• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 119
  • 117
  • 19
  • Tagged with
  • 253
  • 186
  • 48
  • 40
  • 39
  • 37
  • 37
  • 36
  • 35
  • 33
  • 30
  • 29
  • 28
  • 28
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Etude des propriétés électroniques du graphène et des matériaux à base de graphène sous champs magnétiques intenses / Electronics properties of graphene and graphene-based systems under pulsed magnetic field

Poumirol, Jean-Marie 22 July 2011 (has links)
Cette thèse présente des mesures de transport électronique dans des systèmes bi-dimensionels et uni-dimensionels à base de graphène sous champ magnétique pulsé (60T). L'objectif de ces travaux consiste à sonder la dynamique des porteurs de charge en modifiant la densité d'états du système par l'application d'un champ magnétique. Une première partie est consacrée à l'étude de l'influence des îlots électrons-trous sur les propriétés de transport du graphène au voisinage du point de neutralité de charge. Nous avons constaté l'apparition de fluctuations de la magnéto-résistance liée à la transition progressive des îlots de taille finie dans le régime quantique lorsque le champ magnétique augmente. Nous avons aussi montré que la variation de l'énergie de Fermi, liée à l'augmentation de la dégénérescence orbitale des niveaux de Landau, est directement responsable d'une modification du ratio entre électrons et trous. Dans une deuxième partie consacrée à l'étude des nanorubans de graphène, nous avons exploré deux gammes de largeur différentes. Dans les rubans larges (W>60nm), la quantification de la résistance a été observée révélant ainsi une signature évidente de la quantification du spectre énergétique en niveaux de Landau. Le confinement magnétique des porteurs de charge sur les bords des nanorubans a permis de mettre en évidence, pour la première fois, la levée de dégénérescence de vallée liée à la configuration armchair du ruban. Pour des rubans plus étroits (W<30nm), en présence de défauts de bord et d'impuretés chargées, la formation progressive des états de bords chiraux donne lieu à une magnéto-conductance positive quelque soit la densité de porteurs. Enfin, la dernière partie traite du magnéto-transport dans le graphene multi-feuillet. En particulier, nous avons observé l'effet Hall quantique dans les systèmes tri-couche de graphène. Une étude comparative des résultats expérimentaux avec des simulations numériques a permis de déterminer l'empilement rhombohedral des trois couches de graphene constituant l'échantillon / This thesis presents transport measurements on two-dimensional and one-dimensional graphene-based systems under pulsed magnetic field (60T). The objective of this work is to probe the dynamics of charge carriers by changing the density of states of the system by applying a strong magnetic field. The first part is devoted to the study of the influence of electron-hole pockets on the transport properties of graphene near the charge neutrality point. We found the appearance of fluctuations in the magneto-resistance due to the progressive transition of the electron/hole puddles of finite size in the quantum regime as the magnetic field increases. We have also shown that the variation of the Fermi energy, due to the increase of orbital Landau level degeneracy, is directly responsible of a change in the electron and hole ratio. The second part is devoted to the study of graphene nano-ribbons, we explored two different ranges of width. In the broad nano-ribbons of width W larger than 60 nm, the quantification of the resistance is observed, revealing a clear signature of the quantization of the energy spectrum into Landau levels. We show for the first time the effect of valley degeneracy lifting induced by the magnetic confinement of charge carriers at the edges of the armchair nano-ribbons. For narrower nano-ribbons (W <30 nm) in presence of edge defects and charged impurities, the progressive formation of chiral edge states leads to a positive magneto-conductance whatever the carrier density. Finally, the last part of this thesis deals with magneto-transport fingerprints in multi-layer graphene as we observed the quantum Hall effect in tri-layer graphene. A comparative study of the experimental results with numerical simulations was used to determine the rhombohedral stacking of three layers of graphene in the sample
42

Etudes des propriétés de transport de mono et de multicouches de graphène épitaxiées sur sic / Study of transport properties of single and multilayers of epitaxial graphene on SiC

Jabakhanji, Bilal 28 September 2012 (has links)
