Spelling suggestions: "subject:"gfap"" "subject:"fap""
41 |
Ko-Expression des astroglialen GFAP- und des oligodendrozytären PLP-Promotors in Müllerzellen der Retina: Aktivierung durch Läsionen: Ko-Expression des astroglialen GFAP- und desoligodendrozytären PLP-Promotors in Müllerzellen der Retina:Aktivierung durch LäsionenLycke, Christian 26 June 2014 (has links)
Die Dissertation befasst sich mit der Untersuchung der Ko-Expression des GFAP- und des PLP-Promotors in Müllerzellen der Netzhaut transgener Mäuse. Die verwendete Mauslinie ist tripel-transgen für den GFAP- und den PLP-Promotor sowie für einen ROSA26-Reporter.
Durch die Quantifizierung der EYFP-Expression in Müllerzellen konnte gezeigt werden, dass es nach akuter ischämischer Schädigung sowie einer angeborenen retinalen Degeneration in Müllerzellen zu einer Aktivierung des oligodendrozytären PLP-Promotors kommt. Weiterhin wurde festgestellt, dass die Aktivierung des Transkriptionsfaktors Sox-9, der sowohl für die Entwicklung der Müllerzellen als auch für die Oligodendrogenese von entscheidender Rolle ist, mit dieser Promotoraktivierung korreliert. Diese Ergebnisse implizieren, dass Müllerzellen im Rahmen ihrer Stammzelleigenschaften in der Lage sind, auf embryonale
Entwicklungsprozesse, die auch die oligodendrozytäre Zellreihe beinhalten, zurückgreifen zu können.:Inhaltsverzeichnis ....................................................................................................................... 3
Bibliographische Darstellung ..................................................................................................... 5
Abkürzungsverzeichnis und Erläuterungen ................................................................................ 6
1 Einleitung ............................................................................................................................ 8
1.1 Die Retina als Teil des Auges ................................................................................................. 8
1.1.1 Aufbau .............................................................................................................................. 8
1.2 Die gliale Müllerzelle ............................................................................................................ 12
1.2.1 Definition und Morphologie der Müllerzellen ............................................................... 12
1.2.2 Funktion .......................................................................................................................... 13
1.2.3 Ursprung und Ontogenese der Müllerzelle ..................................................................... 14
1.3 Erkrankungen der Netzhaut .................................................................................................. 15
1.3.1 Akute Läsionen ............................................................................................................... 15
1.3.2 Chronische Erkrankungen der Netzhaut ......................................................................... 15
1.3.3 Die Rolle der Müllerzelle in der erkrankten Retina ....................................................... 16
1.4 Mausgenetik .......................................................................................................................... 18
1.4.1 Das Cre-loxP-System ..................................................................................................... 18
1.5 Pax-6 und Sox-9: Transkriptionsfaktoren spezifizieren das Zellschicksal ........................... 24
1.5.1 Die PAX-Familie ............................................................................................................ 24
1.5.2 SOX-9-Gene ................................................................................................................... 25
2 Ziele .................................................................................................................................. 26
3 Material und Methoden ..................................................................................................... 27
3.1 Material ................................................................................................................................. 27
3.1.1 Chemikalien .................................................................................................................... 27
3.1.2 Antikörper ....................................................................................................................... 27
3.1.3 Größenstandards ............................................................................................................. 28
3.1.4 Mauslinien ...................................................................................................................... 29
3.1.5 Geräte ............................................................................................................................. 31
