• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 33
  • Tagged with
  • 33
  • 33
  • 33
  • 33
  • 33
  • 33
  • 28
  • 28
  • 21
  • 12
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Fundamental parameters of QCD from non-perturbative methods for two and four flavors

Marinkovic, Marina 25 March 2014 (has links)
Die nicht perturbative Formulierung der Quantenchromodynamik (QCD) auf dem vierdimensionalen euklidischen Gitter in Zusammenhang mit der sogenannten Finite-Size-Scaling Methode ermoeglicht die nicht-perturbative Renormierung der QCD-Parameter. Um praezise Vorhersagen aus der Gitter-QCD zu erhalten, ist es noetig, die dynamischen Fermion-Freiheitsgrade in den Gitter-QCD-Simulationen zu beruecksichtigen. Wir betrachten QCD mit zwei und vier O(a)-verbesserten Wilson-Quark-Flavours, wobei deren Masse degeneriert ist. In dieser Dissertation verbessern wir die vorhandenen Bestimmungen des fundamentalen Parameters der Zwei- und Vier-Flavor-QCD. In der Vier-Flavor-Theorie berechnen wir den praezisen Wert des Lambda-Parameters in Einheiten der Skale Lmax, welche im hadronischen Bereich definiert ist. Zudem geben wir auch die praezise Bestimmung der laufenden Schoedinger-Funktional-Kopplung in Vier-Flavor-Theorie an sowie deren Vergleich zu perturbativen Resultaten. Die Monte-Carlo Simulationen der Gitter-QCD in der Schroedinger-Funktional-Formulierung wurden mittels der plattformunabhaengigen Software Schroedinger-Funktional-Mass-Preconditioned- Hybrid-Monte-Carlo (SF-MP-HMC) durchgefuehrt, die als Teil dieses Projektes entwickelt wurde. Schliesslich berechnen wir die Masse des Strange-Quarks und den Lambda-Parameter in Zwei-Flavor-Theorie, wobei die voll-kontrollierte Kontinuums- und chirale Extrapolation zum physikalischen Punkt durchgefuehrt wurden. Um dies zu erreichen, entwickeln wir eine universale Software fuer Simulationen der zwei Wilson-Fermionen-Flavor mit periodischen Randbedingungen, namens Mass-Preconditioned-Hybrid-Monte-Carlo (MP-HMC). Die MP-HMC wird verwendet um Simulationen mit kleinen Gitterabstaenden und in der Naehe der physikalischen Pionmasse ausfuehrlich zu untersuchen. / The non-perturbative formulation of Quantumchromodynamics (QCD) on a four dimensional space-time Euclidean lattice together with the finite size techniques enable us to perform the renormalization of the QCD parameters non-perturbatively. In order to obtain precise predictions from lattice QCD, one needs to include the dynamical fermions into lattice QCD simulations. We consider QCD with two and four mass degenerate flavors of O(a) improved Wilson quarks. In this thesis, we improve the existing determinations of the fundamental parameters of two and four flavor QCD. In four flavor theory, we compute the precise value of the Lambda parameter in the units of the scale Lmax defined in the hadronic regime. We also give the precise determination of the Schroedinger functional running coupling in four flavour theory and compare it to the perturbative results. The Monte Carlo simulations of lattice QCD within the Schroedinger Functional framework were performed with a platform independent program package Schroedinger Funktional Mass Preconditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this project. Finally, we compute the strange quark mass and the Lambda parameter in two flavour theory, performing a well-controlled continuum limit and chiral extrapolation. To achieve this, we developed a universal program package for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid Monte Carlo (MP-HMC), which we used to run large scale simulations on small lattice spacings and on pion masses close to the physical value.
32