Nous présentons dans ce travail la caractérisation, essentiellement en transport, de couches de graphène épitaxiés élaborées par sublimation contrôlée de carbure de silicium (SiC). Des mesures de transport électroniques sont effectuées à basse température (T~1,6 K) et à fort champ magnétique. Dans une première partie, Il est indispensable de se focaliser sur la méthode spécifique (‘graphite cap') utilisée pour la fabrication de tous les échantillons étudiés dans ce travail au CNM, Barcelone. La méthode de ‘graphite cap' permet d'obtenir des couches de graphène en formes de rubans suffisamment isolés entre eux pour la fabrication de dispositifs électroniques. La croissance de graphène donne des résultats très différents suivant les conditions de croissance et les spécificités du substrat de carbure de silicium employé : les échantillons obtenus sur face carbone, et les échantillons sur face silicium.Sur face carbone, deux polytypes de SiC ont été utilisés pour l'élaboration de graphène : (i) sur le polytype ‘6H-SiC (on axis)', des rubans de graphène de l'ordre de 600 µm de longueur et de 6 µm de largeur sont obtenus. La largeur de graphène reste faible car le graphène suit la formation des marches sur le SiC résultant de la reconstruction de la surface pendant la croissance (‘step bunching'). Des monocouches ont été identifiées par spectroscopie Raman. Les résultats de transport sur ces monocouches montrent que la concentration de porteurs, de type trous, varie entre 5x1012cm-2 et 5x1013cm-2. L'effet Hall quantique n'est pas observé à cause du dopage élevé. Mais des oscillations de Shubnikov de Haas ont été bien résolues et étudiées pour extraire leurs phases. La phase des oscillations est égale à zéro, ce qui est une signature de la présence d'une monocouche de graphène.(ii) sur le polytype ‘4H-SiC (8° off axis)', les rubans obtenus sont plus larges et peuvent atteindre une longueur de 600 µm et une largeur de 50 µm. L'utilisation d'un substrat SiC avec une désorientation intentionnelle lors du clivage de la surface initiale permet la coalescence des rubans de graphène. Les résultats de transport sur les monocouches montrent que les porteurs sont toujours de type trous, mais beaucoup moins dopé sur plusieurs monocouches (de l'ordre 8x1011cm-2). L'effet Hall quantique est reporté sur un échantillon dont la mobilité atteint 11 000 cm²/V.s. Une étude à bas champ magnétique est encore réalisée et donnent des informations intéressantes sur l'(anti)localisation faible. Tous les phénomènes quantiques observés sont des signatures sur les propriétés intrinsèques des monocouches de graphène. Pour mieux appréhender le graphène épitaxié, il est important de faire varier la concentration de porteurs. Pour cela, une autre approche est proposée. Nous avons fabriqué une face arrière d'un échantillon semi-isolant par implantation d'ions d'azotes dans le SiC avant la croissance de graphène. Les résultats de transport obtenus sur les monocouches de graphène ont montré l'efficacité de cette grille pour contrôler le type de porteurs. L'effet Hall quantique a été observé pour les deux types de porteurs avec des plateaux de Hall remarquables en largeur (23 T).Sur la face Si, des multicouches de graphène couvrent uniformément toute la surface du substrat. Les multicouches de graphène sont plus épaisses sur les bords de marches que sur les terrasses, identifiées par spectroscopie Raman. Les porteurs sont maintenant de type électrons grâce à la couche de tampon qui existe sur la face Si. Les résultats de transport en champ magnétique et à basse température détectent l'existence d'une anisotropie électrique dues principalement aux marches du substrat SiC. / In this work, we present the characterization, mainly in transport, of epitaxial graphene layers produced by controlled sublimation of silicon carbide substrate (SiC). Electronic transport measurements are performed at low temperature (T ~ 1.6 K) and high magnetic field. In the first part, we explain the specific method ('graphite cap') used for growth of the samples studied in this work at CNM, Barcelona. The method of 'graphite cap' provides graphene ribbons homogeneous and isolated for the fabrication of electronic devices.Graphene on SiC gives very different results depending on the conditions of growth (temperature, pressure…) and the face of SiC substrate used: carbon face (C-face) or silicon face (Si-face).On the carbon face, two SiC polytypes have been used for the graphene growth:(i) On axis 6H-SiC: graphene ribbons are obtained on the whole surface. The length of ribbon approaches 600 µm and the width do not exceed 6 µm. The graphene follows the formation of steps on the SiC resulting from surface reconstruction during growth (‘step bunching'), which affects the graphene width. Monolayers were identified by Raman spectroscopy. For all measured samples, we found that the graphene is p-typed doped with a Hall concentration between 5x1012 and 5x1013cm-2. The quantum Hall effect is not observed because of the high doping level. But the Shubnikov de Haas oscillations (SdH) have been well resolved and studied. The phase of the oscillations is equal to zero, which is a signature from the presence of graphene monolayer.