3.2 Methoden .............................................................................................................................. 31
3.2.1 Genotypisierung transgener Mäuse ................................................................................ 31
3.2.2 Akute retinale Läsion durch Anlegen eines erhöhten Augeninnendrucks („high
intraocular pressure“, HIOP) .......................................................................................... 37
3.2.3 Herstellung und Fixierung der retinalen Gewebsproben ................................................ 37
3.2.4 Immunhistochemische Färbungen .................................................................................. 38
3.2.5 Mikroskopische Auswertung .......................................................................................... 39
3.2.6 Datenverarbeitung und Statistik ..................................................................................... 41
4 Ergebnisse ......................................................................................................................... 42
4.1 Technische Aspekte: Vergleich der Quantifizierung in Ganzpräparate und Querschnitte ... 42
4.1.1 Vergleich der Abbildungen ............................................................................................ 42
4.1.2 Auszählung Retina-Ganzpräparate ................................................................................. 43
4.1.3 Auszählung der Zellen in Querschnitten der Netzhaut ................................................... 45
4.1.4 Vergleich der Quantifizierung von Ganzpräparaten und Querschnitten ........................ 46
4.1.5 Quantifizierung ............................................................................................................... 48
4.2 Analyse der Reporterexpression in der Retina tripel-transgener Mäuse ............................... 49
4.2.1 Quantitative Auswertung GS-positiver Müllerzellen ..................................................... 49
4.2.2 Quantitative Auswertung EYFP-positiver Müllerzellen ................................................ 51
4.2.3 Auswertung des prozentualen Anteils der EYFP-positiven Müllerzellen ...................... 53
4.3 Auswertung der Transkriptionsfaktorexpression von Pax-6 und Sox-9 ............................... 56
4.3.1 Auswertung der Pax-6-positiven Müllerzellen ............................................................... 57
4.3.2 Auswertung der Sox-9-positiven Müllerzellen .............................................................. 60
5 Diskussion ......................................................................................................................... 63
5.1 Die GFAP-Expression in der Müllerzellgliose ..................................................................... 63
5.2 Auswertung und Vergleich der retinalen Ganzpräparate und Querschnitte ......................... 64
5.3 Die Untersuchung der Promotoraktivität nach retinaler Ischämie ........................................ 65
5.4 Die Untersuchung der Promotoraktivität bei angeborener retinaler Degeneration ............... 66
5.5 Die Rolle der Transkriptionsfaktoren Pax-6 und Sox-9 ........................................................ 68
5.5.1 Pax-6 ............................................................................................................................... 68
5.5.2 Sox-9 ............................................................................................................................... 69
5.6 Einordnung der Ergebnisse in die Zellbiologie der Müllerzelle ........................................... 72
6 Zusammenfassung ............................................................................................................. 74
7 Literaturverzeichnis .......................................................................................................... 77
8 Lebenslauf ......................................................................................................................... 83
9 Danksagung ....................................................................................................................... 84
10 Eigenständigkeitserklärung ............................................................................................... 85
|
42 |
Avaliação de parâmetros neuroquímicos em fatias de hipocampo de rato submetidas à privação de oxigênio e glicoseHansel, Gisele January 2009 (has links)
