• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 11
  • 1
  • 1
  • Tagged with
  • 22
  • 22
  • 13
  • 10
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Global Dynamics Of The Local And Nonlocal Patlak-keller-segel Chemotaxis Systems

January 2014 (has links)
acase@tulane.edu
2

On some nonlinear partial differential equations for classical and quantum many body systems

Marahrens, Daniel January 2012 (has links)
This thesis deals with problems arising in the study of nonlinear partial differential equations arising from many-body problems. It is divided into two parts: The first part concerns the derivation of a nonlinear diffusion equation from a microscopic stochastic process. We give a new method to show that in the hydrodynamic limit, the particle densities of a one-dimensional zero range process on a periodic lattice converge to the solution of a nonlinear diffusion equation. This method allows for the first time an explicit uniform-in-time bound on the rate of convergence in the hydrodynamic limit. We also discuss how to extend this method to the multi-dimensional case. Furthermore we present an argument, which seems to be new in the context of hydrodynamic limits, how to deduce the convergence of the microscopic entropy and Fisher information towards the corresponding macroscopic quantities from the validity of the hydrodynamic limit and the initial convergence of the entropy. The second part deals with problems arising in the analysis of nonlinear Schrödinger equations of Gross-Pitaevskii type. First, we consider the Cauchy problem for (energy-subcritical) nonlinear Schrödinger equations with sub-quadratic external potentials and an additional angular momentum rotation term. This equation is a well-known model for superfluid quantum gases in rotating traps. We prove global existence (in the energy space) for defocusing nonlinearities without any restriction on the rotation frequency, generalizing earlier results given in the literature. Moreover, we find that the rotation term has a considerable influence in proving finite time blow-up in the focusing case. Finally, a mathematical framework for optimal bilinear control of nonlinear Schrödinger equations arising in the description of Bose-Einstein condensates is presented. The obtained results generalize earlier efforts found in the literature in several aspects. In particular, the cost induced by the physical work load over the control process is taken into account rather then often used L^2- or H^1-norms for the cost of the control action. We prove well-posedness of the problem and existence of an optimal control. In addition, the first order optimality system is rigorously derived. Also a numerical solution method is proposed, which is based on a Newton type iteration, and used to solve several coherent quantum control problems.
3

Critical exponents for semilinear Tricomi-type equations

He, Daoyin 16 September 2016 (has links)
No description available.
4

Etude qualitative de modèles dispersifs / Qualitative study of dispersive models

Darwich, Mohamad 25 June 2013 (has links)
Dans cette thèse nous nous intéressons aux propriétés qualitatives des solutions de quelques équations d’ondes en milieux dispersifs ou dispersifs-dissipatifs. Dans le premier chapitre, nous étudions l’explosion de solutions dans le régime log-log et l’existence globale pour le problème de Cauchy de l’équation de Schrödinger L2-critique amortie. Dans un second chapitre, nous considérons l’équation de Schrödinger L2-critique avec un amortissement non linéaire. Selon la puissance du terme d’amortissement, nous montrons l’existence globale ou l’explosion en régime log-log. Dans le troisième chapitre, nous étudions le problème de Cauchy pour l’équation de Kadomtsev-Petviashvili-Burgers-I (KPBI) en deux dimensions,nous montrons que le problème est localement bien posé dans Hs(R2) pour tout s > -½, et que l’existence est globale dans L2(R2) sans aucune condition sur la donnée initiale. Dans le dernier chapitre, nous considèrons l’équation d’Ostrovsky sur le cercle, et nous construisons des mesures invariantes par le flot selon les quantitées conservées par cette équation. / This thesis deals with the qualitative properties of solutions to some wave equations in dispersive or dispersive-dissipative media. In the first chapter, we study the blowup in the log-log regime and global existence of solutions to the Cauchy problem for the L2-critical damped nonlinear Schrödinger equation. In the second chapter, we consider the Cauchy problem for the L2-critical nonlinear Schrödinger equation with a nonlinear damping. According to the power of the damping term, we prove the global existence or the existence of finite time blowup dynamics with a log-log blow-up law. In the third chapter, we study the Cauchy problem for the Kadomtsev-Petviashvili-Burgers-I (KPBI) equations in two dimensions. We show that the problem is locally and globally well posed in Hs(R2) for any s > -½ , and that the existence is global in L2(R2) without any condition on the initial data. In the last chapter, we consider the Ostrovsky equation on the circle. We construct invariant measures under the flow for the conserved quantities of the equation.
5

