• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 66
  • 17
  • 13
  • 7
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 321
  • 66
  • 65
  • 63
  • 60
  • 49
  • 45
  • 36
  • 31
  • 30
  • 30
  • 26
  • 24
  • 24
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Avaliação de parâmetros hemogasométricos e bioquímicos durante infusão contínua de detomidina em equinos em estação

Serpa, Priscila Beatriz da Silva January 2011 (has links)
A detomidina é um agonistas α2 adrenérgicos amplamente empregado para sedação, analgesia e medicação pré-anestésica em equinos. A ativação dos receptores α2 distribuídos no Sistema Nervoso Central e Periférico provoca uma série de alterações fisiológicas, tais como bradicardia, bloqueio átrio-ventricular, diminuição do débito cardíaco, bradipnéia, inibição da secreção de insulina, hiperglicemia, diminuição da motilidade gastrointestinal, relaxamento da musculatura esquelética, diminuição da secreção de ACTH e ADH, hipnose e sedação. Para investigar a interferência da detomidina sobre alguns parâmetros fisiológicos e metabólicos, seis equinos foram mantidos em estação e submetidos a uma hora de infusão contínua de detomidina na dose de 20 μg.kg-1.h-1 , servindo como seus próprios controles. Foram avaliados frequência cardíaca (FC), frequência respiratória (FR), pressão arterial média (PAM), pressão arterial sistólica (PAS), pressão arterial diastólica (PAD), tempo de preenchimento capilar (TPC), temperatura retal (TR), hemogasometria sanguínea, glicose e lactato plasmáticos, insulina sérica, proteína plasmática total (PPT), hematócrito (Ht), hemoblobina (Hb), saturação de oxigênio (SO2), bicarbonato, sódio, potássio, e cálcio ionizado sanguíneos, glicogênio e lactato muscular e realizada urinálise, antes da infusão contínua de detomidina (T0), 20 minutos após (T20), 40 minutos após (T40) e 60 minutos após (T60), quando a infusão foi descontinuada. Uma hora após o término da infusão, foi realizada uma última coleta (T120). As variáveis foram submetidas à ANOVA, teste t de Student, teste de Tukey e teste de Friedman de acordo com o tipo de variável com nível de confiança de 95%. Os resultados indicaram diminuição estatisticamente significativa da FC, FR, Ht, Hb, cálcio ionizado e glicogênio muscular, além de aumento significativo da glicose, lactato e bicarbonato sanguíneos. Não houve diferença estatística significativa nas variáveis TPC, TR, PAM, PAS, PAD, PaO2, PaCO2, pH arterial, SO2, insulina sérica, PPT, lactato muscular e variáveis urinárias. A utilização de uma infusão contínua de detomidina na dose preconizada neste estudo promoveu um período de sedação prolongada em equinos em estação, com ocorrência de efeitos adversos moderados e sem significância clínica em animais hígidos. A hipoinsulinemia provocada por esta droga de fato influencia o metabolismo energético através da mobilização de reservas observada e do aumento de lactato sérico. / The detomidine is an α2 adrenergic agonist widely used for sedation, analgesia and premedication in horses. The activation of α2 receptors distributed in Central and Peripheral Nervous System causes a series of changes, such as bradycardia, atrioventricular block, decreased cardiac output, bradypnea, inhibition of insulin secretion, hyperglycemia, decreased gastrointestinal motility, relaxation of skeletal muscle, decreased secretion of ACTH and ADH, hypnosis and sedation. To investigate the interference of detomidine on some physiological and metabolic parameters, six horses were subjected to one hour of continuous rate infusion of detomidine at a dose of 20 μg.kg-1.h-1 and served as their own controls. We assessed heart rate (FC), respiratory rate (FR), mean arterial pressure (PAM), systolic blood pressure (PAS), diastolic blood pressure (PAD), capillary refill time (TPC), rectal temperature (TR), blood gases, blood glucose, plasma lactate, serum insulin, total plasma protein (PPT), hematocrit (Ht), hemoblobin (Hb), oxygen saturation (SO2), bicarbonate, sodium, potassium, ionized calcium, muscle glycogen and muscle lactate, and urinalysis performed before the infusion of detomidine (T0), after 20 minutes (T20), 40 minutes after (T40) and 60 minutes after (T60), when the infusion was discontinued. One hour after the infusion was performed a last collection (T120). The variables were submitted to ANOVA, Student's t test, Tukey’s test and Friedman’s test according to the type of variable with a confidence level of 95%. The continuous rate infusion of detomidine resulted in a significant decrease in FC, FR, Ht, Hb, ionized calcium and muscle glycogen, and a significant increase in glucose, plasma lactate and bicarbonate. There was no statistically significant difference in the variables TPC, TR, PAM, PAS, PAD, blood gases, serum insulin, PPT, muscle lactate and urinary variables. The use of a continuous rate infusion of detomidina in the recommended dose in this study promoted a prolonged sedation, with moderate adverse effects with no clinical significance in healthy animals. The hypoinsulinemia caused by this drug did influence energetic metabolism through the mobilization of reserves and the observed increase in plasma lactate.
232