Mesmo a isquemia sendo a terceira causa de morte em países industrializados, os mecanismos relacionados a esta doença ainda continuam polêmicos e obscuros. Utilizou-se a técnica de privação de oxigênio e glicose (OGD) em fatias do hipocampo de rato para investigar parâmetros mitocondriais, neurais, astrogliais e metabólicos no período de isquemia e durante o período de reoxigenação. Os resultados mostraram uma diminuição na atividade mitocondrial durante o período isquêmico que foi mantido durante todo o período de reoxigenação. Analisando o sobrenadante destas fatias submetidas à OGD, foi observado que os níveis de LDH, NSE e GFAP se elevaram. Com relação aos níveis de lactato, verificou-se sua diminuição durante todos os períodos. Os níveis de S100B estavam elevados somente durante o período de reoxigenação. Este aumento pode ser tanto um mecanismo de neuroproteção desta proteína frente ao insulto ou ainda uma liberação por dano celular astrocitário. Além disso, foi observado um grande aumento nos níveis de glutamato durante a isquemia e este aumento retornou no período de reoxigenação. Por fim, houve uma diminuição na captação de glutamato somente no período de reoxigenação. Todos estes resultados podem ser conseqüência de uma hiper-estimulação dos receptores glutamatérgicos devido ao insulto isquêmico. Em resumo, nosso estudo mostrou alterações em diversos parâmetros neuroquímicos específicos tanto no período isquêmico quanto na reoxigenação, mostrando que cada tipo celular, reage diferentemente frente ao insulto isquêmico na técnica de OGD in vitro. / Stroke is the third cause of mortality in industrialized countries, and the mechanisms related to this disease are polemic and unclear. Oxygen and glucose deprivation (OGD) in acute rat hippocampal slices was performed to investigate mitochondrial, neural, astroglial and metabolic neurochemical parameters at different ischemic and reoxygenation periods. Results showed the mitochondrial activity decrease due energy failure during ischemic insult and reoxygenation time. In the supernatant medium, LDH, NSE and glutamate levels were increased and the lactate decrease by the lack of energy observed in the ischemic period. Parameters such as GFAP, S100B and glutamate uptake suffered alterations only at the reoxygenation period. These results have shown the vulnerability of neurons facing ischemic insult. Meanwhile, it was also observed a delayed injure of astrocytes only at reoxygenation time, which demonstrate the difference between cell types at OGD. In summary, our finding has shown altered at specific neurochemical parameters in OGD in vitro which features the ischemic episodes and reoxygenation periods.
|
43 |
Efeitos do exercício físico sobre a expressão da proteína glial fibrilar ácida (GFAP) e comportamento motor de ratos submetidos ao modelo de doença de Parkinson induzida por 6-OHDA / Exercise improves motor behavioral deficits and induces GFAP expression in 6-OHDA model of Parkinson’s diseaseDutra, Márcio Ferreira January 2009 (has links)
The aim of this study was to investigate whether exercise could improve motor behavioral deficits and alter expression of glial fibrillary acidic protein (GFAP) in dorsal striatum in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease (PD). To this end, animals were randomly divided into 4 groups: sham sedentary (SS, n = 7); sham trained (ST, n=8); lesioned sedentary (LS, n=8) and lesioned trained (LT, n = 8). Rats were unilaterally lesioned with 6-OHDA (10 μg/3 μg) injected into the left medial forebrain bundle and sham groups were only injected with vehicle solution. The treadmill training protocol consisted of running with progressive increase in velocity, 5 days/week, during 4 weeks. Behavioral tasks were applied to asses the motor abilities of all animals prior to 6-OHDA injection and at 8th and 29th days post-injection. The tyrosine hydroxylase (TH - in substantia nigra pars compacta) and GFAP (in dorsal striatum) immunostaining was evaluated by semiquantitative analysis of the intensity (optical density - OD). The 6-OHDA lesion decreased the OD of TH and increased the OD of GFAP. In addition, the 6-OHDA lesion increased the number of ipsilateral rotations induced by methylphenidate (40 mg/kg, i.p., 30 min) and caused motor behavioral deficits. On the other hand, the treadmill training resulted in an increase in maximal exercise capacity in both trained groups (ST and LT). The training was able to reduce the number of ipsilateral rotations and ameliorated the motor behavioral deficits on 8th and 29th days postlesion. Interestingly, the exercise led to a significant increase in OD of GFAP in the LT group while there was no such effect in ST group. Our results indicate that treadmill training can improve motor behavioral deficits and suggest that the effects of exercise may be directly or, indirectly, mediated by astrocytes, as an increase in GFAP was observed in the dorsal striatum. Nevertheless, these are the first data showing an increase in GFAP expression post-exercise in this model and further research is needed to determine the precise action of exercise on astrocytes in Parkinson’s disease.
