• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 919
  • 360
  • 72
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1355
  • 447
  • 280
  • 170
  • 151
  • 134
  • 125
  • 116
  • 107
  • 95
  • 88
  • 85
  • 84
  • 82
  • 74
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

The selective low cost gas sensor based on functionalized graphene / Un capteur de gaz sélectif et bas coût par l’emploi de graphène fonctionnalisé

Woo, Heechul 29 September 2016 (has links)
Les progrès récents dans les nanomatériaux présentent un fort potentiel pour la réalisation de capteurs de gaz avec de nombreux avantages tels que : la grande sensibilité de détection de molécule unique, le faible coût et la faible consommation d'énergie. Le graphène, isolé en 2004, est l'un des meilleurs candidats prometteurs pour le développement de futurs nanocapteurs en raison de sa structure à deux dimensions, sa conductivité élevée et sa grande surface spécifique. Chaque atome de la monocouche de graphène peut être considéré comme un atome de surface, capable d'interagir même avec une seule molécule de l'espèce gazeuse ou de vapeur cible, ce qui conduit finalement à un capteur ultrasensible.Dans cette thèse, des composants à base de graphène ont été fabriqués et caractérisés. Les films de graphène ont été synthétisés par dépôt chimique à phase vapeur (CVD) sur des substrats de verre. La spectroscopie Raman a été utilisée pour analyser la qualité et le nombre de couches de graphène. La microscope à force atomique (AFM) et la microscopie électronique à balayage (MEB) ont été également réalisées pour analyser la qualité du graphène. Après la caractérisation de couches de graphène, des dispositifs résistifs à base de graphène ont été fabriquées : quatre électrodes identiques ont été évaporées thermiquement et directement sur le film de graphène comme des électrodes métalliques. La caractérisation électrique a été réalisée à l'aide de Keithley-4200.La réponse de dispositif Intrinsèque a été étudiée sous différents conditions (pression, humidité, exposition à la lumière). Le dispositif a été fonctionnalisé de manière non covalente avec le complexe organométallique (Ru (II) trisbipyridine) et son effet sous exposition à la lumière a été étudié. La réponse de dispositif était reproductible même après de nombreux cycles en présence et en absence de la lumière. Les approches théoriques et expérimentales ainsi que les résultats obtenus au cours de cette thèse ouvrent un moyen de comprendre et de fabriquer des futurs dispositifs de détection de gaz à base du graphène fonctionnalisé de manière non covalente / Recent advances in nanomaterials provided a strong potential to create a gas sensor with many advantages such as high sensitivity of single molecule detection, low cost, and low power consumption. Graphene, isolated in 2004, is one of the best promising candidate for the future development of nanosensors applications because of its atom-thick, two-dimensional structures, high conductivity, and large specific surface areas. Every atom of a monolayer graphene can be considered as a surface atom, capable of interacting even with a single molecule of the target gas or vapor species, which eventually results in the ultrasensitive sensor response.In this thesis work, graphene films were synthesized by Chemical Vapor Deposition (CVD) on the glass substrate. Raman spectroscopy was used to analyze the quality and number of layers of graphene. Atomic Force Microscope (AFM) and Scanning Electron Microscopy (SEM) were also performed to analyze the quality of graphene. After the characterization of graphene films, graphene based resistive devices (four identical electrodes are thermally evaporated directly onto the graphene film as metal electrodes) were fabricated. The electrical characterization has been carried out using Keithley-4200.Intrinsic device response was studied with different external condition changes (pressure, humidity, light illumination). The device was non-covalently functionalized with organometallic complex (Ru(II) trisbipyridine) and the its light exposure response was studied. The observed device response was reproducible and similar after many cycles of on and off operations. The theoretical and experimental approaches and the results obtained during the thesis are opening up a way to understand and fabricate future gas sensing devices based on the non-covalentely functionalized graphene.
202

Modulation de la force des sources et des puits de carbone sur la croissance du bulbe de l'érythrone d'Amérique, Erythronium americanum

Gutjahr, Sylvain 12 April 2018 (has links)
La chute de luminosité ainsi que l’augmentation saisonnière des températures sont considérées comme les principaux agents induisant la sénescence des feuilles chez les plantes éphémères printanières des forêts décidues. Cependant ces deux facteurs n’expliquent pas directement les variations interannuelles de croissance de l’organe souterrain. Nous suggérons que la longévité des feuilles des géophytes printanières serait déterminée par les conditions de stockage des sucres de réserve (taille de/durée de croissance de l'organe pérenne, vitesse de stockage) et non que la durée de vie des feuilles déterminerait la taille de l’organe pérenne. Nos résultats chez Erythronium americanum suggèrent une entrée en sénescence prématurée de la feuille aux températures élevées lorsque les plantes sont cultivées à 12/8°C ou 18/14°C ; lorsque le bulbe arrête de croître, la feuille est encore photosynthétiquement active et la concentration en nutriments élevée, signifiant une remobilisation non achevée des nutriments. L'enrichissement de l'air en CO2 augmente l'assimilation nette des plantes, mais n'accélère pas la croissance du bulbe, et donc pas l’accumulation des sucres. La force d’un puits de carbone tel que le bulbe pourrait influencer la longévité de la feuille chez les individus immatures de cette espèce. / Reduction in light intensity as well as seasonal increase in temperature are considered the main factors inducing the senescence of the leaves of deciduous forest spring ephemerals. However, these two factors cannot completely explain the interannual variations in belowground organ growth. We suggest that leaf longevity of spring geophytes is determined by carbohydrate storage conditions (size and growth duration of the perennial organ, storage duration) and not that leaf lifespan determine the size of the perennial organ. Our results on Erythronium americanum suggest that leaf senescence appears prematurely under the higher temperature regime when plants are cultivated at 12/8°C or 18/14°C; when the bulb stops to grow, the leaf is still photosynthetically active and the nutrient concentration is high, meaning their mobilisation is not achieved. CO2 air enrichment increases plant net assimilation rate but does not increase bulb growth rate, and thus does not enhance carbohydrate storage. The strength of a sink of carbon such as the bulb might influence leaf longevity in single-leaved individuals of this species.
203

