• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 8
  • 7
  • 6
  • 6
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Quantization Dimension for Probability Definitions

Lindsay, Larry J. 12 1900 (has links)
The term quantization refers to the process of estimating a given probability by a discrete probability supported on a finite set. The quantization dimension Dr of a probability is related to the asymptotic rate at which the expected distance (raised to the rth power) to the support of the quantized version of the probability goes to zero as the size of the support is allowed to go to infinity. This assumes that the quantized versions are in some sense ``optimal'' in that the expected distances have been minimized. In this dissertation we give a short history of quantization as well as some basic facts. We develop a generalized framework for the quantization dimension which extends the current theory to include a wider range of probability measures. This framework uses the theory of thermodynamic formalism and the multifractal spectrum. It is shown that at least in certain cases the quantization dimension function D(r)=Dr is a transform of the temperature function b(q), which is already known to be the Legendre transform of the multifractal spectrum f(a). Hence, these ideas are all closely related and it would be expected that progress in one area could lead to new results in another. It would also be expected that the results in this dissertation would extend to all probabilities for which a quantization dimension function exists. The cases considered here include probabilities generated by conformal iterated function systems (and include self-similar probabilities) and also probabilities generated by graph directed systems, which further generalize the idea of an iterated function system.
12

Construção geométrica de \"star-product\" integral em espaços simpléticos simétricos não compactos / Geometric construction of \"star-product\" integral on symplectic symmetric spaces not compact

Barrios, John Beiro Moreno 13 March 2013 (has links)
A quantização geométrica e um método desenvolvido para prover uma construção geométrica que relacione a mecânica clássica com a quântica. O primeiro passo consiste em apresentar uma forma simplética, \'omega\'!, sobre uma variedade simplética, M, como a forma curvatura da conexão abla de um brado linear, L, sobre M. As funções sobre M operam como seções de L. Mas o espaço de todas as seções é grande demais. Queremos considerar seções constantes em certa direção, com respeito a derivada covariante dada por abla, e para isso precisamos o conceito de polarizações, essas seções são chamadas de seções polarizadas. Para obter uma estrutura de espaco de Hilbert nestas seções, precisamos de certos objetos chamados de meias densidades. Além disso, também temos um empareamento sesquilinear entre seções de polarizações diferentes. Neste trabalho, primeiramente consideraremos o empareamento para seções polarizadas adaptadas a polarizações reais não transversais, como método para obter aplicações integrais entre estes espaços de Hilbert que em combinação com a convolução do par grupóide M x \' M BARRA\', pode definir um produto integral de funções definidas na variedade simplética. Este produto, no caso do plano euclidiano e do plano de Bieliavsky, coincide com produto de Weyl integral e o produto de Bieliavsky, respectivamente. Jáa no caso do plano hiperbólico, este tipo de polarizações reais não são transversais nem são não transversais, dessa forma, escolhemos o empareamento entre uma polarização real e uma polarização holomorfa do par grupóide, as quais são transversais, para obter um produto integral no plano hiperbólico, que no caso do plano euclidiano e o produto de Weyl / The geometric quantization is a method developed to provide a geometrical construction relating classical to quantum mechanics. The first step consists of realizing the symplectic form, \'omega\', on a symplectic manifold, M, as the curvature form of a line bundle, L, over M. The functions on M then operate as sections of L. However, the space of all sections of L is too large. One wants to consider sections which are constant in certain directions (polarized sections) and for that one needs to introduce the concept of a polarization. To get a Hilbert space structure on the polarized sections, one needs to consider objects known as half densities. In this work, first we consider a sesquilinear pairing between objects associated to certain different polarizations, which are nontransverse real polarizations, to obtain integral applications between their associated Hilbert spaces, and to use the convolution of the pair groupoid M x \' M BARRA\' to obtain an integral product of functions on M. In the euclidian plane case, we recover the integral Weyl product and, in the Bieliavsky plane case, we obtain the Bieliavsky product. On the other hand, for the hyperbolic plane, such real polarizations are neither transverse nor nontransverse, so we use the pairing between a real polarization and a holomorphic polarization, which are transverse polarizations on the pair groupoid, to obtain an integral product of functions on the hyperbolic plane. This same procedure, in the euclidian plane case, also produces the integral Weyl product
13