|
44 |
Avaliação de parâmetros neuroquímicos em fatias de hipocampo de rato submetidas à privação de oxigênio e glicoseHansel, Gisele January 2009 (has links)
Mesmo a isquemia sendo a terceira causa de morte em países industrializados, os mecanismos relacionados a esta doença ainda continuam polêmicos e obscuros. Utilizou-se a técnica de privação de oxigênio e glicose (OGD) em fatias do hipocampo de rato para investigar parâmetros mitocondriais, neurais, astrogliais e metabólicos no período de isquemia e durante o período de reoxigenação. Os resultados mostraram uma diminuição na atividade mitocondrial durante o período isquêmico que foi mantido durante todo o período de reoxigenação. Analisando o sobrenadante destas fatias submetidas à OGD, foi observado que os níveis de LDH, NSE e GFAP se elevaram. Com relação aos níveis de lactato, verificou-se sua diminuição durante todos os períodos. Os níveis de S100B estavam elevados somente durante o período de reoxigenação. Este aumento pode ser tanto um mecanismo de neuroproteção desta proteína frente ao insulto ou ainda uma liberação por dano celular astrocitário. Além disso, foi observado um grande aumento nos níveis de glutamato durante a isquemia e este aumento retornou no período de reoxigenação. Por fim, houve uma diminuição na captação de glutamato somente no período de reoxigenação. Todos estes resultados podem ser conseqüência de uma hiper-estimulação dos receptores glutamatérgicos devido ao insulto isquêmico. Em resumo, nosso estudo mostrou alterações em diversos parâmetros neuroquímicos específicos tanto no período isquêmico quanto na reoxigenação, mostrando que cada tipo celular, reage diferentemente frente ao insulto isquêmico na técnica de OGD in vitro. / Stroke is the third cause of mortality in industrialized countries, and the mechanisms related to this disease are polemic and unclear. Oxygen and glucose deprivation (OGD) in acute rat hippocampal slices was performed to investigate mitochondrial, neural, astroglial and metabolic neurochemical parameters at different ischemic and reoxygenation periods. Results showed the mitochondrial activity decrease due energy failure during ischemic insult and reoxygenation time. In the supernatant medium, LDH, NSE and glutamate levels were increased and the lactate decrease by the lack of energy observed in the ischemic period. Parameters such as GFAP, S100B and glutamate uptake suffered alterations only at the reoxygenation period. These results have shown the vulnerability of neurons facing ischemic insult. Meanwhile, it was also observed a delayed injure of astrocytes only at reoxygenation time, which demonstrate the difference between cell types at OGD. In summary, our finding has shown altered at specific neurochemical parameters in OGD in vitro which features the ischemic episodes and reoxygenation periods.
|
45 |
Efeitos do exercício físico sobre a expressão da proteína glial fibrilar ácida (GFAP) e comportamento motor de ratos submetidos ao modelo de doença de Parkinson induzida por 6-OHDA / Exercise improves motor behavioral deficits and induces GFAP expression in 6-OHDA model of Parkinson’s diseaseDutra, Márcio Ferreira January 2009 (has links)
The aim of this study was to investigate whether exercise could improve motor behavioral deficits and alter expression of glial fibrillary acidic protein (GFAP) in dorsal striatum in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease (PD). To this end, animals were randomly divided into 4 groups: sham sedentary (SS, n = 7); sham trained (ST, n=8); lesioned sedentary (LS, n=8) and lesioned trained (LT, n = 8). Rats were unilaterally lesioned with 6-OHDA (10 μg/3 μg) injected into the left medial forebrain bundle and sham groups were only injected with vehicle solution. The treadmill training protocol consisted of running with progressive increase in velocity, 5 days/week, during 4 weeks. Behavioral tasks were applied to asses the motor abilities of all animals prior to 6-OHDA injection and at 8th and 29th days post-injection. The tyrosine hydroxylase (TH - in substantia nigra pars compacta) and GFAP (in dorsal striatum) immunostaining was evaluated by semiquantitative analysis of the intensity (optical density - OD). The 6-OHDA lesion decreased the OD of TH and increased the OD of GFAP. In addition, the 6-OHDA lesion increased the number of ipsilateral rotations induced by methylphenidate (40 mg/kg, i.p., 30 min) and caused motor behavioral deficits. On the other hand, the treadmill training resulted in an increase in maximal exercise capacity in both trained groups (ST and LT). The training was able to reduce the number of ipsilateral rotations and ameliorated the motor behavioral deficits on 8th and 29th days postlesion. Interestingly, the exercise led to a significant increase in OD of GFAP in the LT group while there was no such effect in ST group. Our results indicate that treadmill training can improve motor behavioral deficits and suggest that the effects of exercise may be directly or, indirectly, mediated by astrocytes, as an increase in GFAP was observed in the dorsal striatum. Nevertheless, these are the first data showing an increase in GFAP expression post-exercise in this model and further research is needed to determine the precise action of exercise on astrocytes in Parkinson’s disease.