(ii) 8° off axis 4H-SiC: graphene ribbons obtained are larger and can reach a length of 600 µm and a width of 50 µm. The use of a SiC substrate with intentional disorientation upon cleavage of the initial surface allows the coalescence of the graphene ribbons. For all measured devices on this sample, we found that the graphene is p-typed doped (as determined from the sign of the Hall effect) with a Hall concentration between 8x1011 and 1013 cm-2. Mobilities varied between 1000 and 11000 cm²/Vs from device to device at 4K. Magnetoresistance revealed both Shubnikov-de Haas (SdH) oscillations, and interference phenomena (weak localization and antilocalization). For some low doped devices, Quantum Hall effect was observed. All quantum phenomena observed are signatures on the intrinsic properties of graphene monolayers.The main drawback of the epitaxial growth technique is the difficulty to control of the carrier density. Here, we investigate a bottom gate of a graphene device, epitaxially grown on the C-face of SiC substrate. The gate was realized by Nitrogen atoms implantation in the SiC crystal. The transport measurements have shown the effectiveness of the gate to control the type of carriers. The quantum Hall effect was observed for both types of carriers with remarkable Hall plateaus width (23 T).On the silicon face, we discuss results obtained from few layer graphene (FLG) grown epitaxially on the (0001) surface of a 6H-SiC substrate. Carriers are now like electrons through the buffer layer that exists on the Si face. The resulting FLG uniformly covers the substrate on which large step bunched terraces are also visible. The FLG is thicker at the step edges, as evidenced by micro-Raman analysis. Indeed, a noticeable anisotropy of the resistance has been detected by magnetotransport measurements at low temperature and high magnetic field. We will argue that this anisotropy originates from different mobilities, in the terraces and at the step edges.
43

Assemblage contrôlé de graphène et de nanotubes de carbone par transfert de films de tensioactifs pour le photovoltaïque / Controlled assembly of graphene and carbon nanotubes by surfactant film transfer toward photovoltaic applications

Azevedo, Joël 28 June 2013 (has links)
Cette thèse est dédiée à l'étude d'une nouvelle méthode de formation de films ultra-minces de nanomatériaux carbonés sur surface. Basée sur le transfert d'un film d'eau stabilisé par des tensioactifs, elle permet notamment la réalisation et l'étude de films de nanotubes de carbone et d'oxyde de graphène (GO) aux propriétés remarquables. L’efficacité de l’approche développée est prouvée au travers de l’ajustement précis des caractéristiques des films. Pour l’assemblage d’objets bidimensionnels cette approche est particulièrement pertinente puisque la planéité des feuillets de GO est conservée quelle que soit leur taille. Les avantages de l’approche ne se limitent pas à la réalisation de monocouches à morphologie contrôlée mais s’étendent à la réalisation de films multicouches d’épaisseur ajustée et de très faible rugosité. De plus, cette approche est modulable et permet le transfert de films de nano-objets sur des surfaces de différentes mouillabilités et de grandes dimensions (transfert à l’échelle de wafers). L’intérêt du graphène oxydé en tant qu’analogue du graphene ne se justifie que par une désoxygénation (réduction) efficace du matériau idéalement complétée par une réparation de sa structure sp². Cette thèse aborde ces deux aspects. Les électrodes transparentes à base d'oxyde de graphène réduit (rGO) réalisées au cours de cette thèse sont parmi les plus performantes du domaine. Les résultats présentés incluent également un travail important sur les caractérisations électriques des feuillets individuels et des films de GO et de rGO. Ainsi, nous avons prouvé qu’il est possible de mesurer leur conductivité sans contact, par voie électrochimique (Scanning Electrochemical Microscopy). Même si les performances des électrodes en rGO n'atteignent pas celles des électrodes en graphène, les films réalisés peuvent d’ores et déjà être intégrés dans des dispositifs photovoltaïques. Nos travaux permettent de contribuer au domaine émergeant des cellules basées sur l’hétérojonction entre film de nano-objets carbonés et silicium. Dans le cadre de cette thèse nous montrons en particulier que les analyses par Time Resolved Microwave Conductivity sont complémentaires des mesures effectuées à l’échelle des cellules photovoltaïques, chacune permettant de caractériser, sous des angles différents, l’efficacité de séparation des charges photo-induites. Les travaux réalisés au cours de cette thèse contribuent aux problématiques dépendantes d’assemblage et d’intégration des nano-objets carbonés dans des dispositifs en ouvrant de nombreuses perspectives dans ces domaines en rapide évolution. / This thesis concerns the study of a new solution-based deposition method for the formation of ultrathin carbon nano-object films on surfaces. Based on the transfer of a surfactant-stabilized