Spelling suggestions: "subject:"geometria diferencial"" "subject:"geometria differencial""
281 |
A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energy / A partial answer to the CPE conjecture, diameter estimates and manifolds with constant energyFrancisco de Assiss Benjamim Filho 25 June 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / Esta tese està dividida em quatro partes. Na primeira delas estudaremos pontos crÃticos do funcional curvatura escalar total restrito ao espaÃo das mÃtricas de curvatura escalar constante e volume unitÃrio. Provaremos que sob certas condiÃÃes integrais convenientes os pontos crÃticos de tal funcional sÃo variedades de Einstein provando assim a conjectura dos pontos crÃticos neste caso. Na segunda parte, veremos duas estimativas para o primeiro autovalor do Laplaciano de uma variedade compacta com curvatura de Ricci limitada por baixo por uma constante. As estimativas que obtemos melhoram a estimativa correspondente provada por Li e Yau (1980). Na terceira parte, estamos interessados em estimar o diÃmetro de hipersuperfÃcies mÃnimas da esfera. A estimativa que encontramos depende apenas do primeiro autovalor do Laplaciano da hipersuperfÃcie considerada. Para superfÃcies imersas na esfera de dimensÃo trÃs, obtemos uma estimativa ligeiramente melhor do que a obtida no caso de dimensÃo alta. Na Ãltima parte, introduzimos o conceito de variedade de energia constante e provamos que a esfera e o toro sÃo as Ãnicas superfÃcies que tÃm energia constante. Em dimensÃo mais alta a situaÃÃo à bem diferente uma vez que o produto de uma esfera por qualquer variedade compacta tem energia constante. Entretanto, se impusermos uma condiÃÃo sobre a curvatura de Ricci, à possÃvel caracterizar a esfera tambÃm neste caso. Em seguida, aplicamos as informa-ÃÃes obtidas ao estudo de hipersuperfÃcies da esfera provando alguns resultados de rigidez desde que a hipersuperfÃcie tenha energia constante. / This thesis is divided into four parts. In the first one we study the critical points of the total scalar curvature functional restricted to the space of metrics with constant scalar curvature and volume one. We shall prove that under certain suitable integral conditions the critical points of such functional are Einstein manifolds proving this way the critical point equation conjecture in this case. In the second part, we will provide an estimate for the first eigenvalue of the Laplacian of a compact manifolds with Ricci curvature bounded from below by a constant. The estimate we obtain improves the corresponding estimate proved by Li and Yau (1980). In the third part, we are interested in to estimate the diameter of minimal hypersurfaces of the sphere. The estimate we get depends only on the first eigenvalue of the Laplacian of the considered hypersurface. For immersed surfaces on the three dimensional sphere, we obtain an estimate slightly better than the one obtained in the case of higher dimension. In the last part, we introduce the concept of manifolds with constant energy and prove that the sphere and the torus are the only compact surfaces that have constant energy. For higher dimension, the situation is very different sine the product of the sphere with any compact manifold has constant energy. Nevertheless, if we impose a condition over the Ricci curvature it is possible to characterize the sphere also in this case. After that, we apply the informations obtained to the study of hypersurfaces of the sphere proving some rigidity results provided that the hypersurfaces has constant energy.