|
46 |
Avaliação de parâmetros neuroquímicos em fatias de hipocampo de rato submetidas à privação de oxigênio e glicoseHansel, Gisele January 2009 (has links)
Mesmo a isquemia sendo a terceira causa de morte em países industrializados, os mecanismos relacionados a esta doença ainda continuam polêmicos e obscuros. Utilizou-se a técnica de privação de oxigênio e glicose (OGD) em fatias do hipocampo de rato para investigar parâmetros mitocondriais, neurais, astrogliais e metabólicos no período de isquemia e durante o período de reoxigenação. Os resultados mostraram uma diminuição na atividade mitocondrial durante o período isquêmico que foi mantido durante todo o período de reoxigenação. Analisando o sobrenadante destas fatias submetidas à OGD, foi observado que os níveis de LDH, NSE e GFAP se elevaram. Com relação aos níveis de lactato, verificou-se sua diminuição durante todos os períodos. Os níveis de S100B estavam elevados somente durante o período de reoxigenação. Este aumento pode ser tanto um mecanismo de neuroproteção desta proteína frente ao insulto ou ainda uma liberação por dano celular astrocitário. Além disso, foi observado um grande aumento nos níveis de glutamato durante a isquemia e este aumento retornou no período de reoxigenação. Por fim, houve uma diminuição na captação de glutamato somente no período de reoxigenação. Todos estes resultados podem ser conseqüência de uma hiper-estimulação dos receptores glutamatérgicos devido ao insulto isquêmico. Em resumo, nosso estudo mostrou alterações em diversos parâmetros neuroquímicos específicos tanto no período isquêmico quanto na reoxigenação, mostrando que cada tipo celular, reage diferentemente frente ao insulto isquêmico na técnica de OGD in vitro. / Stroke is the third cause of mortality in industrialized countries, and the mechanisms related to this disease are polemic and unclear. Oxygen and glucose deprivation (OGD) in acute rat hippocampal slices was performed to investigate mitochondrial, neural, astroglial and metabolic neurochemical parameters at different ischemic and reoxygenation periods. Results showed the mitochondrial activity decrease due energy failure during ischemic insult and reoxygenation time. In the supernatant medium, LDH, NSE and glutamate levels were increased and the lactate decrease by the lack of energy observed in the ischemic period. Parameters such as GFAP, S100B and glutamate uptake suffered alterations only at the reoxygenation period. These results have shown the vulnerability of neurons facing ischemic insult. Meanwhile, it was also observed a delayed injure of astrocytes only at reoxygenation time, which demonstrate the difference between cell types at OGD. In summary, our finding has shown altered at specific neurochemical parameters in OGD in vitro which features the ischemic episodes and reoxygenation periods.