water film, this method enables the formation and the study of carbon nanotubes and graphene oxide (GO) films with remarkable properties. The efficiency of the developed approach is proven through the fine-tuning of the film properties. This method is particularly well-suited for the assembly of bidimensional nano-objects such as GO sheets, the flatness of which is preserved whatever their dimensions. The advantages of the approach are not limited to the morphological control of monolayer assemblies but extend to the realization of multilayer films of adjustable thickness and extremely low roughness. Besides, it enables the transfer of nano-object films on large (wafer-scale) surfaces of various wettability. The use of graphene oxide as an intermediate step toward graphene only makes sense if it is efficiently deoxygenated (reduced) and, ideally, repaired at the level of sp² domains. This thesis addresses these aspects. The realized transparent electrodes made of reduced graphene oxide (rGO) are among the most efficient in this field. The presented results also include an important work on the electrical characterization of graphene oxide sheets and films. We notably prove that conductivity can be measured without contact by an electrochemical way using Scanning Electrochemical Microscopy. While the performances of rGO electrodes are below those of graphene electrodes, the studied films can already be integrated into photovoltaic devices allowing to contribute to the emerging field of solar cells based on carbon/silicon heterojunctions. We particularly demonstrate that Time Resolved Microwave Conductivity analysis and photovoltaic cell measurements are complementary. Each of these techniques allows evaluating the efficiency of the separation of photo-induced charges. This thesis contributes to the dependent problematics of nano-object assembly and nano-object integration into devices, which are central for the development of nanotechnologies based on the bottom-up strategy.
44

Etude de Polyanilines et de nanocomposites Polyaniline/Graphène en milieu liquide ionique protique pour la réalisation de supercondensateurs / Study of polyanilinen and nanocomposites polyaniline / graphene in protic ionic liquid for energy storage

Al Zohbi, Fatima 16 December 2016 (has links)
Les travaux réalisés dans le cadre de cette thèse ont porté sur la réalisation de polymères conducteurs de type polyaniline et de leurs composites associés à du graphène en vue d’une utilisation en tant que matériaux d’électrodes dans des dispositifs de stockage d’énergie de type supercondensateurs. Les travaux se sont tout d’abord orientés sur la synthèse de nouveaux liquides ioniques protiques (LIP) associant des cations pyrrolidinium (Pyrr+) et imidazolium (Imi+) avec des anions p-toluène sulfonate (PTS-), hydrogénosulfate (HSO4-) ou (+)-camphre-10-sulfonate (Cs-), et de l’étude de leur propriétés physico-chimiques (conductivité, viscosité) dans des mélanges binaires LIP/eau. Après avoir déterminé les formulations permettant d’atteindre les propriétés de transport optimales, les capacitances spécifiques de la Pani/HCl dans ces milieux LIP ont été déterminées et nous avons montré que les performances de dispositifs symétriques sont améliorées en capacitance, énergie et en puissance (400 F/g, 7 Wh.kg-1 et 4 kW.kg-1 pour les valeurs les plus élevées) par rapport à un milieu H2SO4 1M. Ces milieux LIP ont également été utilisés comme milieu de synthèse de la Pani. Nous avons ainsi montré que la nature des LIP, qui sont des milieux nanostructurants, pouvait modifier les propriétés électroniques, morphologiques et thermiques des Pani. Un optimum de conductivité électronique de la Pani (22 S/cm) a été atteint avec une synthèse réalisée dans le mélange binaire [Imi][HSO4]/eau 70/30 (pourcentage massique) générant une morphologie fibrillaire et une bonne cyclabilité (93% de rétention de capacitance sur 1000 cycles dans H2SO4 1M. Des valeurs de près de 400 F/g ont été obtenues dans le mélange [Pyrr][HSO4]/eau 41/59 optimisé. Dans le cas de la synthèse de la Pani réalisée dans [Pyrr][PTS]/eau, un gain en stabilité thermique (360°C) est obtenu grâce au dopage par l’anion PTS-. Finalement, une étude exploratoire sur la préparation de composites Pani/graphène et Pani/oxyde de graphène a été réalisée. Les synthèses des nanocomposites ont été effectuées dans les mélanges LIP/eau. L’optimisation de la composition du composite a été étudiée et indique que des rapports massiques de graphène ou oxyde de graphène d’environ 15% permettent d’atteindre des performances de stockage prometteuses et exaltées par rapport à celles obtenues pour des Pani sans graphène. / The work carried out during this PhD thesis is based on the preparation of conducting polymers such as polyaniline (Pani) and their composites associated with graphene for use as electrode materials for supercapacitors application. This work was first dedicated to the synthesis of new