Existence and Number of Global Solutions to Model Nonlinear Partial Differential Equations

Galstyan, Anahit 13 July 2005 (has links)
No description available.
6

Étude de quelques équations d'ondes en milieux dispersifs ou dispersifs-dissipatifs / On some wave equations in dispersive or dispersive-dissipative media

Vento, Stéphane 02 December 2008 (has links)
Dans cette thèse nous nous intéressons aux propriétés qualitatives et quantitatives des solutions de quelques équations d'ondes en milieux dispersifs ou dispersifs-dissipatifs. Dans une première partie, nous étudions le problème de Cauchy associé aux équations de Benjamin-Ono généralisées. A l'aide de transformées de jauge, combinées avec des outils d'analyse harmonique, nous prouvons des résultats concernant le caractère localement bien posé pour des données initiales de régularité minimale dans l'échelle des espaces de Sobolev. Dans une seconde partie, nous étudions le problème de Cauchy pour des versions dissipatives des équations de Benjamin-Ono et de Korteweg-de Vries. Nous mettons en évidence l'influence des effets dissipatifs sur ces équations en donnant des résultats optimaux sur leur caractère bien ou mal posé. Ceux-ci sont obtenus en travaillant dans des espaces de type Bourgain adaptés à la partie dispersive-dissipative. Pour finir nous étudions le comportement asymptotique des solutions des équations de KdV dissipatives, lorsque celles-ci existent pour tout temps, en calculant explicitement les premiers termes du développement asymptotique dans de nombreux espaces de Sobolev / This thesis deals with the qualitative and quantitative properties of solutions to some wave equations in dispersive or dispersive-dissipative media. In the first part, we study the Cauchy problem for the generalized Benjamin-Ono equations. By means of gauge transforms combined with some harmonic analysis tools, we prove some local well-posedness results for initial data with minimal regularity in Sobolev spaces. In the second part, we study the Cauchy problem for some dissipative versions of the Benjamin-Ono and Korteweg-de Vries equations. We show the influence of the dissipative effects and prove sharp well and ill-posedness results. This is obtained by working in suitable Bourgain's spaces, adapted to the dispersive-dissipative part of the equation. Finally, we study the asymptotic behavior of solutions to the dissipative KdV equations. We explicitly compute the first terms of the asymptotic expansion in Sobolev spaces
7

Analyse asymptotique de systèmes hyperboliques quasi-linéaires du premier ordre / Asymptotic analysis of first-order quasilinear hyperbolic systems

Wasiolek, Victor 29 May 2015 (has links)
Les systèmes hyperboliques interviennent dans de nombreuses branches des sciences : théorie cinétique, mécanique des fluides non visqueux, magnéto hydrodynamique, dynamique des gaz non visqueux, trafic routier, flux d’une rivière ou d’un glacier, processus de sédimentation, processus d’échanges chimiques, etc. Et souvent, les systèmes qui régissent ces évènements font intervenir des petits paramètres, dont l’étude asymptotique permet d’envisager des simplifications mathématiques et/ou informatiques notoires. L’existence locale et l’existence globale de solutions, uniformément par rapport à ces paramètres, sont des questions fondamentales. Cette thèse regroupe à la fois des résultats généraux sur l’existence locale uniforme de solutions pour des systèmes hyperboliques quasi-linéaires du premier ordre ; et sur l’existence globale uniforme de solutions autour d’un équilibre constant pour ces mêmes systèmes. Le cas du système d’Euler-Maxwell ne satisfaisant pas les conditions requises pour l’existence uniforme globale, nous le traitons à part. / Hyperbolic systems arise in a large field of sciences : kinetic theory, inviscid reactive flow, magnetohydrodynamics, inviscid gas dynamics, traffic flow, river or glacier flow, sedimentation processes, chemical exchange processes, etc. In these kind of systems, small paramaters often appear, and an asymptotic study may lead to mathematical or computational simplifications. One fundamental problem that we may work on is local and global existence of solutions for these systems, uniformly with respect to these parameters. This Ph.D. thesis includes, on one hand, general results on uniform local existence of solutions for first order quasi-linear hyperbolic systems ; and on the other hand, results on uniform global existence of solutions near constant equilibriums for these same systems. In the case of Euler-Maxwell systems, required conditions are not fulfilled for uniform global existence, then we treat it separately.
8