|
282 |
Sobre hipersuperfÃcies mÃnimas, aplicaÃÃes do princÃpio do mÃximo fraco e de teoremas tipo-Liouville / On minimum hypersurfaces, application of the principle of maximum and weak theorems type-LiouvilleAntonio Wilson Rodrigues da Cunha 13 March 2015 (has links)
CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / In this work we approach four research lines, where we began with the study of isometrically immersed hypersurfaces in a horoball. Next we studied Liouville type theorems in a complete Riemannian manifold for general operators. After we studied hypersurfaces f-minimal closed on a manifold with density, and nally we studied properly embedded minimal hypersurfaces with free boundary in a n-dimensional compact Riemannian manifold. Continuing, we obtain under a more general class operator than '-Laplacian, a Liouville type theorem for a complete Riemannian manifold, so that, prove a classication theorem for Killing graph of a foliation. Firstly, we are going to assume a weak maximum principle and that immersion is contained in a horoball, i.e., the set of bounded above Bussemann functions . We obtain an estimate for the highest quotient of r-curvatures. Moreover, under certain conditions on sectional curvature and assuming that the immersion is contained in a horoball, we forced the validity of the weak maximum principle and obtain the same estimates. Next, we establish a Choi-Wang type estimate for the rst eigenvalue of the weighter Laplacian on spaces with density in responding partially to Yau's conjecture for the rst eigenvalue weighter Laplacian for spaces with density, and moreover, we obtain an inequality Poincare type. With the estimates obtained, we establish an estimate of volume for a closed surface immersed in a space with density. Still following the study of spaces with density, we obtain a type Hientze-Karcher inequality for a compact manifold with nonempty boundary , so that, we obtain that if holds the equality than the manifold is isometric to a Euclidian ball. As consequence, we obtain under same conditions that if the f-mean curvature satisfy a bounded below than the manifold is isometric to a Euclidian ball. Finally, we obtain an estimate for the nonzero rst Steklov eigenvalue, where
we are giving a answer partial to a conjecture by Fraser and Li. Moreover, as a consequence we establish an estimate for the total length of the boundary of the properly embedded minimal surfaces with free boundary in terms of its topology, thus, we proved the same when the surface is embedded in the Euclidean ball 3-dimensional. / Neste trabalho, abordamos quatro linhas de estudo, onde iniciamos com o estudo de hipersuperfcies isometricamente imersas sobre uma horobola. Em seguida estudamos
Teoremas tipo Liouville para uma variedade Riemanniana completa em operadores mais gerais que o Laplaciano. Alem disso, estudamos hipersuperfcies f-mÃnimas fechadas em
uma variedade com densidade e, por fim, estudamos hipersuperfÃcies mÃnimas com bordo livre, propriamente imersas em uma variedade Riemanniana compacta n-dimensional.
Primeiramente, assumindo um princpio do maximo fraco e que a imersÃo està contida em uma horobola, i.e., um conjunto em que a funcÃo de Busemann à limitada superiormente, obtemos uma estimativa para o supremo do quociente das r-Ãsimas curvaturas. AlÃm disso, sob certas condiÃÃes sobre as curvaturas seccionais e assumindo que a imersÃo està contida em uma horobola, forÃamos a validade do princÃpio do mÃximo
fraco e obtemos as mesmas estimativas. Prosseguindo, obtemos, para um operador mais geral que o '-Laplaciano, um
teorema tipo-Liouville para uma variedade Riemanniana completa. Como aplicaÃÃo provamos um teorema de classificaÃÃo para grÃficos de Killing de uma folheaÃÃo.
Em seguida, estabelecemos uma estimativa tipo Choi e Wang para o primeiro autovalor do f-Laplaciano em espaÃos com densidade, no sentido de responder parcialmente à conjectura de Yau para o primeiro autovalor do Laplaciano; alÃm disso, obtemos uma desigualdade tipo Poincarà para esse operador. Com a estimativa obtida, pudemos estabelecer uma estimativa de volume para uma superfÃcie fechada mergulhada em um
espaÃo com densidade. Ainda seguindo o estudo de espaÃos com densidade, obtemos uma desigualdade tipo Heintze-Karcher para uma variedade compacta com bordo e verificamos que, se vale a igualdade, entÃo a variedade à isomÃtrica a uma bola Euclidiana. Como consequÃncia, obtemos que, nas mesmas condiÃÃes, e se a f-curvatura mÃdia satisfizer uma certa limitaÃÃo inferior, entÃo a variedade ainda à isometrica a uma bola Euclidiana. Finalmente, obtemos uma estimativa para o primeiro autovalor de Steklov, dando uma resposta parcial a uma conjectura devida a Fraser e Li. AlÃm disso, como consequÃncia, estabelecemos uma estimativa para o comprimento do bordo de uma superfÃcie mÃnima, compacta e propriamente megulhada com bordo livre em termos de sua topologia; assim, provamos o mesmo resultado quando a superfÃcie està mergulhada em uma bola Euclidiana 3-dimensional.
