Spelling suggestions: "subject:"gene cloning"" "subject:"gene kloning""
21 |
Effect Of Homologous Multiple Copies Of Aspartokinase Gene On Cephamycin C Biosynthesis In Streptomyces ClavuligerusTaskin, Bilgin 01 September 2005 (has links) (PDF)
Streptomyces clavuligerus is a gram-positive filamentous bacterium well known for its ability to produce an array of & / #61538 / -lactam compounds (secondary metabolites) including cephamycin C, clavulanic acid and other structurally related clavams. Of these, cephamycin C is a second generation cephalosporin antibiotic having great medical significance. Biosynthesis of the & / #946 / -lactam nucleus begins with the non-ribosomal condensation of L-& / #945 / -aminoadipic acid (& / #945 / -AAA), L-cysteine and L-valine to form the tripeptide & / #945 / -aminoadipiyl-cysteinyl-valine (ACV). In Streptomyces clavuligerus, & / #945 / -aminoadipic acid (& / #945 / -AAA) is a catabolic product of L-lysine produced from the lysine branch of the aspartate pathway and its biosynthesis represents a key secondary metabolic regulatory step in carbon flow to & / #946 / -lactam synthesis through this core pathway.
The ask (aspartokinase)-asd (aspartate semialdehyde dehydrogenase) gene cluster which encodes for the first key enzymes of aspartate pathway has already been cloned from S. clavuligerus, characterized and heterologously expressed for the first time in our laboratory. Amplification of ask-asd cluster or ask gene alone in a multi-copy Streptomyces plasmid vector and determination of the effects of multiple copies on cephamycin C biosynthesis were the goals of the present study. For this purpose, three different strategies were employed. Of these, two strategies involving the use of vector pIJ702 did not work because of the instability of resulting recombinant plasmids. In the third and last strategy, we used another multicopy Streptomyces vector, pIJ486, which we showed in this study to be very stable for the same purpose. Meanwhile, an efficient protoplast transformation protocol was developed in our laboratory. Ask gene was cloned into this vector and S. clavuligerus protoplasts were efficiently transformed with the recombinant plasmid (pTB486) using the newly-developed protocol. After stable recombinants were obtained, the effects of the multiple copies of ask gene on cephamycin C biosynthesis were determined. There was a profound reduction in the rate and extent of growth of Ask overproducers, as experienced by testing two independent ask-multicopy recombinants. Although one such recombinant strain (designated S. clavuligerus TB 3585) had a 5.5 fold increased level of Ask activity as compared to the parental strain, it displayed only a 1.1 fold increase in specific production of cephamycin C.
|
22 |
Cloning Of Chitinase A Gene (chia) From Serratia Marcescens Bn10 And Its Expression In Coleoptera-specific Bacillus ThuringiensisOkay, Sezer 01 September 2005 (has links) (PDF)
Chitinases have been shown to be potential agents for biological control of the plant diseases caused by various phytopathogenic fungi and insect pests, because fungal cell walls and insect exoskeletons contain chitin as a major structural component. Chitinase has also been found to increase the efficacy and potency of Bacillus thuringiensis crystal (Cry) proteins toxic to larvae of insect pests. The reason of this synergy is the presence of chitin in the structure of the outer membrane of larval midgut.
In this study, the gene encoding chitinase A (chiA) from Serratia marcescens Bn10, a local isolate of Trabzon province was amplified by PCR and cloned into the E.coli/Bacillus shuttle vectors, pNW33N and pHT315. For the expression in B. thuringiensis, the promoter region of cry3Aa11 gene of B. thuringiensis Mm2 was placed at the upstream of chiA. The vectors carrying both chiA and promoter site of cry3Aa11 was first introduced into E. coli and then into Bacillus subtilis 168 which were used as intermediate hosts in this study. pHT315PC carying chiA was then introduced into Coleoptera-specific B. thuringiensis cells (strain 3023) and the specific chitinase activity of the recombinant B. thuringiensis was measured as 5056 U/min/mg which was 6.3 fold higher than that of the parental strain. The specific activity corresponded to about one third of that produced by S. marcescens Bn10. The chiA gene was next sequenced and characterized. The sequence was submitted to GeneBank (Accession No. DQ165083). Chitinase A of S. marcescens Bn10 was found to be a 563 residue protein with a calculated molecular mass of 60.9 kDa. The mean G+C content of the gene is 58.75%. The deduced amino acid sequence was 99.3&ndash / 91.5% identical to those of known chitinases from S. marcescens, Burkholderia cepacia and Enterobacter sp. It was found that the chitinase of S. marcescens Bn10 has six amino acids difference from the consensus sequence of aligned chitinases.
