyst for NO2 dissociation. Finally, I scrutinized the interactions of CO2 with lithium-functionalized germanene. It was discovered that although a single CO2 molecule was weakly physisorbed on pristine germanene, a significant improvement on its adsorption energy was found by utilizing Li-functionalized germanene as the adsorbent. My results suggest that Li-functionalized germanene shows promise for CO2 capture.
143

Síntese e caracterização do composto SrTiO3 e SrTi1-xFexO3 através do método hidrotermal assistido por microondas / Synthesis and characterization of SrTiO3 and SrTi1-xFexO3 compounds prepared by microwave-assisted hydrothermal method

Luís Fernando da Silva 26 August 2013 (has links)
Dentre os materiais de estrutura perovskita, o titanato de estrôncio, SrTiO3, é um dos mais conhecidos e estudado por apresentar interessantes propriedades como a ferroeletricidade, fotoluminescência, entre outras. Além disso, tem sido reportado na literatura que a adição de diferentes dopantes ao composto SrTiO3 modifica suas propriedades dando origem, por exemplo, a materiais para serem aplicados como sensores de gás ou na fotocatálise. Diferentes trabalhos encontrados na literatura descrevem a síntese do composto SrTiO3 e suas soluções sólidas através do método hidrotermal. Entretanto, poucos trabalhos tiveram como foco o estudo do precursor de Ti e do íon dopante nas propriedades estruturais, morfológicas, ópticas e elétricas destes materiais. Desta forma, este trabalho de tese teve como objetivo o estudo da influência da composição e de alguns parâmetros de síntese sobre as propriedades estruturais, morfológicas e ópticas do composto SrTiO3 preparado através do método hidrotermal assistido por microondas HAM. Inicialmente, foi realizada a síntese do composto SrTiO3 a 140oC por 10 minutos, onde se verificou a possibilidade de controlar a morfologia e a propriedade fotoluminescente das amostras através do tipo de precursor de Ti utilizado. Em uma segunda etapa do trabalho, o composto SrTiO3 foi sintetizado por tempos variando de 10 a 640 minutos. A caracterização destas amostras mostrou a formação da fase cúbica do SrTiO3 exibindo morfologia na forma de cubos, formados pelo processo de auto-organização, que tornam-se mais bem definidos com o aumento do tempo de síntese. Medidas de espectroscopia XANES e EXAFS na borda K do Ti mostraram que as amostras de SrTiO3 sintetizadas pelo método HAM apresentam um alto grau de desordem na estrutura local, caracterizada pela coexistência de unidades do tipo TiO5 e TiO6. Além disso, observou-se que o aumento do tempo de síntese leva a uma redução da intensidade fotoluminescente que foi atribuído à redução na concentração de vacâncias de oxigênio. Medidas de DRX das amostras do sistema SrTi1-xFexO3, ao nosso conhecimento pela primeira vez sintetizadas com sucesso através do método HAM, mostraram a formação da fase cúbica quando x &#8804 0,4. Medidas do espectro XANES e EXAFS revelaram a substituição Ti por íons Fe+2 e Fe+3, levando a formação de vacâncias de oxigênio as quais contribuem para a diminuição da energia do band-gap das amostras de 3,2 para 2,8 eV, bem como na total supressão da intensidade fotoluminescente das amostras. A análise por microscopia eletrônica de varredura FE-MEV mostrou a existência de partículas na forma de cubos cuja cinética de formação é influenciada pela variação da quantidade de ferro. Imagens de microscopia eletrônica de transmissão (MET) confirmaram a natureza mesocristalina destas partículas cujo mecanismo de crescimento ocorre por coalescência orientada, originada pelo processo de auto-organização. As amostras do sistema SrTi1-xFexO3 na forma de filmes finos foram avaliadas como sensores O3, NO2, NH3 e CO. As análises indicaram que os filmes depositados pela técnica de evaporação de feixe de elétrons apresentam um grande potencial para serem aplicados como sensor de gás ozônio, exibindo uma boa sensibilidade e seletividade comparada a outros tipos de materiais sensores. / Strontium titanate, SrTiO3, it is one of the most known and intensively studied perovskite compounds due its interesting properties such as ferroelectricity, photoluminescence, etc. According to the literature, the dopant addition into SrTiO3 network can create materials with desirable functions, for example, gas sensing and photocatalytic activity. Despite some authors reported the synthesis of pure or doped SrTiO3 by hydrothermal method, few studies have been devoted to investigate the effects of the Ti precursor and type of dopant ion on the structural, morphological and electrical properties of SrTiO3 compound. In this work, we investigated the influence of synthesis parameters and concentration iron on the structural, morphological and optical properties of SrTiO3 prepared by microwave-assisted hydrothermal method (MAH). Firstly, it was observed that the appropriate choice of the Ti precursor allowed the control of morphological and photoluminescence properties of SrTiO3 compound synthesized at 140oC for 10 minutes by MAH method. Next, SrTiO3 was synthesized during different treatment times varying from 10 to 640 minutes. X-ray diffraction (XRD) measurements indicate a SrTiO3 cubic perovskite structure and FE-SEM images revealed that the samples exhibit a cube-like shape formed by an assembly process, becoming well defined as a function of MAH treatment time. Ti-K edge XANES and EXAFS measurements indicated a large local structural distortion, revealed by the presence of TiO6 and TiO5 units. Moreover, we observed a reduction of the photoluminescence intensity as a function of treatment time probably due to decreasing of the oxygen vacancy concentration. To the best of our knowledge, this is the first time that the SrTi1-xFexO3 solid solution was synthesized by MAH method. XRD analyses indicated a cubic perovskite structure when x &#8804 0.4. XANES and EXAFS measurements revealed that iron ions present a mixed Fe+2/Fe+3 oxidation state and occupy preferentially the Ti4+-site. A UV-visible spectrum shows that the addition of iron reduces the value of optical gap of the 3.2 eV to 2.8 eV and consequently suppresses the photoluminescence intensity. An analysis of FE-SEM and HRTEM images point out that, independently of iron content, the nanoparticles have a cube-like morphology and are formed by a self-assembly of small primary nanocrystals. In addition, SrTi1-xFexO3 thin films were investigated as gas sensor towards O3, NO2, NH3 and CO gases The results indicate that the films deposited by electron beam deposition method exhibits a good response as ozone sensor compared to others gas sensors materials.
144