protic ionic liquids (PILs) combining pyrrolidinium (Pyrr+) or imidazolium (Imi+) cations with p-toluene sulfonate (PTS-), hydrogen sulfate (HSO4-) or (+)-camphor-10-sulfonate (Cs-) anion, and the study of their physico-chemicals properties (conductivity, viscosity) in binary mixtures PILs/water. After determining the formulations needed to achieve the optimum of transport properties, the specific capacitance of Pani/HCl in these PILs medium was determined, and we have shown that the performance of symmetrical devices are improved in capacitance, specific energy and specific power (400F/g, 7Wh/kg and 4kW/kg for the higher values) in comparison to those obtained in a H2SO4 1M medium. These PILs mediums were also used as a synthesis medium of Pani. We have shown that the nature of PILs, acting as soft template, could change the electronic, morphological and thermal properties of Pani. An optimum of electronic conductivity of Pani (22 S/cm) was obtained with a synthesis realized in the binary mixture [Imi][HSO4]/water 70/30 generating a fibrillar morphology and a good cyclability (93% capacitance retention over 1000 cycles in H2SO4 1M at 2 A/g). For Pani synthesis in [Pyrr][PTS]/water, a thermal stability gain (360 °C) is obtained thanks to a PTS- doped Pani. Finally, a preliminary study on the preparation of composite Pani/graphene and Pani/graphene oxide was performed. The syntheses of nanocomposites were realized in PILs/water mixtures. The optimization of the composition of the Pani nanocomposites was studied and it was found that a mass ratio of about 15% in weight of graphene or graphene oxide enables to obtain promising nanomaterials with higher electrochemical performances compared with pristine Pani.
45

Etudes magnéto-Raman de systèmes - graphène multicouches et hétérostructures de graphène-nitrure de bore / Magneto-optical spectroscopy of multilayer graphene and graphene-hexagonal boron nitride hetero-structures

Henni, Younes 24 October 2016 (has links)
Comme le quatrième élément le plus abondant dans l’univers, le carbone joue un rôle important dans l’émergence de la vie sur la terre comme nous la connaissons aujourd’hui. L’ère industrielle a vu cet élément au cœur des applications technologiques en raison des différentes façons dont les atomes forment les liaisons chimiques, ce qui donne lieu à une série d’allotropies chacun ayant des propriétés physiques extraordinaires. Par exemple, l’allotrope le plus thermodynamiquement stable du carbone, le cristal de graphite, est connu pour être un très bon conducteur électrique, tandis que le diamant, très apprécié pour sa dureté et sa conductivité thermique, est néanmoins considéré comme un isolant électrique en raison de sa structure cristallographique différente par rapport au graphite. Les progrès de la recherche scientifique ont montré que les considérations cristallographiques ne sont pas le seul facteur déterminant pour une telle variété dans les propriétés physiques des structures à base de carbone. Ces dernières années ont vu l’émergence de nouvelles formes allotropiques de structures de carbone qui sont stables dans les conditions ambiantes, mais avec dimensionnalité réduite, ce qui entraîne des propriétés largement différentes par rapport aux structures en trois dimensions. Parmi ces nouvelles classes d’allotropes il y a le graphene, qui est le premier matériau à deux dimensions. L’isolation réussi de monocouches de graphène a contesté une croyance établie depuis longtemps en physique : le fait que les matériaux purement 2D ne peuvent pas exister dans les conditions ambiantes parce qu'ils sont instables en raison de l’augmentation des fluctuations thermiques lorsqu’ils se prolongent dans les 2D. Afin de minimiser son énergie, un matériau se brisera en îlots coagulées. Le graphène arrive cependant à surmonter cette barrière en formant des ondulations continues sur la surface du substrat et est stable même à température ambiante et pression atmosphérique. Une grande intention dans la communauté scientifique a été donnée au graphène, après les premiers résultats publiés sur les propriétés électroniques de ce matériau. Les propriétés fondamentales et mécaniques du graphène sont fascinants. Grace aux atomes de carbone qui sont emballés dans un mode sp2 hybridé, formant ainsi une structure de réseau hexagonal, le graphène possède le plus grand module de Young et la plus grande capacité d’étirement, en même temps des centaines de fois plus dur que l’acier. Il conduit la chaleur et l’électricité de manière très efficace. L’aspect le plus fascinant à propos du graphène est surement la nature de ses porteurs de charge à basse énergie. En effet, le graphène présente des bandes d’énergie linéaires au point de neutralité de charge, donnant aux porteurs de charge une nature relativiste. De nombreux phénomènes observés dans ce matériau sont des conséquences de la nature relativiste de ses porteurs. Transport balistique, conductivité optique