The production of chitinase by the local isolate S. marcescens Bn10 in different cultural conditions was also investigated. Optimum temperature and pH for chitinase production was found to be 30 oC and 7.5, respectively. Varying the concentration of colloidal chitin and the inclusion of NAG into the medium had no effect on chitinase production. The effect of different parameters such as temperature, pH, substrate concentration and certain inhibitory elements on enzyme activity were next assayed. The highest activity was obtained at 45 oC and in a pH range of 4.0 to 9.0. Activity of chitinase increased with increasing substrate concentration up to 35 mg/mL. Ca2+, Co2+, Cu2+, EDTA, Fe2+, Mg2+, Mn2+ and Zn2+ were tested for their effects on the activity of enzyme. The enzyme was inhibited by only 4% in the presence of 10 mM EDTA, whereas 10 mM Co2+ included in the assay mixture increased the activity by 20%.
|
23 |
Erysipelothrix rhusiopathiae : epidemiology, virulence factors and neuraminidase studiesWang, Qinning January 2003 (has links)
Erysipelothrix rhusiopathiae, a Gram-positive bacillus, has long been an important pathogen in veterinary medicine as well as a cause of serious disease in humans. Infections caused by this organism have economic impact on animal industries, causing erysipelas in swine and morbidities in other farmed animals. Human infections are commonly erysipeloid (skin cellulitis) and occasionally septicaemia or endocarditis. Little is known of the diagnosis, epidemiology and pathogenesis of such infections in Western Australia. The aims of this thesis were to establish new diagnostic techniques for the detection and recovery of E. rhusiopathiae, to describe the epidemiology of Erysipelothrix infection in Western Australia in humans and animals, and to characterize virulence-associated characteristics, especially focusing on the neuraminidase produced by the organism. A protocol using 48 h Brain Heart Infusion enrichment followed by subculture to selective agar containing antibiotics achieved the highest recovery rate of 37% in a seafood survey. Twentyone isolates of Erysipelothrix spp., of which 19 were identified as E. rhusiopathiae, were obtained. Two published PCR assays for differentiating E. rhusiopathiae and other Erysipelothrix species were evaluated and the best PCR detection rate achieved was 67% following selective enrichment. The PCR method was 50% more sensitive than the culture method. Epidemiological surveys using the above methods showed that E. rhusiopathiae infection is present in farmed animals in Western Australia. The PCR positive frequencies (3.3-3.7%) and isolate recovery rate (2.8-3.3%) in samples from pig and sheep abattoirs and carcass washings indicate a potential threat to the economy of the farmed animal industry as well as a public health concern with the occurrence of E. rhusiopathiae in meat for consumption. Positive PCR results (1.1%) from human skin swabs of patients with cellulitis and wounds may suggest the existence of Erysipelothrix colonization in the general population. Genetic relatedness of 92 isolates of Erysipelothrix species from various sources was analyzed and a total of 64 distinct PFGE patterns identified. Isolates were further classified into 20 clonal groups based on pattern similarities, and most E. rhusiopathiae were clustered into six groups. A few patterns of other Erysipelothrix species were clustered into separate groups from E. rhusiopathiae but shared greater than 70% similarity with E. rhusiopathiae. The genetic relatedness of colonial variants was well demonstrated using this method. PFGE typing promises to be a useful tool for epidemiological and taxonomic studies of Erysipelothrix. Several virulence-associated factors were characterized in 86 isolates of Erysipelothrix spp. A rapid and sensitive peanut lectin hemagglutination assay for neuraminidase was developed and the influence of media, incubation conditions and pH on the production of the enzyme was investigated. All 61 isolates of E. rhusiopathiae produced neuraminidase in cooked meat broth with titres between 1:10 and 1:320, with no significant difference in titre among isolates from different sources. The enzyme activity was not detected in non-pathogenic Erysipelothrix spp. Capsule was produced by 78.7% of isolates of E. rhusiopathiae