Development And Performance Study Of Nanostructured Metal Oxide Gas Sensor

Parmar, Mitesh Ramanbhai 12 1900 (has links) (PDF)
The basic necessities to sustain life are – air, water and food. Although the harmful effects due to contaminated food or water are dangerous to life, these can be reduced/avoided by controlling the intake. Whereas, in case of air, the same amount of control cannot be exercised as there is very little, one can do in case of inhalation. Maximum damage to life is due to air contamination which can be detected and prevented by using gas sensors. The proper use of these sensors not only save lives, but also minimizes social and financial loss. The objective of this thesis work is to study and explore the use of p-type semiconducting material such as CuO, as a promising gas sensing material for organic compounds (VOCs), compatible with existing silicon fabrication technology. The Thesis consist of 7 chapters: Chapter 1 covers the general introduction about gas sensors, sensor parameters, criteria for the selection of sensing material, suitability of CuO as sensing material and a brief literature survey. The second chapter includes the selection of substrate, cleaning procedures and suitable deposition method. The deposition method used in the present thesis work is DC/RF magnetron sputtering. The reactive magnetron sputtering is employed during the deposition of CuO sensing films. It also includes basic introduction about some of the common material characterization techniques. This is followed by Chapter 3 which includes the optimization of sputtering process parameters such as applied power, working pressure, Ar-O2 ratio and substrate temperature for CuO sensing film and the effect of these on surface morphology. Information on the optimized sputtering parameters for electrode film (silver and gold) deposition has also been included in this chapter. In order to study the sensing behavior of the sensor, suitable testing set-up is necessary. This leads us to Chapter 4 that discusses the development of an in-house built sensor testing setup and its automization using MATLAB. The automated testing set-up facilitates off-time data plotting as well as real-time data plotting during the sensing process. To demonstrate the working of the set-up, some initial results obtained are also included in this chapter. After ascertaining the functioning of the automated gas sensor testing set-up, detailed study on the sensing behavior of nanostructured CuO films was performed. This information along with the necessary details is included in Chapter 5. The sensing response of nanostructured CuO films has been studied for different VOCs such as alcohol, toluene and benzene. The study carried out on the effect of different surface additives like multi-walled carbon nanotubes (MWNTs), gold or platinum on ethanol sensing has also been included in this chapter. During the use of MWNTs as surface additives, different concentrations of MWNTs – 0.01 mg, 0.05 mg and 0.1 mg have been dispersed on the CuO sensing film. The sample with lowest concentration of MWNTs exhibited highest sensitivity and lower response time. It is due to the fact that, higher concentrations of MWNTs do not result into uniform dispersion over the CuO films and cover the sensing film almost completely. Operating temperature is the most important factor affecting the performance of a gas sensor. In order to maintain the operating temperature for the portable sensor, the sensor is usually integrated with a heater. The chapter 6 deals with heater optimization including design, simulation and fabrication. In this chapter, microheater as well as macro-heaters were simulated and fabricated. The fabricated macro-heater is bonded with the sensor by eutectic bonding. One of the bonded samples was studied for its sensing response. The final chapter of the thesis deals with the conclusion of present research work and the possible further work on CuO gas sensor.
145