Etude mathématique du comportement de fluides complexes dans des géométries anisotropes / Mathematical study of complex fluids in anisotropic geometries

Ichim, Andrei 05 December 2016 (has links)
Cette thèse est consacrée à l’étude mathématique des écoulements complexes dans des tubes minces. Les difficultés ne sont pas seulement liées à la rhéologie complexe, mais aussi aux conditions au bord sur la pression en entrée et en sortie (qui sont moins habituelles, mais réalistes du point de vue physique). Dans une première partie, des écoulements quasi-newtoniens stationnaires sont étudiés. D’abord, on utilise la petitesse du domaine pour montrer l’existence de la solution. Ensuite, on écrit un développement asymptotique de cette solution et on calcule formellement ses coefficients. Finalement, on justifie rigoureusement la validité de ce développement en démontrant des estimations d’erreur. Dans une deuxième partie, on considère des écoulements de fluides visco-élastiques décrits par la loi d’Oldroyd en régime stationnaire. Le modèle que nous avons choisi contient un terme diffusif en contrainte, dont l’ordre de grandeur est lié à la petitesse du domaine. Similairement à la première partie, un développement asymptotique est complètement justifié du point de vue mathématique. Dans le cas particulier de domaines axisymétriques une solution numérique est cherchée afin de la comparer à la solution obtenue via la technique asymptotique. Dans une dernière partie, on étudie les équations de Navier-Stokes non stationnaires. Un résultat d’existence des solutions fortes pour des données petites est démontré. Malheureusement, la méthode directe ne nous a pas permis pas d’avoir suffisamment de contrôle par rapport à la petitesse du domaine. Pour obtenir le résultat désiré, on utilise l’approche à la Kato, basé sur la théorie de C0 semigroupes. / This thesis is devoted to the mathematical analysis of complex flows in thin pipes. The difficulties stem not only from the complex rheology, but also from the boundary conditions used involving the pressure (which are rather atypical, but realistic from a physical point of view).In the first part, we study stationary, quasi-newtonian flows. The existence of a solution is shown using the smallness of the domain as a key ingredient. Furthermore, an asymptotic expansion of this solution is sought and its coefficients are formally computed. Lastly, the validity of this expansion is rigorously justified by proving error estimates. In the second part, we consider visco-elastic flows represented by Oldroyd’s law in stationary regime. The model which we have chosen contains a diffusive stress term, whose order of magnitude is related to the smallness of the domain. Similarly to the first part, a complete asymptotic expansion in mathematically justified. For the special case of axisymmetric domains a numerical solution is sought in order to compare it against the one obtained via the asymptotic technique. In the last part we study the non stationary Navier-Stokes equations. An existence result of strong solutions for small initial data is proven. Unfortunately, the direct method – based on energy estimates – doesn’t give us an optimal control of the smallness constant with respect to the size of the domain. To obtain the desired result, we employ the method of C 0 semigroups of linear operators.
9

Non linear, non-local evolution equations : theory and application / Equations d'évolution non-linéaires non-locales : théorie et applications