Transition-metal-free reduction of carbon dioxide

Courtemanche, Marc-André 23 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / Seulement neuf années se sont écoulées depuis la découverte que les ‘’Paires de Lewis Frustrées’’ (PLF) peuvent promouvoir le clivage de l’hydrogène, mais plus d’un millier d’articles scientifiques ont déjà été publiés sur le sujet. Au début des travaux décrits dans cette thèse, les catalyseurs pour la réduction du CO2 étaient excessivement rares et peu efficaces. La présente thèse porte donc sur le développement de nouveaux systèmes sans métal de transition pour la réduction catalytique du CO2 en molécules riches en énergie et plus précisément, en méthanol. D’abord, la préparation d’un nouveau système basé sur les PLF et sa capacité à activer le CO2 de façon réversible est présenté. En présence de catécholborane, le CO2 est catalytiquement réduit en méthoxyboranes, espèces facilement hydrolysables en méthanol. Surprenamment, un produit de décomposition est identifié comme étant responsable de l’activité catalytique. En effet, l’espèce ambiphile 1-Bcat-2-PPh2-C6H4 constitue le premier exemple d’un catalyseur sans métal de transition pour l’hydroboration du CO2. L’activité de ce catalyseur excessivement simple surpasse celle des meilleurs systèmes basés sur des métaux. Des études mécanistiques détaillées révèlent que l’activation simultanée du borane et du CO2 est d’une importance critique. Une investigation poussée révèle que la formation d’un adduit entre le catalyseur et le formaldéhyde résulte en un organocatalyseur d’autant plus actif. Il est aussi démontré que les phosphazènes, super bases organiques, sont des organocatalyseurs très actifs pour la transformation du CO2 en dérivés de formate ou de méthanol. De façon intéressante, le DMF (N, N-diméthylformamide) peut promouvoir l’hydrosilylation réductive du CO2 en absence de catalyseur. Une nouvelle stratégie d’hydrogénation a été développée en étudiant les aspects fondamentaux de l’hydrogénation par les PLFs, permettant ainsi la conception d’un système pour l’hydrogénation du CO2 en conditions ambiantes. Même si une voie de décomposition inattendue rend le processus stoéchiométrique, une optimisation du catalyseur pourrait générer le premier catalyseur sans métal pour l’hydrogénation du CO2. / Only nine years have passed since the seminal discovery that Frustrated Lewis Pairs (FLPs) could split dihydrogen and yet, more than a thousand research papers have already been published on the subject. As the work presented herein commenced, metal-free systems capable of catalytically transforming CO2 could be counted on a single hand while transition-metal based systems were almost as scarce. As such, the present thesis deals with the development of novel transition-metal-free systems for the catalytic reduction of CO2 to energy rich materials, most notably methanol. Firstly, the preparation of a new FLP system bearing three pendant phosphine groups Al(C6H4(o-PPh2))3 and its ability to activate carbon dioxide in a reversible fashion are presented. In the presence of catecholborane, CO2 is catalytically reduced to methoxyboranes, species which are readily hydrolyzed to methanol. Interestingly, a decomposition product is shown to be responsible for the catalytic activity Indeed, species 1-Bcat-2-PPh2-C6H4 is the first report of a catalyst for the metal-free hydroboration of carbon dioxide. The activity of this excessively simple catalyst surpasses that of the best transition metal systems while using the cheap and high hydrogen content borane BH3.SMe2. In-depth mechanistic studies reveals that simultaneous activation of both the borane and CO2 molecules is of critical importance. Further investigation reveals that the formation of an adduct between the catalyst and formaldehyde affords an even more potent organocatalyst. It is also shown that phosphazene superbases are very active organocatalysts for the transformation of CO2 to either formate or methanol derivatives. Unexpectedly, N, N-dimethylformamide (DMF) can promote the reductive hydrosilylation of CO2 in the absence of any catalyst. Finally, the challenging task of developing a metal-free system for the hydrogenation of CO2 was undertaken. A novel strategy was developed by studying the fundamental aspects of FLP mediated hydrogenations, allowing us to achieve CO2 reduction under ambient conditions. While an unexpected decomposition pathway hampered catalysis, optimisation of the catalyst design is expected to yield the first metal-free catalyst for the hydrogenation of CO2.
204

Venting Optimization of a Pulse Detonation Engine

Guzik, Stephen Michael Jan 11 April 2018 (has links)
Un programme de la méthode des caractéristiques (MOC) à une dimension a été construit pour évaluer le rejet des produits gazeux d’un moteur pulsé par des ondes de détonation. Une comparaison avec des résultats expérimentaux et des simulations numériques à deux dimensions a démontré que les simulations à une dimension sont assez précises. Un algorithme semi-empirique été créé pour modéliser l’accélération d’une flamme de déflagration et ensuite comparé à des resultats expérimentaux. Malgré des résultats prometteurs, ils n’étaient pas suffisamment précis pour permettre la modélisation d’une déflagration à une détonation. Des configurations différentes ont été évaluées avec le code MOC afin de comprendre quels paramètres optimisaient le rejet de gaz. Les paramètres modifiés ont été l’emplacement de l’initiation de la détonation, la vitesse de remplissage, et les remplissages partiels. Chaque configuration a aussi été simulée avec une tuyère à géométrie fixe optimisée et une tuyère à géométrie variable. Les résultats ont démontré que l’impulsion d’un moteur avec une tuyère à géométrie variable augmente d’au plus 15 % en comparaison à un moteur sans tuyère. L’augmentation de l’impulsion d’un moteur avec une tuyère fixe est la moitié de celle d’une tuyère variable avec une diminution correspondante de la poussée moyenne. Pour les conditions initiales du mélange au repos, la différence de l’impulsion pour la détonation directe à la tête et celle de la détonation à la sortie est négligeable. Le temps pour évacuer la chambre était toujours plus court pour des détonations directes à la sortie. Si la vitesse de remplissage augmente, ça devient très avantageux d’amorcer la détonation à la sortie. Ces avantages sont une diminution minimale de l’impulsion spécifique, une augmentation plus grande de la poussée moyenne, un temps de cyclage plus long, et une meilleure performance avec une tuyère fixe. Des simulations avec un remplissage partiel ont démontré qu’ils ne remplacent pas une tuyère pour récuperer les pertes. Pour des tuyères fixes, la longueur de remplissage partielle peut être plus que la moitié de la longueur totale avant que la poussée moyenne commence à diminuer significativement. / A one-dimensional method-of-characteristics (MOC) code was developed to examine the venting of pulse detonation engines. Comparison with experimental results and twodimensional computational fluid dynamics demonstrates that a reasonably accurate level of simulation can be achieved with a single spatial dimension. A semi-empirical, deflagrative, flame-acceleration model was also constructed and compared to experimental results. While the results were promising, they were not sufficiently accurate to allow for modelling of deflagration-to-detonation transition. Several configurations were then examined with the MOC code to determine which parameters optimized the venting of the exhaust gases. The parameters varied were the location of detonation initiation, the filling velocity, and the distribution of reactants (partial fills). Each configuration was also simulated with a practical, fixed-geometry nozzle that was optimized, and a theoretical, variable-geometry nozzle. The results indicate that a variable nozzle increases the impulse by less than 15 % over a configuration with no nozzle. The impulse gain from a fixed nozzle is about half that of a variable nozzle, with a corresponding decrease in average thrust. For quiescent initial conditions, the differences in impulse between detonations initiated at the closed head and the open tail are negligible, although tail-initiated detonations consistently provided faster blow-down times. With increased filling velocity, tail initiated detonations provide several benefits. These include a smaller decrease in specific impulse, a larger increase in average thrust, a longer cycle time, and better performance with a fixed nozzle. Simulations with partial fills showed that they do not replace nozzles in recovering losses. For fixed nozzles, the partial-fill length can be as much as half the total length of the tube before the average thrust begins to decrease significantly.
205

Amplification d'impulsions laser ultrabrèves à 10µm par pompage optique dans un gaz de CO² sous haute pression