|
47 |
Efeitos do exercício físico sobre a expressão da proteína glial fibrilar ácida (GFAP) e comportamento motor de ratos submetidos ao modelo de doença de Parkinson induzida por 6-OHDA / Exercise improves motor behavioral deficits and induces GFAP expression in 6-OHDA model of Parkinson’s diseaseDutra, Márcio Ferreira January 2009 (has links)
The aim of this study was to investigate whether exercise could improve motor behavioral deficits and alter expression of glial fibrillary acidic protein (GFAP) in dorsal striatum in a 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease (PD). To this end, animals were randomly divided into 4 groups: sham sedentary (SS, n = 7); sham trained (ST, n=8); lesioned sedentary (LS, n=8) and lesioned trained (LT, n = 8). Rats were unilaterally lesioned with 6-OHDA (10 μg/3 μg) injected into the left medial forebrain bundle and sham groups were only injected with vehicle solution. The treadmill training protocol consisted of running with progressive increase in velocity, 5 days/week, during 4 weeks. Behavioral tasks were applied to asses the motor abilities of all animals prior to 6-OHDA injection and at 8th and 29th days post-injection. The tyrosine hydroxylase (TH - in substantia nigra pars compacta) and GFAP (in dorsal striatum) immunostaining was evaluated by semiquantitative analysis of the intensity (optical density - OD). The 6-OHDA lesion decreased the OD of TH and increased the OD of GFAP. In addition, the 6-OHDA lesion increased the number of ipsilateral rotations induced by methylphenidate (40 mg/kg, i.p., 30 min) and caused motor behavioral deficits. On the other hand, the treadmill training resulted in an increase in maximal exercise capacity in both trained groups (ST and LT). The training was able to reduce the number of ipsilateral rotations and ameliorated the motor behavioral deficits on 8th and 29th days postlesion. Interestingly, the exercise led to a significant increase in OD of GFAP in the LT group while there was no such effect in ST group. Our results indicate that treadmill training can improve motor behavioral deficits and suggest that the effects of exercise may be directly or, indirectly, mediated by astrocytes, as an increase in GFAP was observed in the dorsal striatum. Nevertheless, these are the first data showing an increase in GFAP expression post-exercise in this model and further research is needed to determine the precise action of exercise on astrocytes in Parkinson’s disease.
|
48 |
Green and red fluorescent protein tagging of endogenous proteins in glioblastoma using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 systemLindvall, Jenny January 2016 (has links)
Glioblastoma multiforme is the most malignant primary brain tumor that affects adults, recognized by the World Health Organization as an aggressive grade IV astrocytoma. Patients diagnosed with this type of tumor are left with a poor prognosis even with the most advanced treatment available. The cancer is quite heterogeneous and is typically categorized into four different subtypes depending on genetic aberrations and patient characteristics. Furthermore, researchers have discovered a subpopulation of glioblastoma cells, known as cancer stem cells, which are thought to be resistant to current therapies and responsible for tumor reoccurrence and relapse. Previous studies, in addition to this one, have found that the differentiation of glioblastoma cells downregulate nestin protein expression, the selected stem cell marker, and upregulate glial fibrillary acid protein expression, the selected differentiation marker, using immunofluorescence. Thus, one alternative treatment option is to understand the mechanism underlying the differentiation of cancer stem cells. Four cell cultures representative of each glioblastoma subtype will be endogenously tagged using the genome editing system, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9). The representative stem cell marker, nestin, will be tagged with a green fluorescent protein, while the chosen differentiation marker, glial fibrillary acid protein, will be tagged with a red fluorescent protein. Several drugs were screened to analyze whether the drugs had a differentiation effect on the glioblastoma cells. As a result, strong evidence indicated that bone morphogenetic protein four upregulated glial fibrillary acid protein expression levels to the same extent as the differentiation control media using 5% fetal bovine serum. The goal of this study is to establish a method to directly monitor the differentiation process of glioblastoma cells as a novel molecular screening method. In this case, all glioblastoma cells, even the ones resistant to treatment, can be eliminated through an initial “pre-treatment” by forcing differentiation of cancer stem cells, making the cells more susceptible to the chemotherapy drugs. In the long run, glioblastoma patients would have a chance at a more positive prognosis; a longer life that is free of glioblastoma. / Master Thesis in Applied Biotechnology