Detektering och identifiering av sur mjölk och ruttet kött i ett kylskåp med hjälp av en elektronisk näsa.

Alanko, Tobias January 2020 (has links)
Att hitta instrument för att efterlikna den mänskliga näsan har under en längre tid varit ett område som intresserar forskare. Dessa instrument kan potentiellt vara ett användbart verktyg för att uppnå FN:s uppsatta globala mål för att nå en hållbar utveckling, Agenda 2030. Projektet är en experimentell kvantitativ studie och syftet är att undersöka möjligheten att ta fram ett fristående mätsystem för detektering och identifiering av sur mjölk och ruttet kött i ett kylskåp. Ett trådlöst mätsystem med en serie gassensorer är framtaget tillsammans med ett gränssnitt för fjärrstyrning. Mätningar utfördes på kända mätobjekt under två veckor. Därefter utfördes mätningar på okända mätobjekt under lika lång tid. Resultatet från studien visade att det framtagna mätsystemet kan detektera och identifiera sur mjölk och ruttet kött utan extern programvara. Mätsystemet en tillförlitlighet på 89% när det gäller att klassificera okända mätobjekt. Denna studie visar att mätsystemet kan detektera och identifiera sur mjölk och ruttet kött via fjärrstyrning. / To find devices mimicking the human nose have under some time been an area of interest for researchers. These devices can potentially be a useful tool to achieve UN: s global goals for sustainable development, Agenda 2030. This project is an experimental quantitative study with the aim to investigate the possibility to create a stand-alone measuring system for detecting and identifying spoiled milk and rotten meat in a fridge. A wireless measuring system with an array of gas sensors was developed together with interface for remote control. Measurements was made from known measuring objects for two weeks. Thereafter measurements of unknown measuring objects were also done for two weeks. The result of the study showed that the developed measuring system can be remotely controlled to detect and identify spoiled milk and rotten meat without external software. The measuring system has an accuracy of 89% when it comes to classify unknown measurement objects. This study shows that the measuring system can detect and identify spoiled milk and rotten meat via remote control.
146

2D MATERIALS FOR GAS-SENSING APPLICATIONS

Yen-yu Chen (11036556) 01 September 2021 (has links)
<div> <div> <div> <p> </p><div> <div> <div> <div> <div> <div> <p> </p><div> <div> <div> <p>Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) and transition metal carbides/nitrides (MXenes), have been recently receiving attention for gas sensing applications due to their high specific area and rich surface functionalities. However, using pristine 2D materials for gas-sensing applications presents some drawbacks, including high operation temperatures, low gas response, and poor selectivity, limiting their practical sensing applications. Moreover, one of the long-standing challenges of MXenes is their poor stability against hydration and oxidation in a humid environment, which negatively influences their long- term storage and applications. Many studies have reported that the sensitivity and selectivity of 2D materials can be improved by surface functionalization and hybridization with other materials.</p><p>In this work, the effects of surface functionalization and/or hybridization of these two materials classes (TMDCs and MXenes) on their gas sensing performance have been investigated. In one of the lines of research, 2D MoS2 nanoflakes were functionalized with Au nanoparticles as a sensing material, providing a performance enhancement towards sensing of volatile organic compounds (VOCs) at room temperature. Next, a nanocomposite film composed of exfoliated MoS2, single-walled carbon nanotubes, and Cu(I)−tris(mercaptoimidazolyl)borate complexes was the sensing material used for the design of a chemiresistive sensor for the selective detection of ethylene (C2H4). Moreover, the hybridization of MXene (Ti3C2Tx) and TMDC (WSe2) as gas-sensing materials was also proposed. The Ti3C2Tx/WSe2 hybrid sensor reveals high sensitivity, good selectivity, low noise level, and ultrafast response/recovery times for the detection of various VOCs. Lastly, we demonstrated a surface functionalization strategy for Ti3C2Tx with fluoroalkylsilane (FOTS) molecules, providing a superhydrophobic surface, mechanical/environmental stability, and excellent sensing performance. The strategies presented here can be an effective solution for not only improving materials' stability, but also enhancing sensor performance, shedding light on the development of next-generation field-deployable sensors.</p> </div> </div> </div><div><div><div><div><div><div> </div> </div> </div> </div> </div> </div></div></div></div> </div> </div> </div></div></div></div><div><div><div> </div> </div> </div>
147