Expressão gênica dos receptores de cortisol no músculo de bovinos Nelore e associação com características endócrinas, metabólicas e qualidade da carne / Gene expression of cortisol receptors in muscle of Nellore cattle and association with endocrine and metabolic characteristics and meat quality

Silva, Barbara 18 February 2013 (has links)
O estresse provoca alterações significativas no metabolismo dos animais, provocando a liberação de hormônios glicocorticoides. Estas alterações do metabolismo têm efeito anabólico sobre o metabolismo proteico muscular, podendo afetar os processos bioquímicos de transformação do músculo em carne. O presente trabalho teve como objetivo geral (i) verificar as relações entre variáveis endócrinas e metabólicas associadas ao estresse e características indicadoras de qualidade da carne, em animais castrados e não-castrados; (ii) avaliar a expressão gênica dos receptores mineralocorticoide (MR) e glicocorticoide (GR) em variáveis endócrinas, metabólicas e relacionadas à qualidade da carne de bovinos Nelore castrados e não-castrados. Para tal, 130 animais foram abatidos entre os anos de 2009 e 2011. Amostras de sangue foram coletadas antes e depois do abate para mensuração das concentrações de ACTH e cortisol. Amostras do músculo Longissimus dorsi foram coletadas durante os abates para mensuração do glicogênio e lactato, bem como, para análises de expressão gênica (RT-qPCR). Para as análises de maciez, foram coletadas amostras maturadas por um, sete e 14 dias. Para expressão gênica foram determinados os genótipos dos animais para três marcadores relacionados ao MR (MR1_1, MR1_2 e MR1_3) e dois ao GR (GR2_1 e GR2_2), por meio de PCR em tempo real. Foi verificado que animais castrados apresentam pH 24 horas menores e carnes mais macias ao sétimo e 14º dias de maturação, bem como, concentrações de cortisol (in vivo e post mortem) e lactato significativamente superiores aos animais não-castrados. O marcador MR1_3 apresenta expressão gênica significativamente diferenciada. Os animais com genótipo GA apresentaram 57,27% mais transcritos quando comparados aos animais GG. A expressão gênica do MR e GR foi significativamente relacionada às concentrações de cortisol in vivo e post mortem, porém não influenciou as concentrações de ACTH (in vivo e post mortem), glicogênio e lactato. A expressão gênica do MR e GR não foi relacionada às características indicadoras da qualidade da carne. / The stress causes significant changes in the metabolism of the animals causing the release of glucocorticoid hormones. These metabolic changes have anabolic effect on muscle protein metabolism, affecting the biochemical processes of transformation of muscle on meat. This study aimed to (i) examine relationships between endocrine and metabolic variables associated with stress and meat quality characteristics in castrated and non-castrated animals, (ii) evaluate mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) gene expression in endocrine and metabolic characteristics and related this to meat quality of Nellore castrated and non-castrated animals. To this end, 130 animals were slaughtered between the years 2009 and 2011. Blood samples were collected before and after slaughter to measure concentrations of ACTH and cortisol. Longissimus dorsi muscle samples were collected during slaughter for measurement of glycogen and lactate, as well for gene expression analyzes (RT-qPCR). For the shear force analyzes, samples were aged for one, seven and 14 days. For gene expression analysis, genotypes of three markers related to MR (MR1_1, MR1_2 and MR1_3), and the two related to GR (GR2_1 and GR2_2) were determined via real-time PCR. It was observed that castrated have lower pH value at 24 hours than non-castrated animals, and tender meat on the seventh and 14th day of aging, such as cortisol (in vivo and post mortem) and lactate concentrations significantly superior to non-castrated animals. Gene expression of MR1_3 was significantly different. Animals with GA genotype had 57.27% more transcripts than GG genotype. The gene expression of MR and GR was significantly related to cortisol concentrations in vivo and post mortem, but did not influence the concentrations of ACTH (in vivo and post mortem), glycogen and lactate. The MR and GR gene expression was not related to the meat quality characteristics.
233