Thomas, Steven 15 December 2020 (has links)
In order to generate high harmonics (multi-keV regime) from which a coherent X-ray source can be made, ultrashort mid-infrared laser pulses are necessary. This document presents the basics of the generation of IR pulses using Nd:YAG and Ti:Sapphire systems currently in use in Prof. Bernd Witzel’s laboratory. A first section explains the process by which the original pump laser (Nd:YAG, 1064 nm, 10 ns) is converted into a secondary pump at 2 µm, which is a mandatory step in order to interact with the amplifying medium due to the molecular structure of CO2. This conversion is realized by using an optical parametric oscillator (OPO) and an optical parametric amplifier (OPA). More precisely, the selection of the non-linear medium to use for the OPO and OPA (KTP) is explained. In addition, which mirrors are best-suited for the OPO and the relevant non-linear physical equations (amplitude-coupled equations) are described. Next, a second section aims to expose the theory that makes it possible to use a 2 µm nanosecond pump to amplify the 10 µm, femtosecond radiation derived from a femtosecond Ti:Sapphire laser. The limits and conditions for this process are explained; in short, we find that the CO2 gas pressure must reach 40 atm. In order to do so, an aluminum gas cell with two thick ZnSe windows must be used. Finally, the last part of this thesis describes and explains the design of the aforementioned CO2 cell necessary to the amplifying process. The optimal length of the cell, its geometry and its windows (made from ZnSe, with a 5.1 mm thickness) are the subject of a detailed analysis
206

Sur l'origine des variations lentes liées au CO₂ de l'EEG en courant direct : implication de la barrière hémato-encéphalique

Lafortune, Frantz-Daniel 17 April 2018 (has links)
Ce mémoire de maîtrise soutient la thèse originale selon laquelle les déviations lentes du potentiel de courant direct (DC) liées au CO₂ et enregistrées au moyen de l'électroencéphalogramme (EEG) prennent source à travers l'interface ionique de la barrière hémato-encéphalique (BHE). Les circuits corticaux neuronaux ont longtemps été considérés comme étant les générateurs quasi exclusifs de l'ensemble de l'activité électrique constituant le signal électroencéphalographique. Des études ont démontré la contribution des cellules gliales comme source alternative de courant électrique participant, entre autres, aux décharges épileptiques et au sommeil. Or, plusieurs chercheurs suggèrent que les variations lentes du potentiel de l'EEG enregistrées en DC et modulées en fonction de la pression partielle du CO₂ (pCO₂) sont issues de l'interface entre le liquide céphalorachidien (LCR) et le sang que constitue la BHE. Considérant les trois hypothèses mécanistiques susmentionnées, il devient essentiel d'élucider la contribution relative des générateurs électriques neuronaux et gliaux par rapport à l'interface de la BHE en ce qui a trait à la genèse des déviations lentes DC de l'EEG. Nous avons donc procédé à cette étude par l'entremise d'enregistrements épicrâniens, épiduraux, épicorticaux, intraventriculaires et intraparenchymateux (c.-à-d. intraneuronaux, intragliaux et les potentiels de champ) sur des chats anesthésies à la kétamine-xylazine. Les variations du potentiel DC ont été induites via la modulation des paramètres ventilatoires des chats anesthésies, causant ainsi des changements du CO₂ de 11 l'ordre de 2 à 5 % en fin d'expiration. L'hypercapnie était invariablement associée à des déviations négatives du potentiel DC de l'EEG (déviation moyenne de -284.4 uV/C02 %, intervalle allant de -216 à -324 pV/C02%), tandis que l'hypocapnie provoquait des déviations positives (déviation moyenne de l'ordre de 307.8 uV/C02 %, intervalle allant de 234 à 342 ^V/C02%), et ce, dans toutes les électrodes d'enregistrement. L'hypocapnie a provoqué une augmentation significative de la pression intracrânienne, tandis que l'hypercapnie ne l'a diminué que très légèrement. La rupture de la barrière hématoencéphalique a entraîné une déviation positive du potentiel DC et a réduit drastiquement les réponses subséquentes du potentiel DC à l'hypo-hypercapnie. Le thiopental et l'isoflurane ont aussi provoqué une déviation positive du potentiel DC reliée à la dose administrée, tandis qu'à des concentrations plus élevées, les réponses à l'hypo-/hypercapnie présentaient une polarité inversée. Pour ce qui est de la possible implication des neurones dans la production des déviations du potentiel DC, aucune inversion de polarité n'a été enregistrée entre le scalp, les diverses couches intracorticales et les structures profondes du cerveau. De plus, le potentiel de membrane des neurones et des glies n'a pas montré de variation significative ou systématique en association lors des déviations du potentiel DC liées au CO₂. Durant les crises épileptiques de type "pointe-onde", l'activité pathologique des neurones s'est accompagnée de déviations du potentiel DC d'amplitude significativement moins élevée que celles générées par hyper-/hypocapnie. Enfin, des déviations du potentiel DC étaient encore observées lors même de la quiescence des circuits neuronaux associée à l'état de burst-suppression du tracé électroencéphalographique induit par l'anesthésie. Nous soutenons donc la thèse selon laquelle les potentiels générés à travers la BHE sont la source principale des variations épi-corticales/crâniennes du potentiel DC de l'EEG enregistré à l'EEG dans des conditions qui affectent le pH du cerveau et/ou la circulation sanguine cérébrale.
207