Topologically massive Yang-Mills theory and link invariants

Yildirim, Tuna 01 December 2014 (has links)
In this thesis, topologically massive Yang-Mills theory is studied in the framework of geometric quantization. This theory has a mass gap that is proportional to the topological mass m. Thus, Yang-Mills contribution decays exponentially at very large distances compared to 1/m, leaving a pure Chern-Simons theory with level number k. The focus of this research is the near Chern-Simons limit of the theory, where the distance is large enough to give an almost topological theory, with a small contribution from the Yang-Mills term. It is shown that this almost topological theory consists of two copies of Chern-Simons with level number k/2, very similar to the Chern-Simons splitting of topologically massive AdS gravity model. As m approaches to infinity, the split parts add up to give the original Chern-Simons term with level k. Also, gauge invariance of the split CS theories is discussed for odd values of k. Furthermore, a relation between the observables of topologically massive Yang-Mills theory and Chern-Simons theory is obtained. It is shown that one of the two split Chern-Simons pieces is associated with Wilson loops while the other with 't Hooft loops. This allows one to use skein relations to calculate topologically massive Yang-Mills theory observables in the near Chern-Simons limit. Finally, motivated with the topologically massive AdS gravity model, Chern-Simons splitting concept is extended to pure Yang-Mills theory at large distances. It is shown that pure Yang-Mills theory acts like two Chern-Simons theories with level numbers k/2 and -k/2 at large scales. At very large scales, these two terms cancel to make the theory trivial, as required by the existence of a mass gap.
14

Introduction à quelques aspects de quantification géométrique.

Aubin-Cadot, Noé 08 1900 (has links)
On révise les prérequis de géométrie différentielle nécessaires à une première approche de la théorie de la quantification géométrique, c'est-à-dire des notions de base en géométrie symplectique, des notions de groupes et d'algèbres de Lie, d'action d'un groupe de Lie, de G-fibré principal, de connexion, de fibré associé et de structure presque-complexe. Ceci mène à une étude plus approfondie des fibrés en droites hermitiens, dont une condition d'existence de fibré préquantique sur une variété symplectique. Avec ces outils en main, nous commençons ensuite l'étude de la quantification géométrique, étape par étape. Nous introduisons la théorie de la préquantification, i.e. la construction des opérateurs associés à des observables classiques et la construction d'un espace de Hilbert. Des problèmes majeurs font surface lors de l'application concrète de la préquantification : les opérateurs ne sont pas ceux attendus par la première quantification et l'espace de Hilbert formé est trop gros. Une première correction, la polarisation, élimine quelques problèmes, mais limite grandement l'ensemble des observables classiques que l'on peut quantifier. Ce mémoire n'est pas un survol complet de la quantification géométrique, et cela n'est pas son but. Il ne couvre ni la correction métaplectique, ni le noyau BKS. Il est un à-côté de lecture pour ceux qui s'introduisent à la quantification géométrique. D'une part, il introduit des concepts de géométrie différentielle pris pour acquis dans (Woodhouse [21]) et (Sniatycki [18]), i.e. G-fibrés principaux et fibrés associés. Enfin, il rajoute des détails à quelques preuves rapides données dans ces deux dernières références. / We review some differential geometric prerequisite needed for an initial approach of the geometric quantization theory, i.e. basic notions in symplectic geometry, Lie group, Lie group action, principal G-bundle, connection, associated bundle, almost-complex structure. This leads to an in-depth study of Hermitian line bundles that leads to an existence condition for a prequantum line bundle over a symplectic manifold. With these tools, we start a study of geometric quantization, step by step. We introduce the prequantization theory, which is the construction of operators associated to classical observables and construction of a Hilbert space. Some major problems arise when applying prequantization in concrete examples : the obtained operators are not exactly those expected by first quantization and the constructed Hilbert space is too big. A first correction, polarization, corrects some problems, but greatly limits the set of classical observables that we can quantize. This dissertation is not a complete survey of geometric quantization, which is not its goal. It's not covering metaplectic correction, neither BKS kernel. It's a side lecture for those introducing themselves to geometric quantization. First, it's introducing differential geometric concepts taken for granted in (Woodhouse [21]) and (Sniatycki [18]), i.e. principal G-bundles and associated bundles. Secondly, it adds details to some brisk proofs given in these two last references.
15

Some results on quantum projective planes /

Mori, Izuru. January 1998 (has links)
Thesis (Ph. D.)--University of Washington, 1998. / Vita. Includes bibliographical references (leaf [106]).
16

Introduction à quelques aspects de quantification géométrique

Aubin-Cadot, Noé 08 1900 (has links)
No description available.
17

Construção geométrica de \"star-product\" integral em espaços simpléticos simétricos não compactos / Geometric construction of \"star-product\" integral on symplectic symmetric spaces not compact