but not by other species, while both hyaluronidase and haemolysin were produced by non-pathogenic Erysipelothrix spp. It was concluded that neuraminidase and capsule are most likely to be virulence factors of E. rhusiopathiae. The gene encoding neuraminidase was cloned from the type strain E. rhusiopathiae ATCC 19414. The cloned fragment was a functional partial nanH gene with a mol% G+C of 39.7. The predicted amino acid sequence displayed homology with many microbial neuraminidases and contained conserved sequences found in most bacterial neuraminidases. Southern hybridization experiments demonstrated that the gene was present as a single copy on the bacterial genomic DNA. A neuraminidasenegative mutant vector was constructed by insertional inactivation using a tetM cassette. This has provided starting material for developing a neuraminidase-deficient E. rhusiopathiae mutant, which will permit the study of the role of neuraminidase in pathogenesis. Based on the cloned sequence, a sensitive neuraminidase-specific nested PCR technique was designed and optimized. The specificity was tested in 61 isolates of E. rhusiopathiae, 25 Erysipelothrix species, and 62 other species of neuraminidaseproducing and non-producing bacteria. All isolates of E. rhusiopathiae were PCR positive and all other bacteria were negative; thus this PCR is a highly specific method suitable for application in clinical investigations of Erysipelothrix infection. In conclusion, the present study has contributed new knowledge of the biology of Erysipelothrix spp. and current occurrence of Erysipelothrix infections in Western Australia, as well as to the understanding of pathogenesis of E. rhusiopathiae. Development of several new cultural and molecular approaches in combination with other established techniques will facilitate future studies of the epidemiology, taxonomy and pathogenesis of this bacterial species.
|
24 |
Interação das proteínas Cry1Ia10 e Cry8 de Bacillus thuringiensis no controle do bicudo-do-algodoeiro / Synergic effect between Cry1Ia10 and Cry8 proteins of bacillus thuringiensis on cotton boll weevilBorges, Paula Castanho 06 June 2018 (has links)
Submitted by Paula Castanho Borges (paulacastanhob@gmail.com) on 2018-07-18T19:31:59Z
No. of bitstreams: 1
Dissertação Paula DEFINITIVO.pdf: 1146833 bytes, checksum: 55c91711131bc963e10c31421e433060 (MD5) / Approved for entry into archive by Karina Gimenes Fernandes null (karinagi@fcav.unesp.br) on 2018-07-19T11:07:40Z (GMT) No. of bitstreams: 1
borges_pc_me_jabo.pdf: 1146833 bytes, checksum: 55c91711131bc963e10c31421e433060 (MD5) / Made available in DSpace on 2018-07-19T11:07:40Z (GMT). No. of bitstreams: 1
borges_pc_me_jabo.pdf: 1146833 bytes, checksum: 55c91711131bc963e10c31421e433060 (MD5)
Previous issue date: 2018-06-06 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / O objetivo deste trabalho foi avaliar o efeito inseticida das proteínas Cry1Ia10 e Cry8 contra larvas de Anthonomus grandis Boheman (Coleoptera: Curculionidae), buscando por potencial sinérgico. Para tanto, o gene cry8 foi amplificado por PCR a partir de um clone previamente construído, obtendo-se um fragmento de aproximadamente 3531 pb e subclonado no vetor de expressão pET-SUMO. Para a expressão dos genes cry1Ia10 e cry8, os DNAs recombinantes foram inseridos em células de Escherichia coli BL21 (DE3) e induzidos por isopropil-β-D-tiogalactopiranosídeo (IPTG), resultando em proteínas de 94 kDa e 143 kDa, respectivamente, visualizadas em SDS-PAGE. As proteínas foram quantificadas através do software ImageQuant TL 8.1” (GE Healthcare), para que fosse possível a realização dos cálculos de diluição nas respectivas concentrações incorporadas à dieta artificial, a fim de estimar a CL50 e CL90 das duas proteínas testadas sozinhas e em conjunto. Com base na sequência de aminoácidos de proteínas da classe Cry8, análises filogenéticas foram realizadas para investigar proximidade evolutiva da proteína Cry8 utilizada neste trabalho com as demais proteínas na mesma classe. Através dessas análises, sugerimos que a proteína em questão pertence à subclasse Cry8Pa devido a elevada proximidade filogenética e similaridade com a proteína Cry8Pa2. Observou-se que as proteínas Cry1Ia10 e Cry8 apresentaram ação inseticida contra larvas neonatas de A. grandis, obtendo-se as CL50 