universelle, absence de rétrodiffusion, et une nouvelle classe d’effet Hall quantique sont de bons exemples de phénomènes nouvellement découverts dans ce matériau. Il est cependant encore trop tôt pour affirmer que toutes les propriétés physiques du graphene sont bien comprises. Dans cette thèse, nous avons mené des expériences de spectroscopie magnéto-Raman pour répondre à certaines des questions ouvertes dans la physique du graphène, notamment l’effet de couplage de Coulomb sur le spectre d’énergie du graphène, et le changement dans les propriétés physiques du graphène multicouche en fonction de sa cristallographie. Nos echantillions ont été soumis à de forts champs magnétiques, appliqués perpendiculairement aux plans atomiques. Le spectre d’excitation sous champ magnétique montre un couplage entre ces excitations et les modes de vibratoires. Cette approche expérimentale permet de remonter à la structure de bande du graphene en champs nul, ainsi que de nombreuses autres propriétés du matériau. / As the fourth most abundant element in the universe, Carbon plays an important rolein the emerging of life in earth as we know it today. The industrial era has seen this element at the heart of technological applications due to the different ways in which carbon forms chemical bonds, giving rise to a series of allotropes each with extraordinary physical properties. For instance, the most thermodynamically stable allotrope of carbon, graphite crystal, is known to be a very good electrical conductor, while diamond very appreciated for its hardness and thermal conductivity is nevertheless considered as an electrical insulator due to different crystallographic structure compared to graphite. The advances in scientific research have shown that crystallographic considerations are not the only determining factor for such a variety in the physical properties of carbon based structures. Recent years have seen the emergence of new allotropes of carbon structures that are stable at ambient conditions but with reduced dimensionality, resulting in largely different properties compared to the three dimensional structures. Among these new classes of carbon allotropes is the first two-dimensional material: graphene.The successful isolation of monolayers of graphene challenged a long established belief in the scientific community: the fact that purely 2D materials cannot exist at ambient conditions. The Landau-Peierls instability theorem states that purely 2D materials are very unstable due to increasing thermal fluctuations when the material in question extends in both dimensions. To minimize its energy, the material will break into coagulated islands, an effect known as island growth. Graphene happens to overcome such barrier by forming continuous ripples on the surface of its substrate and thus is stable even at room temperature and atmospheric pressure.A great intention from the scientific community has been given to graphene, since 2004. Both fundamental and mechanical properties of graphene are fascinating. Thanks to its carbon atoms that are packed in a sp2 hybridized fashion, thus forming a hexagonal lattice structure, graphene has the largest young modulus and stretching power, yet it is hundreds of times stronger than steel. It conducts heat and electricity very efficiently, achieving an electron mobility as high as 107 cm−2V−1 s−1 when suspended over the substrate. The most fascinating aspect about graphene is the nature of its low energy charge carriers. Indeed, graphene has a linear energy dispersion at the charge neutrality, giving the charge carriers in graphene a relativistic nature. Many phenomena observed in this material are consequences of this relativistic nature of its carriers. Ballistic transport, universal optical conductivity, absence of back-scattering, and a new class of room temperaturequantum Hall effect are good examples of newly discovered phenomena in thismaterial. Graphene has become an active research area in condensed matter physics since 2004. It is however still early to state that all the physical properties of this material are well understood. In this thesis we conducted magneto-Raman spectroscopy experiments to address some of the open questions in the physics of graphene, such as the effect of electron-electron coupling on the energy spectrum of monolayer graphene, and the change in the physical properties of multilayer graphene as a function of the crystallographic stacking order. In all our experiments, the graphene-based systems have been subject to strong continuous magnetic fields, applied normal to the graphene layers. We study the evolution of its energy excitation spectra in the presence of the magnetic field, and also the coupling between these excitations and specific vibrational modes that are already in the system. This experimental approach allows us to deduce the band structure of the studied system at zero field, as well as many other lowenergy properties.