Gasification reactions of carbon anodes; multi scale reaction model

Kavand, Mohammad 28 March 2022 (has links)
La réactivité des anodes de carbone avec le CO₂ est l'une des principales préoccupations des alumineries utilisant le procédé Hall-Héroult. Une telle réactivité n'est pas souhaitable car elle augmente la consommation nette de carbone et raccourcit ainsi la durée de vie des anodes. La surconsommation d'anode est affectée par la réactivité intrinsèque de l'anode et les phénomènes de transport de masse. Différents modèles mathématiques du processus de gazéification ont été développés pour différentes géométries et techniques : La première partie de ce travail se concentre sur la gazéification d'une seule particule d'anode de carbone avec du CO₂, en utilisant un modèle de réaction-transport détaillé, basé sur la cinétique intrinsèque de la réaction et le transport des espèces gazeuses. Le modèle comprend les équations de conservation de la masse pour les composants gazeux et les particules solides de carbone, ce qui donne un ensemble d'équations différentielles partielles non linéaires, résolues à l'aide de techniques numériques. Le modèle peut prédire le taux de génération de gaz, les compositions de gaz et le taux de consommation de carbone pendant la gazéification d'une particule de carbone. Différents modèles cinétiques ont été comparés pour décrire le comportement de gazéification des particules de carbone. Il a été constaté que le modèle de pores aléatoires (RPM) fournissait la meilleure description de la réactivité des particules d'anode. Le modèle a également prédit le retrait des particules pendant le processus de gazéification. Le modèle a été validé à l'aide de résultats expérimentaux obtenus avec différentes gammes de tailles de particules. Un bon accord entre les résultats du modèle et les données expérimentales a montré que cette approche pouvait quantifier avec succès la cinétique de gazéification et la distribution du gaz au sein de la particule anodique. De plus, le modèle Langmuir-Hinshelwood (L-H) est utilisé afin de capturer l'effet d'inhibition du monoxyde de carbone sur la réaction de gazéification. Dans la deuxième partie, la simulation du processus de gazéification de l'anode avec du CO₂, en tant que lit de particules d'anode a été considérée. Le modèle numérique de la méthode des éléments discrets CFD multi-échelles (DEM) a été développé sur la base d'un concept eulérien-lagrangien. Le modèle comprend une méthode des éléments finis eulériens (FEM) pour le gaz et les particules solides, et un DEM lagrangien pour la phase particulaire, cette dernière visant à capturer l'effet de retrait des particules (mouvement des particules lors de la gazéification). Les propriétés physiques des particules, telles que la porosité et la surface spécifique, et les propriétés thermochimiques des particules, telles que la chaleur de réaction, sont finalement suivies. Les changements géométriques des particules, le transfert de chaleur et de masse, le retrait des particules et les réactions chimiques sont pris en compte lors de la gazéification de l'anode avec du CO₂. Les profils dynamiques de concentration et de température du réactif et des gaz produits ainsi que la conversion solide ont été modélisés à la fois dans les vides entre les particules et les pores à l'intérieur de chaque particule. Pour valider le modèle, des tests expérimentaux ont été réalisés à l'aide d'un lit de particules anodiques. Dans la dernière partie, une simulation d'une dalle d'anode a été réalisée. Le modèle contient la masse et les équations de transfert de chaleur pour les composants gazeux et les particules solides de carbone, ce qui donne un ensemble d'équations différentielles partielles non linéaires, résolues à l'aide de techniques numériques. Le modèle peut prédire le taux de génération de gaz, les compositions de gaz et le taux de consommation de carbone, la chute de pression et la distribution de température pendant la gazéification d'une particule de carbone. / The reactivity of carbon anodes with CO₂ is one of the main concerns in aluminum smelters using the Hall-Héroult process. Such reactivity is not desirable because it increases the net carbon consumption and thus shortens the lifetime of the anodes. Anode overconsumption is affected by anode intrinsic reactivity and mass transport phenomena. Different mathematic models of the gasification process were developed for different geometries and technics: The first part of this work focuses on the gasification of a single carbon-anode particle with CO₂, using a detailed reaction-transport model, based on the reaction intrinsic kinetics and transport of gaseous species. The model includes the mass conservation equations for the gas components and solid carbon particles, resulting in a set of nonlinear partial differential equations, being solved using numerical techniques. The model may predict the gas generation rate, the gas composition, and the carbon consumption rate during the gasification of a carbon particle. Various kinetic models were compared to describe the gasification behavior of carbon particles. It was found that the Random pore model (RPM) provided the best description of the reactivity of anode particles. The model also predicted the particle shrinkage during the gasification process. The model was validated using experimental results obtained with different particle size ranges. Good agreement between the model results and the experimental data showed that this approach could quantify with success the gasification kinetics and the gas distribution within the anode particle. In addition, the Langmuir-Hinshelwood (L-H) model is used in order to capture the inhibition effect of carbon monoxide on the gasification reaction. In the second part, the simulation of the gasification process of anode with CO₂, as an anode particle bed, was considered. Numerical multiscale CFD-discrete element method (DEM) model was developed based on an Eulerian-Lagrangian concept. The model includes an Eulerian finite element method (FEM) for the gas and solid particles, and a Lagrangian DEM for the particle phase, the latter intending to capture the particle shrinkage effect (movement of particles during gasification). The physical properties of particles, such as porosity and specific surface area, and the thermochemical properties of particles, such as the heat of reaction, are ultimately tracked. Geometric changes in particles, heat and mass transfer, particle shrinkage and chemical reactions are considered during anode gasification with CO₂. The dynamic concentration and temperature profiles of the reactant and product gases as well as the solid conversion were modeled both in the voids between the particles and the pores inside each particle. To validate the model, experimental tests were performed using a bed of anode particles. In the last part, a simulation of the anode slab was carried out. The model contains the mass, and heat transfer equations for the gas components and solid carbon particles, resulting in a set of nonlinear partial differential equations, which are solved using numerical techniques. The model can predict the gas generation rate, gas compositions, and carbon consumption rate, pressure drop, and temperature distribution during the gasification of an anode slab.
208

Un regard sur l'évolution dynamique des régions HII géantes : interprétation des mouvements du gaz ionisé

Lagrois, Dominic 16 April 2018 (has links)
L'interférométrie de Fabry-Pérot nous permet de quantifier les mouvements systémiques du matériel ionisé confiné à l'intérieur de deux nébuleuses géantes : la région H II galactique W 4 et la région H II géante extragalactique N GC 595. La région H II W 4 fut autrefois qualifiée de sérieuse candidate de cheminée dynamique. La cinématique Hα du gaz ionisé, obtenue à l'Observatoire du mont Mégantic, révèle que la nébuleuse est séparée en deux portions distinctes, définies par leurs étendues en latitude. W 4-sud (0° [plus petit ou égal à] b [plus petit ou égal à] 3°) est largement régie par une série d'écoulements Champagne à petite échelle résultant de la photoérosion d'agrégats moléculaires associés à la nébuleuse. Une importante partie de W4-sud, par contre, semble renfermer une composante ionisée reliée à la photoionisation de la coquille HI enveloppant l'imposante région H II. Si W4-sud nous apparaît comme le dernier stade dans la vie d'un complexe moléculaire géant, W 4-nord (3° [plus petit que] b [plus petit ou égal à] 7°) confirme la formation d'une cheminée dynamique dans la nébuleuse. Des instabilités au niveau de la portion nord de la coquille se sont vraissemblablement développées, entraînant la rupture de cette dernière. Un scénario de raréfaction domine W4-nord menant à un gradient de vitesse sud-nord à grande échelle au fur et à mesure que le matériel ionisé est éjecté. Le comportement cinématique de la composante H+ indique que l'amas stellaire IC 1805 contribue à l'ionisation du matériel interstellaire au-dessus du plan galactique. Nous proposons que les objets astronomiques similaires à W4 correspondent au chaînon manquant entre les régions H II galactiques de petite taille et les régions H II géantes extragalactiques. La région H II géante extragalactique NGC 595 se classe au second rang des nébuleuses les plus imposantes de M33, une galaxie spirale membre du Groupe Local. L'objet fut cartographié en Ha et [S II] suite à diverses missions d'observations à l'Observatoire du mont Mégantic. Les données [0 III] furent, pour leur part, obtenues au Télescope Canada-France-Hawaii par le directeur de thèse. Les observations spectro-interférométriques du gaz ionisé sont utilisées en combinaison avec des observations radio de la raie à 21 cm. Les largeurs de raie indiquent des mouvements supersoniques, un comportement régulièrement observé dans les objets extragalactiques. Ce comportement est potentiellement expliqué par le fait qu'écoulements Champagne et une forte turbulence isotrope dominent l'intérieur de la nébuleuse géante. En première approximation, il semblerait que composantes H+, 0++ et S+ ne coexistent pas spatialement. Une région au voisinage de l'amas stellaire montre un dédoublement de raies en Ha et [0 III]. Nous proposons que cette particularité spectrale résulte de bulles de vents stellaires en expansion confinées à l'intérieur d'objet. L'étude de NGC 595 nous permet de présenter la première carte bidimensionnelle en densités électroniques associée à une région H II géante extragalactique.
209

Valorisation des résidus industriels solides et gazeux en produits à valeur ajoutée