Elektrické, optické a senzorové vlastnosti organických polovodičů / Electrical, Optical and Sensoric Properties of Organic Semiconductors

Pochekailov, Sergii January 2009 (has links)
There is big interest in cheap, sensitive and selective gas sensors. In this work, substituted soluble phthalocyanines are proposed as a sensing materials for several gases. Optical, electrical and gas sensing properties of several phthalocyanines were studied and the mechanisms of their interaction with several analyte gases are described. It was found, that sulfo-substituted Pcs has good sensitivity to humidity. Sulfonamide-substituted phthalocyanines are promising for nitrogen dioxide and volatile organic compounds detection. tert-Butyl-substituted phthalocyanines are sensitive to NO2 under higher temperature and seems to be used for environmental monitoring. Commercial gas sensors for NO2, ethanol and humidity were successfully created.
148

Mikrosenzory plynů založené na samouspořádaných 3D nanovrstvách oxidů kovů / Gas Microsensors Based on Self-Organized 3D Metal-Oxide Nanofilms

Pytlíček, Zdeněk January 2017 (has links)
This dissertation concerns the development, fabrication and integration in a gas sensing microdevice of a novel 3-dimensional (3D) nanostructured metal-oxide semiconducting film that effectively merges the benefits of inorganic nanomaterials with the simplicity offered by non-lithographic electrochemistry-based preparation techniques. The film is synthesized via the porous-anodic-alumina-assisted anodizing of an Al/Nb metal bilayer sputter-deposited on a SiO2/Si substrate and is basically composed of a 200 nm thick NbO2 layer holding an array of upright-standing spatially separated Nb2O5 nanocolumns, being 50 nm wide, up to 900 nm long and of 8109 cm2 population density. The nanocolumns work as semiconducting nano-channels, whose resistivity is greatly impacted by the surface and interface reactions. Either Pt or Au patterned electrodes are prepared on the top of the nanocolumn array using an innovative sensor design realized by means of microfabrication technology or via a direct original point electrodeposition technique, followed by selective dissolution of the alumina overlayer. For gas-sensing tests the film is mounted on a standard TO-8 package using the wire-bonding technique. Electrical characterization of the 3D niobium-oxide nanofilm reveals asymmetric electron transport properties due to a Schottky barrier that forms at the Au/Nb2O5 or Pt/Nb2O5 interface. Effects of the active film morphology, structure and composition on the electrical and gas-sensing performance focusing on sensitivity, selectivity, detection limits and response/recovery rates are explored in experimental detection of hydrogen gas and ammonia. The fast and intensive response to H2 confirms the potential of the 3D niobium-oxide nanofilm as highly appropriate active layer for sensing application. A computer-aided microfluidics simulation of gas diffusion in the 3D nanofilm predicts a possibility to substantially improve the gas-sensing performance through the formation of a perforated top electrode, optimizing the film morphology, altering the crystal structure and by introducing certain innovations in the electrode design. Preliminary experiments show that a 3D nanofilm synthesized from an alternative Al/W metal bilayer is another promising candidate for advanced sensor applications. The techniques and materials employed in this work are advantageous for developing technically simple, cost-effective and environmentally friendly solutions for practical micro- and nanodevices, where the well-defined nano-channels for charge carriers and surface reactions may bring unprecedented benefits.
149