John Beiro Moreno Barrios 13 March 2013 (has links)
A quantização geométrica e um método desenvolvido para prover uma construção geométrica que relacione a mecânica clássica com a quântica. O primeiro passo consiste em apresentar uma forma simplética, \'omega\'!, sobre uma variedade simplética, M, como a forma curvatura da conexão abla de um brado linear, L, sobre M. As funções sobre M operam como seções de L. Mas o espaço de todas as seções é grande demais. Queremos considerar seções constantes em certa direção, com respeito a derivada covariante dada por abla, e para isso precisamos o conceito de polarizações, essas seções são chamadas de seções polarizadas. Para obter uma estrutura de espaco de Hilbert nestas seções, precisamos de certos objetos chamados de meias densidades. Além disso, também temos um empareamento sesquilinear entre seções de polarizações diferentes. Neste trabalho, primeiramente consideraremos o empareamento para seções polarizadas adaptadas a polarizações reais não transversais, como método para obter aplicações integrais entre estes espaços de Hilbert que em combinação com a convolução do par grupóide M x \' M BARRA\', pode definir um produto integral de funções definidas na variedade simplética. Este produto, no caso do plano euclidiano e do plano de Bieliavsky, coincide com produto de Weyl integral e o produto de Bieliavsky, respectivamente. Jáa no caso do plano hiperbólico, este tipo de polarizações reais não são transversais nem são não transversais, dessa forma, escolhemos o empareamento entre uma polarização real e uma polarização holomorfa do par grupóide, as quais são transversais, para obter um produto integral no plano hiperbólico, que no caso do plano euclidiano e o produto de Weyl / The geometric quantization is a method developed to provide a geometrical construction relating classical to quantum mechanics. The first step consists of realizing the symplectic form, \'omega\', on a symplectic manifold, M, as the curvature form of a line bundle, L, over M. The functions on M then operate as sections of L. However, the space of all sections of L is too large. One wants to consider sections which are constant in certain directions (polarized sections) and for that one needs to introduce the concept of a polarization. To get a Hilbert space structure on the polarized sections, one needs to consider objects known as half densities. In this work, first we consider a sesquilinear pairing between objects associated to certain different polarizations, which are nontransverse real polarizations, to obtain integral applications between their associated Hilbert spaces, and to use the convolution of the pair groupoid M x \' M BARRA\' to obtain an integral product of functions on M. In the euclidian plane case, we recover the integral Weyl product and, in the Bieliavsky plane case, we obtain the Bieliavsky product. On the other hand, for the hyperbolic plane, such real polarizations are neither transverse nor nontransverse, so we use the pairing between a real polarization and a holomorphic polarization, which are transverse polarizations on the pair groupoid, to obtain an integral product of functions on the hyperbolic plane. This same procedure, in the euclidian plane case, also produces the integral Weyl product
18

Geometric Quantization

Hedlund, William January 2017 (has links)
We formulate a process of quantization of classical mechanics, from a symplecticperspective. The Dirac quantization axioms are stated, and a satisfactory prequantizationmap is constructed using a complex line bundle. Using polarization, it isdetermined which prequantum states and observables can be fully quantized. Themathematical concepts of symplectic geometry, fibre bundles, and distributions are exposedto the degree to which they occur in the quantization process. Quantizationsof a cotangent bundle and a sphere are described, using real and K¨ahler polarizations,respectively.
19

Automorphismes hamiltoniens d'un produit star et opérateurs de Dirac Symplectiques / Hamiltonian automorphisms of a star product and symplectic Dirac operators