Vu, Thi Thanh Nguyet 20 November 2023 (has links)
Thèse ou mémoire avec insertion d'articles / L'amélioration sans précédent de la technologie accélère sans aucun doute l'industrialisation, mais conduit en même temps à la détérioration des ressources naturelles et à l'intensification de nombreux problèmes environnementaux tels que les émissions incessantes de gaz à effet de serre anthropiques. En particulier, il est essentiel d'avoir une action immédiate pour atténuer les émissions de CO₂ afin de répondre aux préoccupations liées au réchauffement de la planète et aux changements climatiques. Cependant, les quantités ahurissantes de CO₂ rejetées dans l'atmosphère pourraient devenir une matière première abondante si elles étaient converties en produits de valeur. La conversion du CO₂ en produits à valeur ajoutée (produits chimiques et carburants alternatifs) a beaucoup attiré l'attention dans les dernières décennies. L'hydrogénation directe du CO₂ en CO et méthanol est d'ailleurs une avenue très intéressante en raison de ses rôles cruciaux dans l'industrie chimique et énergétique. D'un autre côté, suite à la mise en œuvre des politiques environnementales pour traiter les graves problèmes liés aux résidus industriels, une attention considérable a été accordée à l'exploitation des déchets industriels en tant que catalyseurs hétérogènes dans l'industrie chimique. À titre d'exemple, au complexe de Rio Tinto Fer & Titane située à Sorel-Tracy (Québec, Canada), le résidu d'oxydes métalliques (UGSO) issu du procédé de production de scories à haute teneur en titane (Upgraded Titania-rich Slag, UGSᵀᴹ) est présentement sans valeur marchande et déposé dans un site de déchets miniers. Un concept économique et respectueux de l'environnement serait de valoriser ces déchets solides en tant que partie principale des matériaux catalytiques. Dans ce contexte, la valorisation des déchets industriels (CO₂ et UGSO) pour produire du CO et du méthanol est une approche prometteuse pour résoudre non seulement des problèmes environnementaux mais contribuer également à un développement durable. Cette thèse porte sur l'étude de la valorisation de deux déchets industriels (CO₂ et UGSO) en produits à valeur ajoutée. Plus précisément, le sujet s'inscrit dans le cadre du: (1) développement des catalyseurs Cu/UGSO pour la réaction inverse du gaz à l'eau (reverse water-gas shift, RWGS) à basse température (250-400 °C) et à pression atmosphérique, (2) développement des catalyseurs CuZn/UGSO et des méthodes de préparation pour la réaction d'hydrogénation du CO₂ en méthanol, (3) développement des catalyseurs CuZnZr/UGSO et modification de l'UGSO pour améliorer la synthèse du méthanol. L'effet et l'optimisation des conditions opératoires (notamment la température et le ratio H₂/CO₂) sur la performance des catalyseurs pour obtenir un rendement élevé des produits souhaités ont été investigués en profondeur. (1) De façon innovante, un catalyseur à base du résidu métallurgique UGSO promu au Cu a été développé et appliqué pour la première fois dans la réaction RWGS. Une série de catalyseurs xCu/UGSO (x = 5-20 wt% Cu) a été préparée par la méthode de dépôt-précipitation. La formation de spinelle de ferrite de cuivre aide à améliorer la dispersion du Cu au sein du support et à favoriser la conversion du CO₂. Parmi les matériaux xCu/UGSO, le 15Cu/UGSO est celui qui a offert la conversion du CO₂ la plus élevée, ce qui est attribuable à une aire de surface du catalyseur et à une aire de surface du cuivre métallique plus élevées. Les analyses H₂-TPR et XPS indiquent que l'effet synergique le plus fort entre les espèces Cu et Fe conduit à la plus grande réductibilité et au plus grand ratio du Cu $^\textup{α}$ /(Cu²⁺ + Cu $^\textup{α}$ ) (α = 0, 1+) dans le catalyseur 15Cu/UGSO, ce qui pourrait expliquer sa conversion du CO₂ la plus élevée. En conséquence, une conversion du CO₂ de 36.1% et une sélectivité en CO de 99.3% sont obtenues à 400 °C et à pression atmosphérique, ce qui surpasse les performances catalytiques des certains catalyseurs à base du Cu rapportés dans la littérature dans les mêmes conditions de réaction. (2) Pour la première fois, le déchet métallurgique UGSO a été utilisé en tant que support dans le développement de catalyseurs efficaces pour la réaction de synthèse du méthanol par hydrogénation du CO₂. Une série de différents catalyseurs CuZn/UGSO a été développé par la méthode de dépôt-précipitation. L'ajout du Cu/Zn dans la structure du Fe₃O₄/Mg$_\textup{x}$Fe$_\textup{y}$O₄ s'est avéré améliorer la dispersion du Cu²⁺ et du Zn²⁺, tandis que la présence du MgO facilite la sélectivité envers le méthanol. Par l'addition du Zn, une diminution de la sélectivité envers le méthanol est observée à cause du ZnO aggloméré en contact étroit avec le Cu, tandis que la sélectivité pour CO augmente en raison de la diminution de la taille des particules du CuO. Par rapport au 10Cu7.5Zn/UGSO (10 wt% Cu, 7.5 wt% Zn), le rendement en méthanol le plus élevé obtenu par le 10Cu7.5Zn/UGSO-EtOH (10 wt% Cu, 7.5 wt% Zn, incluant l'addition d'éthanol après la coprécipitation) est le résultat d'une conversion du CO₂ et d'une sélectivité plus élevées pour le méthanol. Les tailles des particules plus fines du CuO et ZnO, le pourcentage du Cu⁰ /Cu⁺ plus élevé, les lacunes d'oxygène et le nombre de sites basiques forts plus élevés à la surface du catalyseur sont les raisons qui justifient une conversion plus élevée du CO₂. De plus, une plus grande sélectivité du 10Cu7.5Zn/UGSO-EtOH pour le méthanol est assignée à la plus forte interaction du Cu et ZnO et au nombre plus élevé de sites basiques moyens. Ce catalyseur à base de résidus offre un rendement en méthanol 150% supérieur à celui d'un catalyseur commercial de synthèse de méthanol à base du Cu (Thermo Scientificᵀᴹ) à 260°C/20 bar. (3) Finalement, de nouveaux catalyseurs à base de Cu-ZnO-ZrO₂ ont été développés pour une amélioration de la synthèse du méthanol en utilisant l'UGSO en tant que support catalytique, avec une attention particulière sur la compréhension (i) de la synergie entre les espèces Cu/Zn/Zr et la composition de l'UGSO et son influence sur l'activité catalytique et la stabilité, et (ii) de l'effet du pourcentage de Zr et la modification de l'UGSO sur la relation structure-activité des catalyseurs développés. En tant que promoteur, le Zr a amélioré la dispersion du Cu et a facilité la conversion du CO₂. Parmi les matériaux CZxZr/UGSO développés, CZ9Zr/UGSO (10 wt% Cu, 7.5 wt% Zn, 9 wt% Zr) offre le rendement en méthanol le plus élevé, attribuable à (i) un ratio Mg/Cu plus élevé et et (ii) un contact interfacial Cu-ZrO₂ plus élevé. Un traitement supplémentaire de l'UGSO par l'H₂O₂ (UGSO-H) a augmenté 3 fois la surface spécifique de l'UGSO, en offrant au catalyseur CZ9Zr/UGSO-H une conversion de CO₂ supérieure par rapport au matériel de référence CZ9Zr/UGSO, à toutes les températures de réaction investiguées. Cet écart a été attribué à (i) une surface plus élevée du support UGSO-H qui améliore la dispersion et la réductibilité des espèces du Cu, (ii) un ratio plus élevé du Cu$^\textup{α}$ / (Cu$^\textup{α}$ + Cu²⁺) (α = 0 or 1+), et (iii) une concentration plus élevée de lacunes d'oxygène à la surface du CZ9Zr/UGSO-H réduit. Conséquemment, le catalyseur CZ9Zr/UGSO offre un rendement de méthanol 57% plus élevé à 240°C/20 bar qu'un catalyseur commercial de synthèse de méthanol à base du Cu (Thermo Scientificᵀᴹ). En résumé, dans la perspective d'un développement