New attempts for error reduction in lattice field theory calculations

Volmer, Julia Louisa 23 August 2018 (has links)
Gitter QCD ist ein erfolgreiches Instrument zur nicht-perturbativen Berechnung von QCD Observablen. Die hierfür notwendige Auswertung des QCD Pfadintegrals besteht aus zwei Teilen: Zuerst werden Stützstellen generiert, an denen danach das Pfadintegral ausgewertet wird. In der Regel werden für den ersten Teil Markov-chain Monte Carlo (MCMC) Methoden verwendet, die für die meisten Anwendungen sehr gute Ergebnisse liefern, aber auch Probleme wie eine langsame Fehlerskalierung und das numerische Vorzeichenproblem bergen. Der zweite Teil beinhaltet die Berechnung von Quark zusammenhängenden und unzusammenhängenden Diagrammen. Letztere tragen maßgeblich zu physikalischen Observablen bei, jedoch leidet deren Berechnung an großen Fehlerabschätzungen. In dieser Arbeit werden Methoden präsentiert, um die beschriebenen Schwierigkeiten in beiden Auswertungsteilen des QCD Pfadintegrals anzugehen und somit Observablen effizienter beziehungsweise genauer abschätzen zu können. Für die Berechnung der unzusammenhängenden Diagramme haben wir die Methode der exakten Eigenmodenrekonstruktion mit Deflation getestet und konnten eine 5.5 fache Verbesserung der Laufzeit erreichen. Um die Probleme von MCMC Methoden zu adressieren haben wir die rekursive numerische Integration zur Vereinfachung von Integralauswertungen getestet. Wir haben diese Methode, kominiert mit einer Gauß-Quadraturregel, auf den eindimensionalen quantenmechanischen Rotor angewandt und konnten exponentiell skalierende Fehlerabschätzungen erreichen. Der nächste Schritt ist eine Verallgemeinerung zu höheren Raumzeit Dimensionen. Außerdem haben wir symmetrisierte Quadraturregeln entwickelt, um das Vorzeichenproblem zu umgehen. Wir haben diese Regeln auf die eindimensionale QCD mit chemischem Potential angewandt und konnten zeigen, dass sie das Vorzeichenproblem beseitigen und sehr effizient auf Modelle mit einer Variablen angewendet werden können. Zukünftig kann die Effizienz für mehr Variablen verbessert werden. / Lattice QCD is a very successful tool to compute QCD observables non-perturbatively from first principles. The therefore needed evaluation of the QCD path integral consists of two parts: first, sampling points are generated at which second, the path integral is evaluated. The first part is typically achieved by Markov-chain Monte Carlo (MCMC) methods which work very well for most applications but also have some issues as their slow error scaling and the numerical sign-problem. The second part includes the computation of quark connected and disconnected diagrams. Improvements of the signal-to-noise ratio have to be found since the disconnected diagrams, though their estimation being very noisy, contribute significantly to physical observables. Methods are proposed to overcome the aforementioned difficulties in both parts of the evaluation of the lattice QCD path integral and therefore to estimate observables more efficiently and more accurately. For the computation of quark disconnected diagrams we tested the exact eigenmode reconstruction with deflation method and found that this method resulted in a 5.5-fold reduction of runtime. To address the difficulties of MCMC methods, we tested the recursive numerical integration method, which simplifies the evaluation of the integral. We applied the method in combination with a Gauss quadrature rule to the one-dimensional quantum-mechanical rotor and found that we can compute error estimates that scale exponentially to the correct result. A generalization to higher space-time dimensions can be done in the future. Additionally, we developed the symmetrized quadrature rules to address the sign-problem. We applied them to the one-dimensional QCD with a chemical potential and found that this method is capable of overcoming the sign-problem completely and is very efficient for models with one variable. Improvements of the efficiency for multi-variable scenarios can be made in the future.
33

Hadronic corrections to electroweak observables from twisted mass lattice QCD

Pientka, Grit 16 September 2015 (has links)
Für verschiedene Richtgrößen, die untersucht werden, um Hinweise auf Neue Physik jenseits des Standardmodells der Teilchenphysik zu finden, stellt die Gitter-QCD stellt derzeit den einzigen Ab-initio-Zugang für die Berechnung von nichtperturbativen hadronischen Beiträgen dar. Zu diesen Observablen gehören die anomalen magnetischen Momenten der Leptonen und das Laufen der elektroschwachen Kopplungskonstanten. Wir bestimmen den führenden QCD-Beitrag zum anomalen magnetischen Moment des Myons mit Hilfe einer Gitter-QCD-Rechnung auf Ensemblen, die Nf=2+1+1 dynamische Twisted-Mass-Fermionen berücksichtigen. Durch die Betrachtung aktiver up, down, strange and charm Quarks können erstmalig Gitter-QCD-Daten für die Myonanomalie direkt mit phänomenologischen Resultaten verglichen werden, da letztere bei der derzeitigen Genauigkeit sensitiv auf die ersten beiden Quarkgenerationen sind. Unlängst wurde darauf hingewiesen, dass es auch möglich sein könnte Beiträge Neuer Physik durch verbesserte Messungen der anomalen magnetischen Momente des Elektrons und des Tauons nachzuweisen. Aus diesem Grund berechnen wir auch deren führende QCD-Beiträge, was gleichzeitig eine Überprüfung des Wertes für das Myon liefert. Zusätzlich nutzen wir die gewonnenen Daten, um den führenden hadronischen Beitrag zum Laufen der Feinstrukturkonstante zu berechnen. Darüber hinaus zeigen wir, dass sogar für den schwachen Mischungswinkel der führende QCD-Beitrag mit Hilfe dieser Daten berechnet werden kann. Dadurch identifizieren wir eine neue grundlegende Observable für die Suche nach Neuer Physik, deren hadronische Beiträge mit Hilfe der Gitter-QCD beschafft werden können. Mit den Resultaten dieser Arbeit ist es uns gelungen ungeeignete Herangehensweisen der phänomenologisch notwendigen Flavourseparation auszuschließen und somit direkt die derzeit präziseren phänomenologischen Bestimmungen dieser bedeutsamen physikalischen Größe zu unterstützen. / For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating Nf=2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.

Page generated in 0.035 seconds