BIOCHEMICAL APPROACHES FOR THE DIAGNOSIS AND TREATMENT OF LAFORA DISEASE

Brewer, Mary Kathryn 01 January 2019 (has links)
Glycogen is the sole carbohydrate storage molecule found in mammalian cells and plays an important role in cellular metabolism in nearly all tissues, including the brain. Defects in glycogen metabolism underlie the glycogen storage diseases (GSDs), genetic disorders with variable clinical phenotypes depending on the mutation type and affected gene(s). Lafora disease (LD) is a fatal form of progressive myoclonus epilepsy and a non-classical GSD. LD typically manifests in adolescence with tonic-clonic seizures, myoclonus, and a rapid, insidious progression. Patients experience increasingly severe and frequent epileptic episodes, loss of speech and muscular control, disinhibited dementia, and severe cognitive decline; death usually ensues in the second decade of life. LD, like one- third of all epilepsy disorders, is intractable and resistant to antiseizure drugs. A hallmark of LD is the accumulation of intracellular, insoluble carbohydrate aggregates known as Lafora bodies (LBs) in brain, muscle, and other tissues. LBs are a type of polyglucosan body, an insoluble aggregate of aberrant glycogen found in some GSDs and neurodegenerative disorders. Like most GSDs, LD is an autosomal recessive genetic disorder. Approximately 50% of LD patients carry mutations in the epilepsy, progressive myoclonus 2A (EPM2A) gene encoding laforin, a glycogen phosphatase. Remaining patients carry mutations in EPM2B, the gene that encodes malin, an E3 ubiquitin ligase. Laforin and malin play important roles in glycogen metabolism. In the absence of either enzyme, glycogen transforms into an insoluble, hyperphosphorylated and aberrantly branched polysaccharide reminiscent of plant starch. This abnormal polysaccharide precipitates to form LBs and has pathological consequences in the brain. Since a definitive LD diagnosis requires genetic testing, whole exome sequencing has been increasingly used to diagnose LD. As a result, numerous cases of more slowly progressing or late-onset LD have been discovered that are associated with missense mutations in EPM2A or EPM2B. Over 50 EPM2A missense mutations have been described. These mutations map to many regions of the laforin X-ray crystal structure, suggesting they produce a spectrum of effects on laforin function. In the present work, a biochemical pipeline was developed to characterize laforin patient mutations. The mutations fall into distinct classes with mild, moderate or severe effects on laforin function, providing a biochemical explanation for less severe forms of LD. LBs drive LD pathology. As a result, LBs and glycogen metabolism have become therapeutic targets. Since LBs are starch-like, and starch is degraded by amylases, these enzymes are potential therapeutics for reducing LB loads in vivo. However, amylases are normally secreted enzymes. Degradation of intracellular LBs requires a cell-penetrating delivery platform. Herein, an antibody-enzyme fusion (AEF) technology was developed to degrade LBs in vitro, in situ in cell culture, and in vivo in LD mouse models. AEFs are a now putative precision therapy for LD, potentially the first therapeutic to provide a significant clinical benefit. Prior to this work, LD was considered a homogenous disorder and treatments were only palliative. The data herein support a spectrum of clinical progression, a potential therapy for LD, and mechanistic insights into LD pathophysiology. This work illustrates how personalized medicine, both in diagnosis and treatment, can be achieved through basic biochemical approaches to human disease.
234