de 7,232 µg ml-1 e 4,422 µg ml-1 para Cry1Ia10 e Cry8 respectivamente. Quando combinadas as proteínas a CL50 é reduzida para 2,664 µg ml-1 e CL90 para 13,535 µg ml-1 apresentaram sinergismo, potencializando a ação inseticida das mesmas. Este estudo conclui que larvas de A. grandis são suscetíveis as proteínas Cry1Ia10 e Cry8 e que a combinação entre elas aumenta a eficiência de controle, sugerindo que plantas piramidadas com estes genes são de interesse agronômico para o controle de A. grandis possibilitando o retardo do desenvolvimento de insetos resistentes. / The objective of this work was to evaluate the insecticidal effect of Cry1Ia10 and Cry8 proteins against Anthonomus grandis Boheman larvae (Coleoptera: Curculionidae), searching for synergistic potential. To do so, the cry8 gene was amplified by PCR from a previously constructed clone, obtaining a fragment of approximately 3531 bp and subcloned into the pET-SUMO expression vector. For the expression of the cry1Ia10 and cry8 genes, the recombinant DNAs were inserted into Escherichia coli BL21 (DE3) and isopropyl-β-Dthiogalactopyranoside (IPTG) cells, resulting in 94 kDa and 143 kDa proteins, respectively, visualized on SDS-PAGE. The proteins were quantified using ImageQuant TL 8.1 software (GE Healthcare) to allow the calculation of dilution in the respective concentrations incorporated into the artificial diet in order to estimate the LC50 and CL90 of the two proteins tested alone and together. Based on the amino acid sequence of Cry8 class proteins, phylogenetic analyzes were performed to investigate evolutionary proximity of the Cry8 protein used in this work with the other proteins in the same class. Through these analyzes, we suggest that the protein in question belongs to the subclass Cry8Pa due to its high phylogenetic proximity and similarity to the Cry8Pa2 protein. It was observed that the proteins Cry1Ia10 and Cry8 showed insecticidal action against neonatal larvae of A. grandis, obtaining the LC50 of 7.232 μg ml-1 and 4.422 μg ml-1 for Cry1Ia10 and Cry8 respectively. When combined the proteins at LC50 is reduced to 2,664 μg ml-1 and CL90 to 13,535 μg ml1 showed synergism, potentiating the insecticidal action of the same. This study concludes that A. grandis larvae are susceptible to Cry1Ia10 and Cry8 proteins and that the combination between them increases control efficiency, suggesting that pyramidal plants with these genes are of agronomic interest for the control of A. grandis, allowing the development of resistant insects.
|
25 |
Nested PCR for distinguishing Haemophilus haemolyticus from Haemophilus influenzae and Cloning and expression of fragmented Moraxella catarrhalis IgD-binding protein in E. coliBergström, Jennie January 2007 (has links)
ABSTRACT Nontypable Haemophilus influenzae is a common cause of otitis, sinusitis and conjunctivitis. It is the most common bacterial pathogen associated with chronic obstructive pulmonary disease (COPD). Studies have shown that nonpathogenic Haemophilus haemolyticus are often mistaken for Haemophilus influenzae due to an absent hemolytic reaction on blood agar. Distinguishing H. haemolyticus from H. influenzae is important to prevent unnecessary antibiotic use, and to understand the role of H. influenzae in clinical infections. In this study, PCR-primers for amplifying 16S rDNA sequences were used to set up a method for distinguishing H. haemolyticus from H. influenzae. The aim was to use the method for analyzing apparent H. influenzae strains, to investigate if some strains were in fact H. haemolyticus. However, because of problems with unspecific primerannealing,no conclusions could be drawn regarding misclassification of H. haemolyticus. Moraxella catarrhalis is the second most common bacterial pathogen associated with COPD. It also causes otitis and sinusitis. An important virulence factor of M. catarrhalis is the outer membrane protein Moraxella catarrhalis IgD-binding protein (MID). One part of the protein; MID764-913 , has been shown to function as an adhesin, and this part has been fragmented to further investigate its adhesive properties. The aim of this second, independent study, was to express some of these proteinfragments by cloning in E. coli. The time spent on this project was too short, and no proteins could be expressed duing this period.