|
283 |
Hipersuperfícies com curvatura média constante e hipersuperfícies com curvatura escalar constante na esfera. / Hypersurfaces with constant mean curvature and hypersurfaces with constant scalar in curvature sphere.Jesus, Isadora Maria de 04 August 2009 (has links)
In this work we prove two theorems that characterize the hypersurfaces in the unitary sphere of dimension n+1. The first result, obtained by H. Alencar and M. do Carmo, classifies hypersurfaces with constant mean curvature in the sphere. This result was published in April 1994 in Proceedings of The American Mathematical Society, volume 120, number 4 with the title Hypersurfaces with Constant Mean Curvature. The second result was obtained by Li Haizhong in the article Hypersurfaces with Constant Scalar Curvature in Space Forms, published in 1996 in the journal Mathematisch Annalen, volume 305. The theorem of Li Haizhong characterizes hypersurfaces with constant scalar curvature in the sphere. We prove the theorem of Li Haizhong using the results obtained by H. Alencar and M. do Carmo. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / Nesta dissertação apresentamos dois teoremas que caracterizam as hipersuperfícies na esfera unitária de dimensão n+1. O primeiro resultado, obtido por H. Alencar e M. do Carmo, classifica as hipersuperfícies com curvatura média constante na esfera. Este resultado foi publicado em abril de 1994 no Proceedings of The American Mathematical Society, volume 120, número 4 com o título Hypersurfaces With Constant Mean Curvature.O segundo resultado provado nesta dissertação foi obtido por Li Haizhong no artigo Hypersurfaces With Constant Scalar Curvature in Spaces Forms, publicado em 1996 no Mathematische Annalen, volume 305. O Teorema de Li Haizhong caracteriza as hipersuperfícies com curvatura escalar constante na esfera. Demonstraremos o Teorema de Li Haizhong utilizando os resultados obtidos por H. Alencar e M. do Carmo.
|
284 |
O teorema de Alexandrov / The theorem of Alexandrov.Silva Neto, Gregorio Manoel da 04 August 2009 (has links)
The goal of this dissertation is to present a R. Reilly's demonstration of the theorem of Alexandrov . The theorem states that The only compact hypersurfaces, conected, of constant mean curvature, immersed in Euclidean space are spheres. The theorem of Alexandrov was proved by A. D. Alexandrov in the article Uniqueness Theorems for Surfaces in the Large V, published in 1958 by Vestnik Leningrad University, volume 13, number 19, pages 5 to 8. In his demonstration, Alexandrov used the famous Principle of tangency, introduced by him in that article. In the year 1962, M. Obata shown in Certain Conditions for a Riemannian Manifold to be isometric With the Sphere, published by the Journal of Mathematical Society of Japan, volume 14, pages 333 to 340, that a Riemannian Manifold M, compact, connected and without boundary, is isometric to a sphere, since the Ricci curvature of M satisfies certain lower bound. This theorem solves the problem of finding manifolds that reach equality in the estimate of Lichnerowicz for the first eigenvalue. In 1977, R. Reilly, in the article Applications of the Hessian operator in a Riemannian Manifold, published in Indianna University Mathematical Journal, volume 23, pages 459 to 452, showed a generalization of the Obata theorem for compact manifolds with boundary. As an example of the technique developed in this demonstration, he presents a new demonstration of the theorem of Alexandrov. This demonstration, as well as the techniques involved are the object of study of this work. / Conselho Nacional de Desenvolvimento Científico e Tecnológico / O objetivo desta dissertação é apresentar uma demonstração de R. Reilly para o Teorema de Alexandrov. O teorema estabelece que As únicas hipersuperfícies compactas, conexas, de curvatura média constante, mergulhadas no espaço Euclidiano são as esferas. O teorema de Alexandrov foi provado por A. D. Alexandrov no artigo Uniqueness Theorems for Surfaces in the Large V, publicado em 1958 pela Vestnik Leningrad University, volume 13, número 19, páginas 5 a 8. Em sua demonstração, Alexandrov usou o famoso Princípio de Tangência, introduzido por ele no citado artigo.