Concurrent training in endurance athletes: the acute effects on muscle recovery capacity, physiological, hormonal and gene expression responses post-exercise

Deakin, Glen Bede Unknown Date (has links)
The research presented in this thesis examined the issue of the compatibility of strength and endurance training within one training regime, termed concurrent training, in recreational cyclists. Various research designs used in the previous literature resulted in inconclusive findings. The overall aim of this thesis was therefore to examine, in three systematically designed studies, the effects of various components of concurrent training regimes on cycling efficiency and recovery, and to identify some of the mechanisms that may be responsible for the interference or impedance of strength and/or endurance adaptations.
235

Characterization of Myopathy in Mice Overexpressing Androgen Receptor in Skeletal Muscle

Musa, Mutaz 27 July 2010 (has links)
Although androgens are known to exert anabolic effects in skeletal muscle, overexpression of androgen receptor (AR) selectively in this tissue causes androgen dependent motor deficits and muscular atrophy. The cellular and subcellular changes underlying this phenotype are unknown. Therefore, this study aimed to elucidate the ultrastructural and histologic changes accompanying myopathy and to determine the importance of androgens and overexpression level for myopathic features. Transmission electron microscopy revealed augmented mitochondrial content and reduced myofibril width in androgen exposed transgenics. Additionally, male transgenics demonstrated increased glycogen content. Histochemical analyses confirmed sex-specific changes in glycogen content and revealed a surprising loss in the proportion of oxidative fibers in symptomatic animals. However, increased mitochondrial content was confirmed by the presence of ragged red fibers. Overexpression of AR in muscle fiber results in mitochondrial pathology and dysregulation of glycogen metabolism, possibly reflecting normal but exaggerated function of androgens in skeletal muscle fibers.
236

Characterization of Myopathy in Mice Overexpressing Androgen Receptor in Skeletal Muscle

Musa, Mutaz 27 July 2010 (has links)
Although androgens are known to exert anabolic effects in skeletal muscle, overexpression of androgen receptor (AR) selectively in this tissue causes androgen dependent motor deficits and muscular atrophy. The cellular and subcellular changes underlying this phenotype are unknown. Therefore, this study aimed to elucidate the ultrastructural and histologic changes accompanying myopathy and to determine the importance of androgens and overexpression level for myopathic features. Transmission electron microscopy revealed augmented mitochondrial content and reduced myofibril width in androgen exposed transgenics. Additionally, male transgenics demonstrated increased glycogen content. Histochemical analyses confirmed sex-specific changes in glycogen content and revealed a surprising loss in the proportion of oxidative fibers in symptomatic animals. However, increased mitochondrial content was confirmed by the presence of ragged red fibers. Overexpression of AR in muscle fiber results in mitochondrial pathology and dysregulation of glycogen metabolism, possibly reflecting normal but exaggerated function of androgens in skeletal muscle fibers.
237

Caracterización del metabolismo del glucógeno en neuronas y su implicación en la tolerancia a la hipoxia