|
49 |
A Meta-Analysis: Significance of Biofluid Biomarkers in Sports-Related Traumatic Brain InjuryOliveira, Stephanie 01 January 2022 (has links)
Background: To reduce the reliance on clinical judgment for the regulation of sports-related traumatic brain injury, identifying and measuring objective to biofluid biomarkers can provide important insight into the diagnosis (Determining the type and origin of a disorder) and prognosis (Determining the chance of survival of a disorder) of SR-TBIs. A biomarker is a qualitative or quantitative measurement that provides a measure of a subject’s physiological or pathological condition at a specific time or during a disease state. Recent literature has suggested that biomarkers can help in the screening of patients exhibiting symptoms of mild traumatic brain injury (mTBI). Despite insights from recent research, it is not clear whether biomarkers and assessments of sports-related TBI are well-aligned. The objective of this study sought to review the current literature on predictive values of biomarkers: glial fibrillary acidic protein (GFAP), calcium channel binding protein S100 subunit beta (S100β), total-tau and neuron-specific enolase (NSE) for sports-related Traumatic Brain Injuries (SR-TBIs) to improve comprehension of biological and clinical contexts that can help evaluate the use of these biomarkers in sports-related TBIs and their potential function.
Methods: The study was reported based on guidelines recommended by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA: 2020 Edition) of 8 studies related to the assessment of biomarkers concerning SR-TBI. Literature searches were carried out on PubMed, Google Scholar, ScienceDirect, and ResearchGate. With an evidentiary table, the characteristics of the studies included in the meta-analysis (n = 14 studies) were presented. A significant role for biomarkers in the management of mild traumatic brain injury is suggested by the results of this analysis. From the literature, the significance of biomarkers in SR-TBI was identified along with the biomarkers that can facilitate more accurate clinical decision-making.
Results:The initial search resulted in 73 articles, and the application of exclusion criteria and removal of duplicates resulted in the inclusion of 14 articles. Eight of the included studies were ([26], [27], [28], [30], [34], [39], [40], [41]), three were cohort studies ([25], [37], [45]) one was a pilot study [32], one interview, and an observational study [44]. The review was carried out to determine the efficacy of Biomarkers GFAP, S100β, Total-tau, and NSE to help in the screening of mild traumatic brain injury (mTBI) in patients showing symptoms. The focus is on athletes presenting at an emergency department with possible mTBI requiring a CT scan based on the application of a clinical algorithm. A forest plot was utilized, and the studies had low heterogeneity or variability (P
Conclusions: It was established that the utility of biofluid biomarkers in the prediction of mild traumatic brain injury due to SRC is significant when the markers are used in large combinations. The four biofluid biomarkers (S100β, total-tau, GFAP, NSE) under study have strong predictive ability for mTBI, and their use can reduce the number of CT scans among TBI patients participating in athletic activities. Although preliminary evidence shows that other diagnostic treatments may help to mitigate traumatic brain injury sequelae, clinical trials are needed to further test their efficacy, specifically with diverse and high-risk populations. Luckily, the research on mTBI biomarkers is rapidly advancing, and should these biomarkers be better established clinically, they could easily hold many important roles.