durable, nous avons considéré très intéressant et approprié de développer des technologies de valorisation des déchets industrielles pour la production de produits de valeur. Les résultats de cette thèse montrent que l'UGSO est un bon candidat comme support catalytique pour l'hydrogénation du CO₂ en CO et en méthanol. L'activité catalytique significative des catalyseurs Cu/UGSO et CuZnZr/UGSO peuvent ouvrir une fenêtre sur l'utilisation de ce résidu en tant que support catalytique pour d'autres procédés d'hydrogénation du CO₂. L'utilisation de ressources à faible coût (CO₂ et résidus UGSO) dans la fabrication de produits à valeur ajoutée (CO et méthanol) devient de plus en plus attrayante afin d'atteindre les objectifs du développement durable en minimisant les conséquences environnementales négatives de ces déchets néfastes. / The unprecedented improvement in technology undoubtedly accelerates industrialization meanwhile leads to the deterioration of natural resources and intensifies many environmental problems such as the ceaseless emission of anthropogenetic greenhouse gas. It is essential to have an immediate action toward mitigating the CO₂ emission to address the concerns related to global warming and climate change. The staggering CO₂ effluents present in the atmosphere could become an abundant chemical feedstock if they were converted into valuable products. Recent decades have witnessed a surge of CO₂ valorization through hydrogenation into CO and methanol. On the other side, as a consequence of implementing environmentally friendly policies in addressing the severe issues related to residues, a considerable attention has been paid on the exploitation of industrial waste materials as heterogeneous catalysts for the transformation of chemicals. As an example, at Rio Tinto Iron & Titane Company situated in Sorel-Tracy (Québec, Canada), the so-called Upgraded Titania-rich slag oxides (UGSO) residue produced as a by-product of the UGS has negative marketable value and is disposed in a mining waste site. It would be attainably low-budget and friendly environment concepts if we could valorize this solid waste as a main part of heterogeneous catalytic materials. In this context, the valorization of the industrial wastes (CO₂ and UGSO) to value-added products is a promising approach to not only solve the environmental issues but contribute to the sustainable development. The objective of this thesis is to study the valorization of two industrial wastes (CO₂ and UGSO) into value-added products. In this regard, this work focused on: (1) developing Cu/UGSO catalyst for CO₂ hydrogenation into CO at low temperature (250-400 °C) and atmospheric pressure, (2) developing CuZn/UGSO catalysts and preparation methods for CO₂ hydrogenation into methanol, (3) developing CuZnZr/UGSO and modifying UGSO for the enhanced methanol synthesis. The effect of operating parameters (temperature, H₂/CO₂ ratio) and their optimization to achieve high yield of desired products are investigated in depth. (1) For the first time, an innovative Cu-promoted metallurgical residue (UGSO) was developed for the valorization of CO₂ into CO. A series of xCu/UGSO catalysts (x = 5-20 wt% Cu) were prepared via deposition-precipitation method. The formation of copper ferrite spinel helps improve the dispersion of Cu and promote the conversion of CO₂ to CO. Among the xCu/UGSO catalysts tested, 15Cu/UGSO achieved the highest CO₂ conversion, which is attributed to the highest BET and Cu metallic surface areas. H₂-TPR and XPS analyses suggest that the strongest synergetic effect between Cu and Fe species leads to the highest reducibility and largest ratio of Cu$^\textup{α}$/(Cu²⁺ + Cu$^\textup{α}$) (α= 0, 1+) in the 15Cu/UGSO catalyst, which can also explain its highest CO₂ conversion. As a result, CO₂ conversion of 36.1% and CO selectivity of 99.3% were achieved at 400 °C and atmospheric pressure, which far outstrip the catalytic performance of some literature-reported Cu-based catalysts in the same reaction conditions. (2) For the first time, Fe/Mg containing metallurgical waste (UGSO) was utilized as support for the development of innovative catalysts for CO₂ hydrogenation into methanol. A series of different CuZn/UGSO catalysts were developed by conventional and modified deposition-coprecipitation methods. The addition of Cu/Zn into the structure of Fe₃O₄/Mg$_\textup{x}$Fe$_\textup{y}$O₄ was found to improve Cu²⁺ and Zn²⁺ dispersion. By Zn addition, methanol selectivity decreases due to the agglomerated ZnO in close contact with Cu while CO selectivity increases owing to the decrease of CuO particle size. Compared to 10Cu7.5Zn/UGSO (10 wt% Cu, 7.5 wt% Zn), the higher methanol yield obtained over 10Cu7.5Zn/UGSO-EtOH (10 wt% Cu, 7.5 wt% Zn, ethanol addition after coprecipitation) is a result of both higher CO₂ conversion and methanol selectivity. The finer particles sizes of CuO and ZnO, higher Cu⁰/Cu⁺ percentage, higher concentration of oxygen vacancies and number of strong basic sites on catalyst surface are the main reasons for its higher CO₂ selectivity in comparison with 10Cu7.5Zn/UGSO. In contrast, the higher methanol selectivity of 10Cu7.5Zn/UGSO-EtOH is assigned to the stronger interaction of Cu and ZnO and the higher number of medium basic sites. 10Cu7.5Zn/UGSO-EtOH offers a 150% higher methanol yield than a commercial Cu-based methanol synthesis catalyst at 260 °C and 20 bar. (3) Finally, we propose novel Cu-ZnO-ZrO₂-based catalysts supported over UGSO for the enhanced methanol synthesis, with special focus on understanding the effect of (i) synergy between Cu/Zn/Zr and UGSO composition on the catalytic activity and stability, and (ii) Zr loading and UGSO modification on the structure-activity relationship of the developed catalysts. Zr acts as a structure promoter to enhance Cu dispersion and facilitates CO₂ conversion. Among the CZxZr/UGSO, the highest methanol yield is achieved for CZ9Zr/UGSO (10 wt% Cu, 7.5 wt% Zn, 9 wt% Zr), attributable to (i) the highest surface ratio of Mg/Cu and (ii) the highest interfacial contact Cu-ZrO². Further modification of UGSO by H₂O₂ (UGSO-H) increases by 3 times the surface area and offers to CZ9Zr/UGSO-H higher CO₂ conversion than the CZ9Zr/UGSO at all reaction temperatures. This discrepancy can be attributed to (i) the higher surface area of the UGSO-H support which results in a higher dispersion and reducibility of Cu species; (ii) the higher ratio of Cu$^\textup{α}$ / (Cu$^\textup{α}$ + Cu²⁺) (α = 0 or 1+); and (iii) the higher concentration of oxygen vacancies on the surface of the reduced CZ9Zr/UGSO-H. As a results, CZ9Zr/UGSO-H performs 57% higher methanol yield at 240°C/20 bar compared to a commercial Cu-ZnO-based catalyst. In summary, from the perspective of a sustainable development, it is vital to develop technologies for valorizing industrial landfill wastes for the production of valuable products. The results of this thesis show that UGSO is a good candidate as a catalytic support in CO₂ hydrogenation into CO and methanol. The significant catalyst activity of Cu/UGSO and CuZnZr/UGSO can open a window to the utilization of this residue as catalytic support in other CO₂ hydrogenation processes. The use of low-cost resources (CO₂ and UGSO) in the manufacturing of value-added products is becoming increasingly attractive in order to meet sustainable developments goals, while minimising the negative environmental consequences of hazardous wastes.
210