|
26 |
Cloning, expression and characterization of Novel Lipase and Esterases from Burkholderia multivorans UWC10Rashamuse, Konanani J January 2005 (has links)
Doctor Scientiae / An esterase and lipase producing Burkholderia multivorans strain was isolated by culture enrichment strategies. A shotgun library of Burkholderia multivorans genomic DNA (prepared in E. coli/pUC18) was screened for lipase and esterase activities. Three positive recombinant clones, pTEND5, pHOLA6 and pRASHI4, conferring esterolytic and lipolytic phenotypes respectively, were identified. Full-length sequencing of DNA inserts was performed using subeloning and "primer-walking" strategies. Nucleotide sequence analysis revealed that the pRASH14 plasmid DNA consisted of two open reading frames (ORPI and ORP2) encoding 356 and 350 amino acids, respectively. Database searches revealed that ORPI and ORP2 were homologous to lipases and chaperones from subfamily I.2. In the pTEND5 sequence, an open reading frame consisting of 978 bp, encoding 326 amino acids, was identified. Database searches revealed that this open reading frame was homologous to family Vesterases. Nucleotide sequence analysis revealed that pHOLA6, plasmid DNA consisted of 1194 bp encoding 398 amino acids and showed homology to family VIII esterases. The primary structures of LipA, EstEFH5 and EstBL from pRASHI4, pTEND5 and pHOLA6, respectively, showed a classical GxSxG motif, which is conserved in many serine hydrolases. In addition, EstBL also showed a consensus SxxK motif, the serine of which acts as a catalytic nucleophile in class C B-lactames and some peptidases.
|
27 |
Characterization of the soybean genome in regions surrounding two loci for resistance to soybean mosaic virusHayes, Alec J. 11 August 1998 (has links)
Soybean mosaic virus (SMV), has been the cause of numerous and often devastating disease epidemics, causing reduction in both the quality and quantity of soybeans worldwide. Two important genes for resistance to SMV are Rsv1 and Rsv4. Alleles at the Rsv1 locus have been shown to control resistance to all but the most virulent strain of SMV. This locus has been mapped previously to the soybean F linkage group. Rsv4 is an SMV resistance locus independent of Rsv1 and confers resistance to all strains of SMV. This locus has not been mapped previously. The purpose of this study is to investigate the two genomic regions that contain these vitally important resistance genes.
A population of 281 F2 individuals that had previously been genotyped for reaction to SMV was evaluated in a mapping study which combined bulk segregant analysis with Amplified Fragment Length Polymorphism (AFLP). A Rsv4-linked marker, R4-1, was identified that mapped to soybean linkage group D1b using a reference mapping population. More than 40 markers were mapped in the Rsv4 segregating population including eleven markers surrounding Rsv4. This will provide the necessary framework for the fine mapping of this important genetic locus.
Previous work has located Rsv1 to a genomic region containing several important resistance genes including Rps3, Rpg1, and Rpv. An RFLP probe, NBS5, whose sequence closely resembles that of several cloned plant disease resistance genes has been mapped to this chromosomal region. The efficacy of using this sequence to identify potential disease resistance genes was assessed by screening a cDNA library to uncover a candidate disease resistance gene which corresponds to this NBS5 sequence. Two related sequence classes were identified that correspond to NBS5. Interestingly, one class corresponds to a full length gene closely resembling other previously cloned disease resistance genes offering evidence that this NBS5-derived clone is a candidate disease resistance gene.