|
50 |
The effect of weight loss on circulating biomarkers of brain health and executive functionHerra, Lindsay Marie 04 June 2020 (has links)
Obesity is associated with deficits in cognitive function, particularly within the domain of executive function (EF). EF refers to higher order cognitive processes that regulate our ability to sustain attention, inhibit subconscious tendencies, remember and manipulate information for immediate use, and remain cognitively flexible. Deficits in EF in overweight and obese individuals may impact the success of weight loss and maintenance efforts. Therefore, understanding the biological links between obesity and EF, as well as the ability to reverse EF deficits with weight loss, is imperative. The first study aimed to determine the effect of weight loss in overweight and obese, middle-aged and older adults on serum brain-derived neurotrophic fact (BDNF), S100 calcium binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Serum samples (n=21; 50-75 years, BMI 25-40 kg/m2) were pooled from two prior weight loss studies. Fasting blood measurements were taken before and after 8- or 12-weeks of hypocaloric diet-induced weight loss (1200 or 1500 kcal/d). Body Mass Index (BMI), body weight, waist circumference, and percent body fat (All p<0.001) decreased with weight loss. Serum BDNF (p=0.871), S100B (p=0.898), and GFAP (p=0.506) did not change following weight loss. The second study aimed to determine the correlation between the magnitude of change in serum BDNF, S100B, and GFAP and the magnitude of improvement in EF performance on three computer-based tests. Participants (n=8; 50-75 years, BMI 25-40 kg/m2) completed 4-weeks of hypocaloric diet-induced weight loss (1200 or 1500 kcal/d), followed by 4-weeks of weight maintenance (hypocaloric diet + steps/d goal). Fasting blood and EF measurements were completed at baseline, and weeks 4 and 8. BMI (p=0.001), body weight (p=0.001), waist circumference (p=0.002), and percent body fat (p=0.001) decreased from baseline to week 8. Serum BDNF (p=0.359), S100B (p=0.277), and GFAP (p=0.585) did not change following weight loss. Go/No-Go (GNG) errors of commission (p=0.009) and AX-Continuous Performance Test (AX-CPT) correct response time (p=0.041) decreased following the weight loss. The change in serum GFAP was inversely correlated with GNG errors of omission (r=-0.716, p=0.046) and AX-CPT correct hits (r=-0.737, p=0.037), and positively correlated with AX-CPT correct response time (r=0.859, p=0.006). In conclusion, although weight loss does not influence serum BDNF, S100B, or GFAP levels, it may have a positive effect on inhibitory control in overweight and obese, middle-aged and older adults. Further research is needed to understand the relationship between serum BDNF, S100B, and GFAP and executive function. / Master of Science / Obesity is associated with lower brain function, particularly in executive function (EF). EF refers to advanced thought processes that help to maintain focus, practice self-control, solve problems, and easily switch between tasks. Lower EF in individuals with overweight and obesity may impact the success of weight loss and maintenance efforts. Because of this, understanding body processes that may link obesity and lower EF, as well as the ability to improve EF with weight loss, is very important. The first study aimed to determine the effect of weight loss on blood proteins responsible for brain health: brain-derived neurotrophic fact (BDNF), S100 calcium binding protein B (S100B), and glial fibrillary acidic protein (GFAP). Twenty-one blood samples from overweight and obese, middle-aged and older adults were combined from two completed weight loss studies. In these studies, blood was measured before and after 8- or 12-weeks of a weight loss (low calorie diet;1200 or 1500 Calories per day). Body Mass Index (BMI), body weight, waist circumference, and percent body fat all decreased with weight loss; however, levels of BDNF, S100B, and GFAP in the blood did not change. The second study aimed to determine the relationship between blood BDNF, S100B, and GFAP and performance on three computer-based tests of EF before and after weight loss. Eight overweight and obese, middle-aged and older adults completed 4-weeks of weight loss (low-calorie diet; 1200 or 1500 Calories per day), followed by 4-weeks of weight maintenance. BMI, body weight, waist circumference, and percent body fat all decreased following the weight loss and maintenance intervention (week 8). Blood BDNF, S100B, and GFAP levels did not change, but performance on two EF measures improved: participants made less errors of commission (doing something when not supposed to) and had faster reaction time following the intervention, indicating better self-control. Additionally, greater increases in GFAP were associated with less errors of omission (not doing something when supposed to), fewer correct responses, and slower reaction time. In conclusion, although weight loss did not affect blood BDNF, S100B, or GFAP levels, it may improve self-control in overweight and obese, middle-aged and older adults. Further research is needed to understand the relationship between weight loss, blood proteins of brain health, and EF.
|
Page generated in 0.0425 seconds