No ano de 1962, M. Obata demonstrou em Certain Conditions for a Riemannian Manifold to be Isometric With a Sphere, publicado pelo Journal of Mathematical Society of Japan, volume 14, páginas 333 a 340, que uma variedade Riemanniana M, compacta, conexa e sem bordo, é isométrica a uma esfera, desde que a curvatura de Ricci de M satisfaça determinada limitação inferior. Este teorema resolve o problema de encontrar as variedades que atingem a igualdade na estimativa de Lichnerowicz para o primeiro autovalor. Em 1977, R. Reilly, no artigo Applications of the Hessian Operator in a Riemannian Manifold, publicado no Indianna University Mathematical Journal, volume 23, páginas 459 a 452, demonstrou uma generalização do Teorema de Obata para variedades compactas com bordo. Como exemplo da técnica desenvolvida nesta demonstração, ele apresenta uma nova demonstração do Teorema de Alexandrov. Esta demonstração, bem como as técnicas envolvidas, são o objeto de estudo deste trabalho.
|
285 |
Uma extensão do teorema de Gauss-Bonnet para superfícies com fins do tipo coneBranco, Flavia Malta January 1999 (has links)
Neste trabalho definimos as superfícies com fins do tipo cone com coeficiente a 2 >/ 0, uma classe de superfícies completas, não compactas e bem comportadas no infinito, e apresentamos uma extensão do Teorema de Gauss-Bonnet para estas superfícies com coeficiente a > O. / In this work we define a-conical type end surfaces, a 2 >/ O, a class of complete non compact surfaces having a nice behaviour at infinity, and we present an extension of the Theorem of Gauss-Bonnet for these surfaces such that a> O.
|
286 |
Ações e folheações polares em variedades de HadamardCaramello Junior, Francisco Carlos 27 February 2014 (has links)
Submitted by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:16:50Z
No. of bitstreams: 1
6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:17:52Z (GMT) No. of bitstreams: 1
6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Approved for entry into archive by Ronildo Prado (ronisp@ufscar.br) on 2016-08-30T20:18:45Z (GMT) No. of bitstreams: 1
6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5) / Made available in DSpace on 2016-08-30T20:19:00Z (GMT). No. of bitstreams: 1
6841.pdf: 671749 bytes, checksum: fee45931185f019b1c8d5bb4946465b0 (MD5)
Previous issue date: 2014-02-27 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O objetivo principal deste trabalho é apresentar alguns resultados recentes na teoria de folheações polares, também chamadas de folheações riemannianas singulares com seções, em variedades de curvatura não positiva, presentes no artigo [24]. As ações polares também são estudadas, pois são objetos de pesquisa ativa que motivam e ilustram o estudo das folheações polares. Fornecemos uma demonstração de que não existem folheações polares próprias em variedades compactas de curvatura não positiva. Além disso, apresentamos um resultado que descreve globalmente as folheações polares próprias em variedades de Hadamard. Abordamos este resultado também no contexto particular das ações polares, utilizando a teoria de subvariedades taut. As ações adjunta e por conjugação são brevemente estudadas como exemplos clássicos de ações polares. / This work aims at presenting some recent results on the theory of polar foliations, also know as singular riemannian foliations with sections, on nonpositively curved manifolds, as seen in T oben [24]. Polar actions are also studied, for they are active research subject that motivate and illustrate polar foliations. We give a proof of the nonexistence of proper polar foliations on compact manifolds of nonpositive curvature. Then we present a result that globally describes proper polar foliations on Hadamard manifolds. We prove this same result in the special case of polar actions by using the theory of taut submanifolds. The adjoint and conjugation actions are brie y presented as classical examples of polar actions.
|
287 |
Uma extensão do teorema de Gauss-Bonnet para superfícies com fins do tipo coneBranco, Flavia Malta January 1999 (has links)
Neste trabalho definimos as superfícies com fins do tipo cone com coeficiente a 2 >/ 0, uma classe de superfícies completas, não compactas e bem comportadas no infinito, e apresentamos uma extensão do Teorema de Gauss-Bonnet para estas superfícies com coeficiente a > O. / In this work we define a-conical type end surfaces, a 2 >/ O, a class of complete non compact surfaces having a nice behaviour at infinity, and we present an extension of the Theorem of Gauss-Bonnet for these surfaces such that a> O.
|
288 |
Rigidez de superfÃcies de contato e caracterizaÃÃo de variedades riemannianas munidas de um campo conforme ou de alguma mÃtrica especial / Rigidity of the contact surfaces and characterization of Riemannian manifolds carrying a conformal vector fields or some special metricJosà Nazareno Vieira Gomes 29 June 2012 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / FundaÃÃo de Amparo à Pesquisa do Estado do Amazonas / Esta tese està composta de quatro partes distintas. Na primeira parte, vamos dar uma nova caracterizaÃÃo da esfera euclidiana como a Ãnica variedade Riemanniana compacta com curvatura escalar constante e admitindo um campo de vetores conforme nÃo trivial que à tambÃm Ricci conforme.