Electronic Application of Two Dimensional Materials

Suki N Zhang (10723164) 29 April 2021 (has links)
Recent advances in atomically thin two-dimensional materials have led to various promising technologies such as nanoelectronics, sensing, energy storage, and optoelectronics applications. Graphene with sp2-bonded carbon atoms densely packed in a honeycomb crystal lattice has attracted tremendous interest with excellent electrical, optical, mechanical, and chemical properties. In this work, graphene’s mechanical properties, chemical properties, and piezoelectric properties are explored as graphene is implemented in the automotive electrical distribution system. Graphene is useful in friction reduction, corrosion protection, and piezoelectric energy harvesting cell improvement. Besides graphene, transition metal dichalcogenides (TMDs), which are the metal atoms sandwiched between two chalcogen atoms, have also attracted much attention. Unlike graphene, many TMDs are semiconductors in nature and possess enormous potential to be used as a potential channel material in ultra-scaled field-effect transistors (FETs). In this work, chemical doping strategies are explored for the tunnel FETs applications using different metal phthalocyanines and polyethyleneimines as dopants. TMDs FETs can also be used as a selective NO<sub>2</sub> gas sensor with a polydimethylsiloxane filter and a highly sensitive photo-interfacial gated photodetector application.
150

Nanostructured Thin Films Prepared by Planetary Ball Milling: Fabrication, Characterization and Applications

Sapkota, Raju 05 May 2022 (has links)
Planetary ball milling (PBM) is a well-known technique for efficient size reduction and homogenization of materials that has been used for many decades in various engineering and industrial processes. More recently, it has emerged as a unique top-down nanofabrication approach for nanomaterials based on nanoscale grinding. However, its potential application in nanostructured thin film fabrication has not been fully explored, as only a limited number of studies have been carried out. In this work, the effects of different grinding parameters (speed, time and solvents) were used to create previously unstudied nanoscale grinding conditions for nanostructured thin film materials via PBM with distinct and novel properties: Nanoparticles of silicon, titanium disilicide (TiSi2) and zinc oxide (ZnO) ground in different solvents (deionized (DI) water/ ethylene glycol (EG)/isopropyl alcohol) resulted in colloidal suspensions (or nanoinks) that could be used to coat various substrates (wafers, glass, flexible substrates, etc.) via drop casting, doctor blading or dip coating. Thin film properties such as wettability, electrical conductivity and gas sensing behavior are studied. The fabricated thin film coating properties could be tuned depending on the combination of starting powder materials, grinding parameters and resulting nanoparticle size/geometry: The influence of surface chemistry, solvent type, particle geometry, surface roughness and defects was shown to alter the conductivity and surface wettability of the resultant films. Thus, thin films formed using PBM nanoinks allow varied and tunable properties for advanced multi-functional coatings and devices. To demonstrate the feasibility of PBM nanoinks for thin film device applications, ZnO nanoinks were used to create chemiresistive gas sensors that operate at room temperature. By varying grinding parameters (speed, time and solvent) thin film sensors with differing particle sizes and porosity were produced and tested with air/oxygen against hydrogen, argon and methane target gas species, in addition to relative humidity. Grinding speeds of up to 1000 rpm produced particle sizes and RMS thin film roughness below 100 nm, as measured by atomic force microscopy and scanning electron microscopy. Raman spectroscopy, photoluminescence and x-ray analysis confirmed the purity and structure of resulting films. The peak gas sensor response was found for grinding parameters of 400 rpm (average particle size 275 nm) and 30 minutes (average particle size 225 nm) in EG and DI water, respectively, which could be correlated to an increased film porosity and an enhanced electron concentration resulting from adsorption/desorption of oxygen ions on the surface of ZnO nanoparticles. Similarly, gas response and dynamic behavior were found to improve as the operating temperature was increased between 100 and 150 °C. These results demonstrate the use of low-cost PBM nanoinks to optimize the active materials for solution-processed thin film gas/humidity sensors that can operate at room temperature for use in environmental, medical, food packaging, laboratory, and industrial applications. Overall, the nanogrinding technique can produce large amounts of nanoparticle suspension with variable particle sizes for creating thin films with tunable properties. By adjusting grinding parameters, the nanoparticle shape/size and properties can be varied resulting in nanoparticle inks for inexpensive coatings on various substrates and for use in different applications. / Graduate

Page generated in 0.0446 seconds