Sustainable hydrogen production via glycerol steam reforming with and without in-situ CO2 removal : materials development and application

Shokrollahi Yancheshmeh, Marziehossadat 20 December 2019 (has links)
Au cours des dernières décennies, l'hydrogène a beaucoup attiré l'attention en tant que vecteur d'énergie verte. Actuellement, plus de 95% d'hydrogène est produit à partir de combustibles fossiles, ce qui a été remis en question par l'épuisement des ressources et l'augmentation des émissions de gaz à effet de serre. Par conséquent, les ressources renouvelables neutres en carbone telles que la biomasse et les produits chimiques dérivés de la biomasse suscitent un intérêt croissant comme alternative pour la production d'hydrogène. En tant que sous-produit principal du processus de fabrication du biodiesel, le glycérol est devenu une source prometteuse de production d’hydrogène. Bien que le reformage à la vapeur («steam reforming», SR) soit reconnu comme une approche prometteuse pour convertir le glycérol en hydrogène, le procédé est confronté à un certain nombre de défis, notamment la présence de réactions limitées par l’équilibre chimique et la nécessité d'un système couteux de purification en aval. Pour remédier ces problèmes, une solution prometteuse est l’application du procédé de reformage à la vapeur couplé à la sorption spécifique in-situ (« sorption enhanced steam reforming», SESR), dans lequel les réactions de reformage, la réaction du gaz à l’eau («water gas shift», WGS) et la capture du CO2 se produisent simultanément en utilisant un catalyseur de reformage et un sorbant solide pour le CO2. Dans ce procédé, l'élimination du CO2 se produit simultanément à la réaction de reformage, décalant la réaction du WGS vers la production d'hydrogène et produisant un flux de gaz enrichi en hydrogène en une seule étape. Les facteurs clés du succès de cette technologie sont principalement (i) les catalyseurs de reformage et les sorbants de CO2 pouvant fonctionner efficacement dans les conditions difficiles du procédé SESR et (ii) le moyen d’associer le catalyseur au matériau sorbant. Cette thèse porte sur le développement de catalyseurs et de matériaux bifonctionnels catalyseur-sorbant efficaces pour la production durable d'hydrogène par le SR et le SESR duglycérol (SRG et SESRG). Plus spécifiquement, ce travail fait l’objet de quatre directions principales: (i) l’étude de l’effet de l’addition de vapeur pendant la carbonatation ou la calcination sur les performances du sorbant Ca9Al6O18-CaO lors de la capture du CO2, (ii) le développement des matériaux bifonctionnels Ca9Al6O18−CaO/xNiO (x = 15, 20et 25% en poids) et Ca9Al6O18−CaO/20NiO−yCeO2 (y = 5, 10 et 15% en poids) et l’étude de l’effet du CeO2 sur la stabilité des matériaux en fonctionnement cyclique SESRG/régénération, (iii) le développement d’une nouvelle méthode de synthèse duspinelle NiAl2O4 plus facilement réductible et l’étude de l'effet de l'addition de CeO2 sur ses performances catalytiques, et (iv) le développement d’une nouvelle méthode de synthèse de deux matériaux bifonctionnels catalyseur-sorbant à base de Ni-CaO pour obtenir une distribution très uniforme des sites actifs catalytiques. (i) Les performances du sorbant Ca9Al6O18-CaO pour la capture du CO2 ont été étudiées en présence de 2.3 et 9.5% en volume de vapeur. Les résultats obtenus ont révélé que la réactivité du sorbant était remarquablement améliorée pour les deux concentrations de vapeur injectée lors de l'étape de carbonatation. Dans le cas de l'addition de vapeur pendant la calcination, la performance de la capture a été influencée négativement ou positivement en fonction de la concentration de vapeur: pour 2.3%, la réactivité du sorbant a été diminuée, tandis que la présence de 9.5% a entraîné une augmentation de la capacité de capture pendant les 9 premiers cycles. (ii) Deux séries de matériaux bifonctionnels catalyseur-sorbantont été développées pour la production d’hydrogène de haute pureté par SESRG. L'utilisation des matériaux Ca9Al6O18-CaO/xNiO (x = 15, 20 et 25% en poids) pendant cinq cycles SESRG/régénération a révélé que leur réactivité diminuait rapidement, principalement à cause du frittage duCaO et du dépôt de coke. De ce fait, la période de pre-breakthroughet le rendement en hydrogène ont diminué de façon notable pendant l’opération cyclique. Il est intéressant de noter que l’ajout de CeO2 au matériau le plus efficace (Ca9Al6O18−CaO/20NiO) a permis d’améliorer considérablement sa stabilité. Le matériau bifonctionnel activé avec 10% (en poids) de CeO2 a démontré les meilleures performances: pureté et rendement en H2de 98% et 91%, respectivement, pendant 20 cycles SESRG/régénération. (iii) Une nouvelle méthode impliquant la calcination en une ou deux étapes d'un alcoolate de métal mixte Ni-Al(«Ni-Al mixed-metal alkoxide», (Ni-Al)-Glycerate) a été développée pour la synthèse de spinelle de NiAl2O4. À des fins de comparaison, le spinelle de NiAl2O4 a également été synthétisépar la méthode classique de co-précipitation suivie de la technique de calcination en deux étapes. Les résultats de la caractérisation des matériaux ont révélé que la synthèse de spinelle de NiAl2O4 parla calcination de (Ni-Al)-Glycérateen deux étapesa conduit à la formation d'un catalyseur plus facilement réductible et d'une structure poreuse plus développée. Cet échantillon représentait le rendement en H2le plus élevé (76.38%) et la conversion du glycérolen produits gazeux (95.42%) par rapport aux autres échantillons. Afin de réduire ou éviter la formation de coke, CeO2 (10% en poids) a été incorporé dans l’échantillon préparé parla calcination de (Ni-Al)-Glycérateen deux étapes. L'analyse thermogravimétrique du catalyseur promu par CeO2 après la réaction de reformage a révélé que la formation de coke était presque complètement supprimée. (iv) La méthode développée pour la synthèse despinelle de NiAl2O4 dans les travaux précédents a été combinée autraitement du sorbant à base de CaO avec une solution d’éthanol/eau afin de synthétiser deux nouveaux matériaux bifonctionnels catalyseur-sorbant à base de Ni-CaO pour la production d'hydrogène via SESRG. Les expériences effectuées en opération cycliques SESRG/régénération ont montré une activité et une stabilité supérieures pour le matériau bifonctionnel Ca3Al2O6-CaO/NiO-CeO2 (pureté de l’H2 d’environ 96% pendant 10 cycles), par rapport à NiAl2O4-CaO/NiAl2O4-CeO2 (pureté de l’H2 d’environ 90% pendantles 6 premiers cycles, diminuant à 86% au cours des 4 derniers cycles). En conclusion, les résultats présentés dans cette thèse montrent que le SESRG peut être une approche très prometteuse pour la production d’hydrogène de haute pureté en une seule étape, à condition que les matériaux bifonctionnels catalyseur-sorbantutilisés possèdent une distribution uniforme des sites actifs catalytiques