Sáez Martínez, Isabel 20 December 2012 (has links)
La presencia de glucógeno en las neuronas ha sido motivo de controversia durante las pasadas décadas. Sin embargo, está aceptado que las neuronas expresan la maquinaria necesaria para sintetizar glucógeno, pero no para degradarlo. La presencia de la glucógeno sintasa (GS) en las neuronas es un misterio y no existe ningún estudio que analice cuál es su función fisiológica en este tipo neuronal. Recientemente se ha establecido un paralelismo entre la GS neuronal y el caballo de Troya, ya que múltiples estudios han demostrado que una hiper-activación de la GS y la consecuente acumulación de glucógeno desencadenan la entrada en apoptosis. A pesar de ello, la neurona gasta energía para su transcripción y traducción, lo que hace pensar que su presencia en la neurona es importante para su correcto funcionamiento. Los objetivos de esta tesis doctoral son los siguientes: 1. Caracterización del metabolismo de glucógeno y de su presencia en neuronas. 2. Estudio de la maquinaria de degradación de glucógeno en neuronas y su regulación en hipoxia 3. Análisis de la síntesis de glucógeno en neuronas expuestas a hipoxia. 4. Evaluación de la función biológica de la GS en neuronas bajo condiciones de hipoxia. Los resultados de esta tesis revelan que las neuronas tienen una síntesis de glucógeno activa, y, además, lo acumulan en condiciones basales. Además, poseen la maquinaria necesaria para la degradación de glucógeno y degradan sus propias reservas en condiciones de hipoxia. La capacidad neuronal de degradación de glucógeno está presente en una situación in vivo, ya que las neuronas del modelo Drosophila melanogaster movilizan sus reservas en condiciones de hipoxia, y las neuronas de Purkinje en el ratón lo hacen tras una anoxia post-mortem prolongada. La maquinaria de degradación del polisacárido, desconocida hasta el momento, está mediada por la expresión de la glucógeno fosforilasa (GP). Las neuronas expresan la isoforma cerebral del enzima, pero no la muscular, como en el caso de los astrocitos. Esta isoforma está presente tanto en neuronas en cultivo como en neuronas procedentes de cortes de cerebro de ratón adulto. La hipoxia causa la defosforilación y activación de la GS. La GS sintetiza glucógeno activamente, aunque los niveles netos del polisacárido disminuyen en hipoxia. Por tanto, está teniendo lugar un ciclo aparentemente fútil en donde la síntesis y degradación se encuentran activas. Finalmente se ha demostrado que el metabolismo del glucógeno forma parte de la maquinaria de protección que activa la neurona para resistir a la hipoxia. En consecuencia, las neuronas que carecen la GS tienen una mortalidad más elevada que aquellas que sí que expresan el enzima. En el modelo de la mosca, el metabolismo del glucógeno neuronal también juega un papel en la tolerancia a la hipoxia y moscas con niveles reducidos de GS específicamente en la neurona muestran un empeoramiento en la respuesta tras un período de bajo oxígeno. En conclusión, esta tesis presenta evidencias de que las neuronas poseen un metabolismo activo de glucógeno que, además, juega un papel clave en la tolerancia de estas células a condiciones de hipoxia. / The presence of glycogen in neurons has been a matter of debate for the past decades. However, it is accepted that neurons express the necessary machinery to synthesize glycogen, but not for degrading it. The presence of Glycogen Synthase (GS) in neurons is a mystery and there is no study which approaches its physiological function in this cellular type. Recently a parallelism has been drawn between GS and the Trojan horse, since several studies have shown that an over-activation of GS and an accumulation of glycogen cause apoptosis in the neurons. Nevertheless, neurons waste energy for transcribing and synthesizing the protein, which suggests that its presence might be important for the normal functioning of the neurons. The aims of the thesis are the follows 1) Characterization of glycogen metabolism and its presence in neurons 2) Study of the glycogen degradation machinery in neurons and its regulation in hypoxia 3) Analysis of the synthesis of glycogen in neurons exposed to hypoxia 4) Evaluation of the biological function of GS in neurons under hypoxia conditions The results of this thesis reveal that there is an active glycogen synthesis under normal conditions. In addition, they express the necessary machinery to degrade the polysaccharide and degrade it under hypoxia conditions. The neuronal capacity of glycogen degradation is present in the in vivo situation, both in neurons from Drosophila melanogaster and from mice. The glycogen degradation machinery is mediated through the expression of glycogen phosphorylase (GP). Neurons express the brain isoform of the enzyme, but not the muscle, as astrocytes do. This isoform is present in neuronal cultures, as well as in neurons from adult mice brain slices. Hypoxia causes the dephosphorylation and activation of GS. GS actively synthesizes glycogen, although the global glycogen levels diminished in hypoxia. Indeed, an apparent futile cycle is taking place under hypoxia, where both synthesis and degradation are activated. Finally, we have demonstrated that glycogen metabolism is part of the protection machinery the neuron activates for tolerating the hypoxia conditions. Consequently, neurons without GS have a higher mortality rate that these who actively express the enzyme. In Drosophila melanogaster, flies with reduced GS levels specifically in neurons have an impaired phenotype in their reponse to hypoxic conditions. In conclusion, this thesis presents evidences that show neurons have an active glycogen metabolism which plays a key role in the neuronal response to hypoxia.
238