46

Lien entre structure et propriétés électroniques des moirés de graphène étudié par microscopie à effet tunnel / Link between structural and electronic properties of moirés of graphene studied by scanning tunneling microscopy

Huder, Loïc 29 November 2017 (has links)
Les dernières années ont vu l'avènement des couches cristallines bidimensionnelles, appelées matériaux 2D. L'exemple le plus connu est le graphène, d'autres étant le nitrure de bore hexagonal isolant et le diséléniure de niobium supraconducteur. Ces matériaux 2D peuvent être empilés de manière contrôlée sous la forme d'hétérostructures de van der Waals pour obtenir les propriétés électroniques désirées. L’une des plus simples hétérostructures de van der Waals est l'empilement de deux couches de graphène tournées. Cet empilement donne naissance à un moiré qui peut être vu comme un potentiel superpériodique dépendant de l'angle entre les deux couches. Les propriétés électroniques des couches tournées de graphène sont intimement liées à ce moiré.Le sujet de cette thèse est l'étude expérimentale du lien entre la structure et les propriétés électroniques des couches tournées de graphène par Microscopie et Spectroscopie à effet tunnel à basse température.Alors que l'effet de l'angle entre les couches sur les propriétés électroniques a déjà été étudié en détail, la modification de celles-ci par une déformation des couches n'a été envisagée que récemment. La première partie de ce travail expérimental étudie la modification par la déformation des propriétés électroniques de couches de graphène tournées d'un angle de 1.26° crûes sur carbure de silicium. La déformation en question est différente dans les deux couches et son effet apparait clairement dans la densité locale d'états électroniques du moiré. Contrairement à une déformation appliquée identiquement aux deux couches, une différence de déformations entre les couches (déformation relative) modifie fortement la structure de bandes même à faibles valeurs de déformations. Alors que la déformation relative était spontanément présente, la deuxième partie de cette thèse s'intéresse à l'effet d'une déformation appliquée directement aux couches de graphène. Cette déformation vient d'une interaction induite par l'approche de la pointe STM vers la surface de graphène. La modification active de la densité d'états qui en résulte dépend de la position de la pointe dans le moiré avec l'apparition d'instabilités périodiques lorsque la distance entre la pointe et l'échantillon est très faible.La troisième partie de cette thèse concerne l'étude d'un autre type de modification des propriétés électroniques consistant en l'induction de supraconductivité dans les couches de graphène. Cette modification est effectuée par une croissance du graphène en une seule étape sur du carbure de tantale supraconducteur. Les résultats montrent la formation d'une couche de carbure de tantale de grande qualité sur laquelle les couches de graphène forment des moirés. La mesure à basse température de la densité d'états de ces moirés montre la présence d'un effet de proximité supraconducteur induit par le carbure de tantale. / Recent years have seen the emergence of two-dimensional crystalline layers, called 2D materials. Examples include the well-known graphene, insulating hexagonal boron nitride and superconducting niobium diselenide. The stacking of these 2D materials can be controlled to achieve desirable electronic properties under the form of van der Waals heterostructures. One of the simplest van der Waals heterostructures is the misaligned stacking of two graphene layers. Twisted graphene layers show a moiré pattern which can be viewed as a superperiodic potential that depends on the twist angle. The electronic properties of the twisted graphene layers are strongly linked to this moiré pattern.The subject of the present thesis is the experimental study of the link between the structural and the electronic properties of twisted graphene layers by means of low-temperature Scanning Tunneling Microscopy and Spectroscopy (STM/STS).While the effect of the twist angle has already been studied in great details, the modulation of the electronic properties by the deformation of the layers has been explored only recently. In the first part of this experimental work, a strain-driven modification of the electronic properties is probed in graphene layers with a twist angle of 1.26° grown on silicon carbide. The determined strain is found to be different in the two layers leading to a clear signature in the local electronic density of states of the moiré even at low strain magnitudes. Contrary to a strain applied in the two layers, this difference of strain between the layers (relative strain) modifies strongly the electronic band structure even at low strain magnitudes. While this relative strain is natively present, the second part of the work explores the effect of an applied strain in the layers. This is realized by approaching the STM tip to the graphene surface to trigger an interaction between the two. The resulting active modification of the density of states is shown to depend on the position on the moiré, leading to periodic instabilities at very low tip-sample distances.In the third part of the work, another type of modification of the electronic properties is studied when superconductivity was induced in the graphene layers. This is done by growing graphene on superconducting tantalum carbide in a single-step annealing. The results show the formation of a high-quality tantalum carbide layer on which graphene layers form moiré patterns. The low-temperature density of states of these moirés show evidence of a superconducting proximity effect induced by the tantalum carbide.