La Fuente Gravy, Laurent 25 September 2013 (has links)
Cette thèse est consacrée à l'étude de deux sujets de géométrie symplectique inspirés<p>de la physique mathématique. Les thèmes que nous développerons mettent en évidence certaines <p>connexions avec la topologie symplectique d'une part, la géométrie Riemannienne d'autre part.<p><p>Dans la partie 1, nous étudions la quantification par déformation formelle d'une variété <p>symplectique, à l'aide de produits star. Nous définissons le groupe des automorphimes<p>hamiltoniens d'un produit star formel. En nous inspirant d'idées de Banyaga, nous <p>identifions ce groupe comme étant le noyau d'un morphisme remarquable sur le groupe<p>des automorphismes du produit star. Nous relions certaines propriétés géométriques de <p>ce groupe d'automorphismes hamiltoniens à la topologie du groupe des difféomorphismes<p>hamiltoniens.<p><p>Dans la partie 2, nous étudions les opérateurs de Dirac symplectiques. Les ingrédients<p>nécessaires à leur construction (algèbre de Weyl, structures $Mp^c$, champs de spineurs <p>symplectiques, connexions symplectiques,) sont également utilisés en quantification géométrique et en<p>quantification par déformation formelle. Les opérateurs de Dirac symplectiques sont construits<p>de manière analogue à l'opérateur de Dirac de la géométrie Riemannienne. Une formule de Weitzenbock<p>lie les opérateurs de Dirac symplectiques à un opérateur elliptique $mathcal{P}$ d'ordre 2. Nous étudions<p>les noyaux de ces opérateurs de Dirac symplectiques et leur lien avec le noyau de P.<p>Sur l'espace hermitien symétrique $CP^n$, nous calculerons le spectre de $mathcal{P}$ et nous <p>prouverons un théorème de Hodge pour les opérateurs de Dirac-Dolbeault symplectiques.<p><p>/<p><p>In this thesis we study two topics of symplectic geometry inspired from mathematical physics.<p><p>Part 1 is devoted to the study of deformation quantization of symplectic manifolds. More precisely, we consider formal star products on a symplectic manifold. We define the group of Hamiltonian automorphisms of a formal star product. Following ideas of Banyaga, we describe this group as the kernel<p>of a morphism on the group of automorphisms of the star product. We relate geometric properties of the group of Hamiltonian automorphisms to the topology of the group of Hamiltonian diffeomorphisms. <p><p>Part 2 is devoted to the study of symplectic Dirac operators. The construction of those operators relies on many concepts used in geometric quantization and formal deformation quantization such as Weyl algebra, $Mp^c$ structures, symplectic spinors, symplectic connections, The construction of symplectic Dirac operators is analogous to the one of Dirac operators in Riemannian geometry. A Weitzenbock formula relates the symplectic Dirac operators to an elliptic operator $mathcal{P}$ of order 2. We study the kernels of the symplectic Dirac operators and relate them to the kernel of $mathcal{P}$. On the hermitian symmetric space <p>$CP^n$, we compute the spectrum of $mathcal{P}$ and we prove a Hodge theorem for the symplectic Dirac-Dolbeault operator. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
20

K-theoretic invariants in symplectic topology

Mezrag, Lydia 12 1900 (has links)
En employant des méthodes de la théorie de Chern-Weil, Reznikov produit une condition suffisante qui assure la non-trivialité de la projectivisation \( \mathbb{P}(E) \) d'un fibré vectoriel complexe en tant que fibré Hamiltonien. Dans le contexte de la quantification géométrique, Savelyev et Shelukhin introduisent un nouvel invariant des fibrés Hamiltoniens avec valeurs dans la K-théorie et étendent le résultat de Reznikov. Cet invariant est donné par l'indice d'Atiyah-Singer d'une famille d'opérateurs \( \text{Spin}^{c} \) de Dirac. Dans ce mémoire, on s'intéresse à des fibrés Hamiltoniens résultant d'un produit fibré et d'un produit cartésien d'une collection de fibrés projectifs complexes \( \mathbb{P}(E_1), \cdots, \mathbb{P}(E_r) \). En usant des mêmes méthodes que Shelukhin et Savelyev, on définit une famille d'opérateurs \( \text{Spin}^{c} \) de Dirac qui agissent sur les sections d'un fibré de Dirac canonique à valeurs dans un fibré pré-quantique. L'indice de famille produit un invariant de fibrés Hamiltoniens avec fibres données par un produit d'espaces projectifs complexes et permet de construire des exemples de fibrés Hamiltoniens non-triviaux. / Using methods of Chern-Weil Theory, Reznikov provides a sufficient condition for the non-triviality of the projectivization \( \mathbb{P}(E) \) of a complex vector bundle \( E \) as a Hamiltonian fibration. In the setting of geometric quantization, Savelyev and Shelukhin introduce a new invariant of Hamiltonian fibrations and a K-theoretic lift of Reznikov's result. This invariant is given by the Atiyah-Singer index of a family of \( \text{Spin}^{c} \)-Dirac operators. In this thesis, we consider Hamiltonian fibrations given by the Cartesian product and the fiber product of a collection of complex projective bundles \( \mathbb{P}(E_1), \cdots, \mathbb{P}(E_r) \). Using the same methods as Savelyev and Shelukhin, we define a family of \( \text{Spin}^{c} \)-Dirac operators acting on sections of a canonical Dirac bundle with values in a suitable prequantum fibration. The family index gives then an invariant of Hamiltonian fibrations with fibers given by a product of complex projective spaces and allows to construct examples of non-trivial Hamiltonian fibrations.

Page generated in 0.142 seconds