Retrograde signaling mechanisms of nerve growth factor regulating the survival and apoptosis of sympathetic neurons

Mok, Sue-Ann Unknown Date
No description available.
239

Retrograde signaling mechanisms of nerve growth factor regulating the survival and apoptosis of sympathetic neurons

Mok, Sue-Ann 11 1900 (has links)
The survival of several neuron populations during development, including sympathetic neurons, is strictly regulated by neurotrophins such as nerve growth factor (NGF) released from innervation targets. NGF activates its receptor, TrkA, at axon terminals, to generate signals that are transmitted retrogradely to cell bodies to induce signaling cascades regulating survival. A general view of this process is that NGF generates retrograde survival signals that, when delivered to cell bodies, induce downstream survival signaling that prevents apoptosis. A retrograde survival signal proposed to be necessary for sympathetic neuron survival consists of endosomes containing NGF and phosphorylated TrkA. For this signal, phosphorylated TrkA arriving at cell bodies is required to initiate survival signaling. Studies have tested the necessity of TrkA phosphorylation in the cell bodies for survival: results from different studies contradict each other. Moreover, the Trk inhibitor, K252a, used in these studies, has reported non-specific effects. Using an alternate Trk inhibitor, Gö6976, data presented in this thesis demonstrates that NGF can promote survival by retrograde signaling that does not require TrkA phosphorylation in the cell bodies. These retrograde signals may be composed of signaling molecules activated downstream of TrkA in axons since pro-survival molecules downstream of TrkA, Akt and CREB, were found activated in the cell bodies/proximal axons. Data presented in this thesis also reveals a fundamentally different mechanism for how NGF promotes sympathetic neuron survival: a retrograde apoptotic signal that is suppressed by NGF. NGF withdrawal from axons induced the “axon apoptotic signal” that was retrogradely transmitted to cell bodies to activate a key pro-apoptotic molecule, c-jun. The axon apoptotic signal, which was blocked by the kinase inhibitors rottlerin and chelerythrine, was necessary for apoptosis in response to NGF deprivation. Evidence GSK3 is involved in generation or transmission of the axon apoptotic signal was provided by experiments with GSK3 inhibitors and siRNA. The axon apoptotic signal discovery refutes the previous view that NGF acting on axon terminals supports survival exclusively by generating retrograde survival signals. The axon apoptotic signal has broad implications for understanding nervous system development and other conditions where neuronal apoptosis occurs, such as neurotrauma and neurodegenerative diseases.
240