A new marker technique was developed by combining the speed and efficiency of AFLP with DNA sequence information from cloned disease resistance genes. Using this strategy, three new markers tightly linked to Rsv1 were identified. One of these markers, which maps 0.6 cM away from Rsv1, has motifs consistent with other cloned disease resistance genes, providing evidence that this approach is an efficient method for targeting genomic regions where disease resistance genes are located. / Ph. D.
|
28 |
Investigation of Inositol dehydrogenase-related enzymes2012 January 1900 (has links)
Inositol dehydrogenase (IDH) catalyzes the oxidation of myo-inositol to scyllo-inosose using NAD+ as the coenzyme. IDH-related genes (Lp_iolG1 to Lp_iolG4) from Lactobacillus plantarum WCSF1 and (Lc_iolG1 and Lc_iolG2) from Lactobacillus casei BL23 were cloned into the vector pQE-80L, expressed in E. coli host cells and the proteins were purified to homogeneity. IDH activity of the purified enzymes was explored with myo-inositol and other structurally related compounds. It was found that IDH-related enzymes from L. plantarum WCSF1 did not exhibit any activity with tested substrates but, LcIDH1 and LcIDH2 from L. casei BL23 showed activity with myo-inositol and other related compounds. pH-rate profile studies have demonstrated the optimum pH for the reactions catalyzed by the active enzymes. Steady-state kinetics of the active enzymes was performed as with IDH from Bacillus subtilis (BsIDH), revealing that LcIDH1 is a myo-inositol dehydrogenase and LcIDH2 is a scyllo-inositol dehydrogenase. Both LcIDH1 and LcIDH2 are observed to be NAD+-dependent. Kinetic isotopic effect experiments for LcIDH1 have demonstrated that the chemical step in the reaction is partly rate-limiting. Substrate spectrum of LcIDH1 and LcIDH2 was explored and compared to BsIDH. Finally, a multiple sequence alignment of IDH-related enzymes was performed and the proposed consensus sequence motifs were considered to understand the activity differences between these enzymes.
|
29 |
Coleoptera-specific (cry3aa) Delta-endotoxin Biosynthesis By A Local Isolate Of Bt Subsp. Tenebrionis, Gene Cloning And CharacterizationKurt, Aslihan 01 February 2005 (has links) (PDF)
Cry3Aa is a 73 kDa protoxin toxic to insect larvae of Coleoptera order. It is processed to form a stable 65 kDa & / #61540 / -endotoxin by endogenous proteases. The first part of this study involved the determination of the patterns of biosynthesis of Coleoptera-specific & / #61540 / -endotoxin by a local isolate of Bacillus thuringiensis subsp. tenebrionis (Btt) in relation to its growth and sporulation. Among four different media compared (DSM, GYS, HCT and C2) Cry3Aa production was the highest in DSM, especially at 72nd h and 120th h of incubation.
For improvement of Cry3Aa production, the effects of different carbon and nitrogen sources, inorganic phosphate and other mineral elements were tested. Increasing concentrations (5-10 g.L-1) of glucose or sucrose decreased the toxin yield probably by suppressing sporulation. Inorganic phosphate was found to have the most striking effect on toxin biosynthesis. 200 mM inorganic phosphate concentration resulted in 5 fold increase in Cry3Aa yield. Cry3Aa production was greatly reduced when various combinations of organic and inorganic nitrogen sources, especially ammonium sulphate and Casamino acids were replaced with Nutrient broth in DSM. The highest Cry3Aa production was obtained in the media containing 10-5-10-7 M MnCl2, 10-5 M FeSO4 and 5.10-4 M MgSO4, corresponding to their original concentrations in DSM. Decrease of iron concentration or its omission from the medium decreased the toxin yield.
Toxin production capacity of our local isolate was compared with those of 30 different anti-Coleopteran Bt strains. Most of the strains producing this protein gave general protein banding patterns quite similar to that of our local isolate.
Lastly, the cry3Aa gene of the Btt local isolate was PCR-amplified and cloned into the E. coli/Bacillus shuttle vector pNW33N. The recombinant plasmid was amplified in E. coli and the sequence of the cry3Aa was determined. Amino acid sequence deduced was found to be 97.4 %-99.2 % identical to the cry3Aa sequences (GenBank) of 10 different quaternary ranks. In this respect, the gene has to represent the 11th quaternary rank of the cry3Aa ones. The recombinant plasmid carrying cry3Aa gene was next used to transform Bs 168 as an intermediate host and low level of expression was seen.