et à sorption à l’échelle nanométrique et une résistance élevée au frittage de CaO et formation de coke. Pour préparer des matériaux bifonctionnels catalyseur-sorbant présentant ces caractéristiques, deux approches principales ont été utilisées dans ce travail: (i) le développement de nouvelles méthodes de synthèse permettant une distribution homogène des éléments ciblés (Ca, Ni, Alet Ce dans cette étude) et (ii) l'utilisation de CeO2 comme promoteur prometteur pour réduire ou supprimer la formation de coke et améliorer la stabilité cyclique des particules de CaO. / Over the past few decades, hydrogen has attracted a great deal of attention as a green energy carrier. Currently, more than 95 % of hydrogen is produced from fossil fuels, which has been questioned by the depletion of resources andincrease of greenhouse gas emissions. Therefore, renewable, carbon-neutral resources such as biomass and biomass-derived chemicals has been receiving a growing interest as an option to produce hydrogen. As a main by product in the biodiesel manufacturing process, glycerol has emerged as a promising source for hydrogen production. Although steam reforming (SR) is being recognized as a promising approach for converting glycerol to hydrogen, this process faces a number of challenges including the presence of equilibrium-limited reactions and the need of an expensive downstream purification system. To alleviate these problems, a promising alternative is sorption enhanced steam reforming (SESR) process, in which steam reforming, water gas shift (WGS), and CO2 capture reactions occur simultaneously using areforming catalyst and a CO2solid sorbent. In this process, CO2 removal occurs simultaneously with the reforming reaction, shifting the WGS reaction towards hydrogen production and producing a hydrogen-enriched gas stream in a single step. The key factors in the successful application of this technology are mainly: (i) reforming catalysts and CO2 sorbents that can work efficiently under the harsh conditions of SESR process and (ii) mixing pattern of catalyst and sorbent. This thesis focuses on the development of efficient catalyst and catalyst-sorbent bifunctional materials for sustainable hydrogen production by SR and SESR of glycerol (SRG and SESRG). More specifically, four main objectives of our workare: (i) investigating the influence of steam addition during either carbonation or calcination on the CO2 capture performance of Ca9Al6O18-CaO sorbent, (ii) developing Ca9Al6O18−CaO/xNiO (x = 15, 20, and 25 wt.%) and Ca9Al6O18−CaO/20NiO−yCeO2(y = 5, 10, and 15 wt %) catalyst-sorbent bifunctional materials and studying the influence of CeO2 on the material stability incyclic SESRG/regeneration operation, (iii) proposing a new method for the synthesis of a more readily reducible NiAl2O4 spinel and studying the influence of CeO2 addition on its catalytic performance, and (iv) novel synthesis of two Ni-CaO-based catalyst-sorbent bifunctional materials with highlyuniform distribution of catalytic active sites. (i) CO2 capture performance of Ca9Al6O18-CaO sorbent was investigated in the presence of two concentrations of steam, 2.3 and 9.5 vol. %.The obtained results revealed that the sorbent reactivity was remarkably enhanced for both concentrations of steam injected during carbonation step. In the case of steam addition during calcination, the CO2 capture performance was influenced negatively or positively depending on the concentration of steam. For 2.3 vol.% steam, the sorbent reactivity was worsened, while the presence of 9.5 vol.% steam led to an increase in the CO2capture capacity during 9 initial cycles.(ii) Two series of catalyst-sorbent bifunctional materials were developed for the sustainable production of high-purity hydrogen by SESRG. Using Ca9Al6O18−CaO/xNiO (x = 15,20, and 25 wt.%) materials during five SESRG/regeneration cycles revealed that their reactivity was rapidly deteriorated mainly due to CaO sintering and coke deposition. As a result, the pre-breakthrough time and hydrogen yield decreased notably over five cycles. Interestingly, the addition of CeO2 to the most efficient catalyst (Ca9Al6O18−CaO/20NiO) led to a significant enhancement in material stability during cyclic operation. The bifunctional material promoted with 10 wt.% of CeO2 demonstrated the best performance, with a stable H2purity of ∼98% and H2yield of ∼91% over 20SESRG/regeneration cycles. (iii) A novel method, involving one-or two-step calcination of Ni-Al mixed-metal alkoxide((Ni-Al)-Glycerate), was developed for the synthesis of NiAl2O4 spinel. For comparison purposes, the NiAl2O4 spinel was also synthesized throughthe conventional co-precipitation method followed by two-step calcination technique. The characterization results revealed that the synthesis of NiAl2O4 spinel through two-step calcination of (Ni-Al)-Glycerateresulted in the formation of a more easily reducible catalyst and a more developed porous structure. This sample showed the highest H2yield (76.38 %) and glycerol conversion into gaseous products (95.42 %) when compared to other two samples. In order to avoid or reduce coke formation, 10 wt.% of CeO2 was incorporated into the sample prepared by two-step calcination of (Ni-Al)-Glycerate. The thermogravimetric analysis of the CeO2-promoted catalyst after SRG reaction revealed that the coke formation was almost completely suppressed. The method developed for the synthesis of NiAl2O4 spinel in the previous work was combined with the ethanol/water treatment of CaO-based sorbents to synthesistwo new NiCaO-based catalyst-sorbent bifunctional materials for hydrogen production via SESRG. Cyclic SESRG/regeneration experiments showed that the Ca3Al2O6-CaO/NiO-CeO2 bifunctional material possessed higher activity and stability when compared to NiAl2O4-CaO/NiAl2O4-CeO2. The former one exhibited a high constant H2 purity of around 96% over 10 cycles, while the latter showed a H2 purity of approximately 90% over the first 6 cycles, followed by the further decrease to 86 % over the last 4 cycles. In conclusion, the results presented in this thesis show that SESRG can be a very promising approach for high-purity hydrogen production in a single step, providing that the employed catalyst-sorbent bifunctional materials possess uniform distribution of catalytic and sorption active sites on nanoscale and high resistance against CaO sintering and coke formation. To prepare catalyst-sorbent bifunctional materials with these characteristics, two main approaches were employed in this work: (i) developing new synthesis methods that provide a homogeneous distribution of targeted elements (Ca, Ni, Al, and Ce in this study) and (ii) using CeO2 as a promising promoter to reduce or suppress coke formation and enhance the cyclic stability of CaO particles.

Page generated in 0.0355 seconds