Exercise intolerance in peripheral arterial disease

Askew, Christopher D. January 2002 (has links)
Patients with Peripheral Arterial Disease have a reduced capacity for exercise, the exact causes of which are poorly understood. This thesis investigated alternative testing procedures that aim to provide a more complete and precise description of the exercise capacities of these patients. Furthermore, the potential roles of gastrocnemius muscle fibre morphometry, capillary supply and glycogen stores in the exercise tolerance of PAD patients were studied. Study one aimed to determine the effect of test repetition on maximal exercise performance and test-to-test variability in PAD patients using an incremental treadmill walking test (T) (n=5), an incremental cycle test (C) (n=5), and incremental endurance (PF-endurance) and maximal strength (PF-strength) plantar flexion tests (n=5). Tests were conducted once per week for eight weeks. Performance was stable on the T (~530 s) and C (~500 s) tests across the eight weeks. Test-to-test variance on T decreased from 16%CV (CV: coefficient of variation) to 6%CV (p=.21,NS), and from ~8%CV to 2%CV on C (p<.05) over the eight week period. Variance of peak gas exchange variables tended to decrease with performance variance on both tests; however, other physiological variables, and the associated variance levels, were stable throughout the study. PF strength (635-712N) gradually increased over the initial 2-3 weeks (p<.05) which was accompanied by a reduction in variance from ~8%CV to ~3%CV (p<.05). Similarly, PF endurance increased over the first two weeks (~32,000 to 41500 N.s-1) while variance of this measure fell from ~21%CV to ~10%CV (p<.05) over the study duration. It is concluded that the implementation of familiarisation sessions leads to a reduction in whole body and local calf muscular performance variance in patients with PAD. Using a randomised crossover design, study two aimed to compare performance and the physiological and symptomatic responses between a T test and a C test in 16 patients with PAD. Peak exercise time on C (690 s) was greater than that on T (495 s); however the two were significantly correlated (n=16, r=.69, p<.05). Peak HR (120 bpm), VO2 (~1.22 l.min-1) and rate pressure product (~20') did not differ between the two tests, nor did the post exercise ankle pressure (T: 56; C: 61 mmHg). In two subjects with lower back pain during C, the ankle pressure of their "worst" limbs failed to fall by >10mmHg. Performance on both the T and C tests was closely related to the onset of leg symptoms; however the site of pain during C was much more variable than during T. Incremental cycle testing would overcome some of the limitations of treadmill testing (e.g. measurement of mechanical work), and it appears to be an acceptable alternative for measuring the exercise capacity and physiological exercise responses in known claudicants. Use of cycle ergometry for the diagnosis of PAD requires testing in the general population. Study three aimed to compare whole body (T test and C test) and local calf muscular (PF strength and endurance) exercise performance between 16 PAD patients (age: 63 ± 2; BMI: 25.9 ± 1.1) and 13 healthy, sedentary control (CON) subjects (age: 62 ± 1; BMI: 25.9 ± 0.4), and to describe relationships between the whole body and local calf muscular exercise capacities within the two groups. Furthermore, this study aimed to compare several histochemical characteristics of the medial gastrocnemius muscle fibres between PAD and CON, and to establish whether these factors were related to the exercise capacities of both groups. Maximal performance on T was 59% lower in the PAD group compared with the CON group, as was performance on C (50%), PF strength (25%), and PF endurance (58%). Compared with CON, PAD patients had a lower estimated calf muscle mass and a slight reduction (10%) in muscle fibre size (p=.14, NS). They also had a lower proportion of type I fibres (PAD: 49%; CON: 62%) that was offset by a greater proportion of type IIA fibres (PAD: 27%; CON: 16%), and a reduction in the capillary contacts per muscle fibre (PAD: 1.63; CON: 2.12) compared with CON. When expressed relative to fibre area there were no differences in capillarisation between PAD and CON; however this index was significantly related to resting and post exercise ABI in the PAD patients. There were no differences in the mixed muscle [glycogen], nor the optical density of glycogen in the individual fibres, between the two groups. PF endurance was poorly predictive of walking performance, and did not correlate with any of the morphological variables in both groups. Calf muscle mass correlated with PF strength (r=.59 - .62), and strength was correlated with T performance (r= .61 - .63) in both groups. In the PAD patients, T performance was correlated with the cross sectional area (n=12, r=.72, p<.05), capillary contacts (n=10, r=.81, p<.05) and glycogen density (n=9, r=.81, p<.05) of type I fibres. This study confirms that a reduction in calf strength, which appears to be mediated through muscle atrophy, plays some role in the reduced exercise capacity of claudicants. While both fibre area and capillary supply seem to be of relevance to the exercise capacity of PAD patients, these two factors are closely linked and further research is required to establish the determinants, and relative importance of both. An important, and possibly limiting role of carbohydrate oxidisation in PAD patients is supported by the strong relationship between type I glycogen stores and whole body exercise capacity.

Page generated in 0.0574 seconds