|
30 |
Cloning and Characterisation of the Human SinRIP ProteinsSchroder, Wayne Ashley, n/a January 2003 (has links)
This thesis describes the cloning and characterisation of a novel human gene and its protein products, which have been designated SAPK- and Ras-interacting protein (SinRIP). SinRIP shares identity with JC310, a partial human cDNA that was previously identified a candidate Ras-inhibitor (Colicelli et al., 1991, Proc Natl Acad Sci USA 88, p. 2913). In this study, it was shown that SinRIP is a member of an orthologous family of proteins that is conserved from yeast to mammals and contains proteins involved in Ras- and SAPK-mediated signalling pathways. Comparison of this family of proteins showed that human SinRIP contains a potential Ras-binding domain (RBD; residues 279-354), a PH-like domain (PHL; 376-487), and a highly conserved novel region designated the CRIM (134-265). Several other potential targeting sites, such as nuclear localisation signals and target sites for kinases, were identified within the SinRIP sequence. The human SinRIP gene is unusually large (>280 kbp) and is located on chromosome 9 at 9q34. SinRIP mRNA was detected in a wide variety of tissue-types and cell lines by RT-PCR, and the SinRIP sequences in the EST database were derived from an diverse array of tissues, suggesting a widespread or ubiquitous expression. Northern blot analysis revealed the highest levels in skeletal muscle and heart tissue. However, the steady-state levels of SinRIP mRNA vary greatly from cell to cell, and SinRIP expression is likely to be regulated at multiple post-transcriptional levels. It was shown that SinRIP mRNA is likely to be translated inefficiently by the normal cap-scanning mechanism, due to the presence of a GC-rich and structured 5-UTR, which also contains upstream ORFs. Alternative polyadenylation signals in the SinRIP 3-UTR can be used, resulting in the expression of short and long SinRIP mRNA isoforms. Several potential A/T-rich regulatory elements were also identified in SinRIP mRNA, which may target specific SinRIP mRNA isoforms for rapid degradation. Importantly, it was shown that SinRIP mRNA is alternatively spliced, resulting in the production of distinct SinRIP protein isoforms. Three isoforms, SinRIP2-4, were definitively identified by RT-PCR and full-length cloning. The SinRIP isoforms contain deletions in conserved regions, and are likely to have biochemical characteristics that are different to full-length SinRIP1. SinRIP2 is C-terminally truncated and lacks the PHL domain and part of the RBD, and relatively high levels of SinRIP2 expression arelikely to occur in kidneys. The RBD is disrupted in SinRIP3, but all other domains are intact, and RT-PCR analyses suggest that SinRIP3 is present in some cells at levels comparable to SinRIP1. A rabbit polyclonal antiserum against SinRIP was generated and detected endogenous SinRIP proteins. Using the anti-SinRIP antibody in immunoblots, multiple SinRIP isoforms were observed in most cell types. SinRIP1 and another endogenous SinRIP protein, likely to be SinRIP3, were detected in most cell lines, and appear to be are the major SinRIP proteins expressed in most cells. The subcellular localisation of both recombinant and endogenous SinRIP proteins was investigated by immunofluorescence assays and biochemical fractionation. Recombinant SinRIP1 protein was found in the cytoplasm and associated with the plasma membrane. In contrast, the SinRIP2 protein was predominantly nuclear, with only low-level cytoplasmic staining observed. The endogenous SinRIP proteins, likely to comprise these and other SinRIP isoforms, were found in both the nucleus and cytoplasm. SinRIP1 interacted with GTP-bound (active) Ras, but not GDP-bound (inactive) Ras, in an in vitro assay, and also co-localised with activated H- and K-Ras in cells. The binding profile observed is typical of Ras-effectors, and SinRIP did not inhibit signalling by the Ras proteins, suggesting that it is not likely to be a Ras-inhibitor. It was also shown that SinRIP1 and SinRIP2 both interact and colocalise with c-Jun NH2- terminal kinase (JNK). Both SinRIP proteins were able to recruit JNK to their respective sub-cellular compartments. These interactions suggest an adaptor role for SinRIP in the Ras and/or JNK pathways. In addition, Sam68 was isolated as a SinRIP-binding protein in a yeast two-hybrid screen. Sam68 was shown to colocalise with SinRIP2 and endogenous SinRIP proteins, but not SinRIP1. Further colocalisation studies showed that endogenous SinRIP proteins localise in nuclear structures that may be associated with pre-mRNA splicing. Likely functions for SinRIP, as indicated by experimental results and studies of the orthologues of SinRIP in other species, are discussed.
|
Page generated in 0.0877 seconds