Na segunda parte, provaremos algumas propriedades dos quase sÃlitons de Ricci, as quais permitem estabelecer condiÃÃes de rigidez desses objetos, bem como caracterizar as estruturas de quase sÃlitons de Ricci gradiente na
esfera euclidiana. ImersÃes isomÃtricas tambÃm serÃo consideradas; classificaremos os quase sÃlitons de Ricci imersos em formas espaciais, atravÃs de uma condiÃÃo algÃbrica sobre a funÃÃo sÃliton. AlÃm disso, vamos caracterizar, atravÃs de uma condiÃÃo sobre o operador de umbilicidade, as hipersuperfÃcies n-dimensionais de uma forma espacial, com curvatura mÃdia constante, tendo duas curvaturas principais distintas e com multiplicidades p e n - p. Na terceira parte, provaremos um resultado de rigidez e algumas fÃrmulas integrais para uma mÃtrica m-quasi-Einstein generalizada compacta.
Na Ãltima parte, vamos apresentar uma relaÃÃo entre a curvatura gaussiana e o Ãngulo de contato de superfÃcies imersas na esfera euclidiana tridimensional,a qual permite concluir que a superfÃcie à plana, se o Ãngulo de contato for
constante. AlÃm disso, deduziremos que o toro de Clifford à a Ãnica superfÃcie compacta com curvatura mÃdia constante tendo tal propriedade. / This thesis is composed of four distinct parts. In the first part, we shall give a new characterization of the Euclidean sphere as the only compact Riemannian manifold with constant scalar curvature carrying a conformal vector
eld non-trivial which is also Ricci conformal.
In the second part, we shall prove some properties of almost Ricci solitons, which allow us to establish conditions for rigidity of these objects, as well
as characterize the structures of gradient almost Ricci soliton in Euclidean sphere. Isometric immersions also will be considered, we shall classify almost Ricci solitons immersed in space forms, through algebraic condition on soliton function. Furthermore, we characterize under a condition of the umbilicity
operator, n-dimensional hypersurfaces in a space form with constant mean curvature, admitting two distinct principal curvatures with multiplicities p and n - p. In the third part, we prove a result of rigidity and some integral
formulae for a compact generalized m-quasi-Einstein metric.
In the last part, we present a relation between the Gaussian curvature and the contact angle of surfaces immersed in Euclidean three-dimensional sphere,
which allows us to conclude that such a surface is
at provided its contact angle is constant. Moreover, we deduce that Clifford tori are the unique compact
surfaces with constant mean curvature having such property.
|
289 |
Uma extensão do teorema de Gauss-Bonnet para superfícies com fins do tipo coneBranco, Flavia Malta January 1999 (has links)
Neste trabalho definimos as superfícies com fins do tipo cone com coeficiente a 2 >/ 0, uma classe de superfícies completas, não compactas e bem comportadas no infinito, e apresentamos uma extensão do Teorema de Gauss-Bonnet para estas superfícies com coeficiente a > O. / In this work we define a-conical type end surfaces, a 2 >/ O, a class of complete non compact surfaces having a nice behaviour at infinity, and we present an extension of the Theorem of Gauss-Bonnet for these surfaces such that a> O.
|
290 |
Superfícies mínimas de fronteira livre na bola tridimensional / Free Boundary minimal surfaces in the unit 3-ballSantos, Thaynara Cecilia 11 May 2018 (has links)
In this dissertation, we study a characterization of the flat equatorial disk and the critical catenoid in the unitary ball B3 of R3 in terms of its second fundamental form. The work developed here is based on the article “A gap theorem for free boundary minimal surfaces in the three-ball” by Lucas Ambrozio and Ivaldo Nunes. / Nesta dissertação, estudamos uma caracterização do disco equatorial plano e do catenóide crítico na bola unitária B3 do R3 em termos da sua segunda forma fundamental. O trabalho aqui desenvolvido baseia-se no artigo “A gap theorem for free boundary minimal surfaces in the three-ball” de Lucas Ambrozio e Ivaldo Nunes.
|
Page generated in 0.0927 seconds