Nabti, Abderrazak 16 December 2015 (has links)
Cette thèse concerne l’étude qualitative (existence locale, existence globale, explosion en temps fini) de quelques équations de Schrödinger non-linéaires non-locales. Dans le cas où les solutions explosent en temps fini, l’estimation du temps maximal d’existence des solutions sera présentée. Le chapitre 1 concerne l’étude d’une équation de Schrödinger non-linéaire sur RN. On s’intéresse à l’existence locale d’une solution pour toute condition initiale donnée dans L2(RN). De plus, on montre que la norme-L2 de la solution explose en temps fini T < 1. Les démonstrations reposent essentiellement sur le théorème de point fixe de Banach et les estimations de Strichartz, et aussi sur le choix convenable de la fonction test dans la formulation faible du problème. Dans le chapitre 2, on considère une équation de Schrödinger non-linéaire non-locale en temps, et on démontre que les solutions de notre problème explosent en temps fini ; ensuite on obtient des conditions nécessaires d’existence globale. Finalement, on obtient une borne inférieure du temps maximal d’existence de la solution. Le chapitre 3 porte sur la non-existence de solutions d’une équation de Schrödinger non-linéaire posée dans RN. Dans un premier temps, sous certaines conditions sur la donnée initiale, on montre qu’il n’existe pas de solution faible globale ; puis on donne une estimation du temps maximal d’existence de la solution. Enfin, on établit des conditions d’existence locale, ou globale de l’équation considérée. En plus, on généralise les résultats précédents au cas d’un système 2 _ 2. Le dernier chapitre traite une équation de Schrödinger non-linéaire non-locale en temps sur le groupe de Heisenberg H. En utilisant la méthode de la fonction test, on démontre que l’équation n’admet pas de solution faible globale. De plus, on obtient, sous certaines conditions sur les données initiales, une estimation inférieure du temps maximal d’existence de la solution. / Our objective in this thesis is to study the existence of local solutions, existence global and blow up of solutions at a finite time to some nonlinear nonlocal Schrödinger equations. In the case when a solution blows-up at a finite time T < 1, we obtain an upper estimate of the life span of solutions. In the first chapter, we consider a nonlinear Schrödinger equation on RN. We first prove local existence of solution for any initial condition in L2 space. Then we prove nonexistence of a nontrivial global weak solution. Furthermore, we prove that the L2-norm of the local intime L2-solution blows up at a finite time. The second chapter is dedicated to study an initial value problem for the nonlocal intime nonlinear Schrödinger equation. Using the test function method, we derive a blow-up result. Then based on integral inequalities, we estimate the life span of blowing-up solutions. In the chapter 3, we prove nonexistence result of a space higher-order nonlinear Schrödinger equation. Then, we obtain an upper bound of the life span of solutions. Furthermore, the necessary conditions for the existence of local or global solutions are provided. Next, we extend our results to the 2 _ 2-system. Our method of proof rests on a judicious choice of the test function in the weak formulation of the equation. Finally, we consider a nonlinear nonlocal in time Schrödinger equation on the Heisenberg group. We prove nonexistence of non-trivial global weak solution of our problem. Furthermore, we give an upper bound of the life span of blowing up solutions.
10

Global in time existence of Sobolev solutions to semi-linear damped sigma-evolution equations in L^q scales

Dao, Tuan Anh 15 September 2020 (has links)
The main goal of this thesis is to prove the global (in time) existence of small data Sobolev solutions to semi-linear damped σ-evolution equations from suitable function spaces basing on L^q spaces by mixing additional L^m regularity for the data on the basis of L^q-L^q estimates for solutions, with q∈(1,∞) and m∈[1,q), to the corresponding linear models. To establish desired results, we would like to apply the theory of modified Bessel functions, Faà di Bruno's formula and Mikhlin-Hörmander multiplier theorem in the treatment of linear problems. In addition, some of modern tools from Harmonic Analysis play a fundamental role to investigate results for the global existence of small data Sobolev solutions to semi-linear problems. Finally, the application of a modified test function method is to devote to the proof of blow-up results for semi-linear damped σ-evolution models, where σ≥1 and δ∈[0,σ) are assumed to be any fractional numbers.

Page generated in 0.0758 seconds