47

Etude théorique de nanodispositifs électroniques et thermoélectriques à base de jonctions contraintes de graphène / Theoretical study of electronic and thermoelectric nanodevicesbased on strained graphene junctions

Nguyen, Mai Chung 02 December 2016 (has links)
De par ses extraordinaires propriétés physiques, on s'attend à ce que le graphène devienne un matériau de nouvelle génération, susceptible de compléter les semi-conducteurs traditionnels dans les technologies de dispositifs électroniques. Depuis sa découverte expérimentale en 2004, de nombreux travaux ont cherché à en évaluer les potentialités. Toutefois, en vue d'applications en électronique, le graphène souffre d'un inconvénient majeur : l'absence de bande interdite dans sa structure de bandes. Ainsi, il est très difficile de moduler et couper le courant dans un transistor de graphène, ce qui restreint considérablement son champ d'applications. Du point de vue des propriétés thermoélectriques, l'absence de bande interdite empêche la séparation des contributions opposées des électrons et des trous au coefficient Seebeck, qui reste donc faible dans le graphène parfait. Aussi, l'ouverture d'une bande interdite (gap) dans le graphène est une nécessité pour contourner les inconvénients de ce matériau et bénéficier pleinement de ses excellentes propriétés de conduction. Il a été montré que de nombreuses approches de nanostructuration peuvent être utilisées dans ce but : découpage de nanorubans de graphène, bicouche de graphène avec application d'un champ électrique transverse, percement d'un réseau périodique de nano-trous (nanomesh), structures mixtes de graphène et de nitrure de bore, dopage du graphène à l'azote. Cependant, toutes ces approches ont leurs propres difficultés de fabrication et/ou restent encore à confirmer expérimentalement. Dans ce travail, je me suis focalisée sur une autre approche : l'ingénierie de contrainte, qui offre un large éventail de possibilités pour moduler les propriétés électroniques des nanostructures de graphène. Pour ce travail théorique, tous les calculs ont été faits en utilisant essentiellement deux méthodes : un modèle atomistique de Hamiltonien de liaisons fortes pour décrire les propriétés électroniques du matériau et l'approche des fonctions de Green hors-équilibre pour le calcul du transport quantique. Après une introduction du contexte général de ce travail et des techniques de calcul développées dans ce but, j'ai d'abord analysé les effets de contrainte. En fait, une contrainte d'amplitude supérieure à 23% est nécessaire pour ouvrir un gap dans la structure de bande du graphène. Mais je montre qu'avec une contrainte de quelques pourcents, le décalage du point de dirac induit par la contrainte peut suffire à ouvrir un gap de conduction très significatif (500 meV ou plus) dans des hétérostructures de graphène constituées de jonctions graphène contraint/graphène non contraint, alors que chacun des matériaux reste semi-métallique. Après l'analyse détaillée de cette propriété en fonction de l'amplitude de la contrainte, de sa direction et de la direction du transport, j'exploite cet effet dans des jonctions appropriées pour améliore le comportement et les performances de différents types de dispositifs. En particulier, je montre qu'avec une contrainte de seulement 5% il est possible de couper efficacement le courant dans les transistors, de sorte que le rapport ON/OFF peut atteindre 100000, ce qui constitue une très forte amélioration par rapport aux transistors de graphène pristine où ce rapport ne peut pas excéder 10. Puis, nous montrons qu'en combinant ingénieries de contrainte et de dopage dans de telles jonctions, le coefficient Seebeck peut atteindre des valeurs aussi fortes que 1.4 mV/K, ce qui est 17 fois plus élevé que dans le graphène sans gap. Cela peut contribuer à faire du graphène un excellent matériau thermoélectrique. Enfin, j'ai étudié l'effet de conductance différentielle négative (CDE) dans des diodes de graphène, constituées soit d'une simple-barrière contrainte contrôlée par une grille, soit d'une jonction PN. Je montre qu'une ingénierie de contrainte appropriée peut induire de forts effets de CDE, avec un rapport pic/vallée de quelques centaines à température ambiante. / Due to its outstanding physical properties, graphene is expected to become a new generation material, able to replace or complement traditional semiconductors in device technology. Hence, many studies have been led to explore the potential of this material immediately after the successful fabrication of a single layer of graphene in 2004. However, applications of graphene in electronic devices are still questionable due to the gapless character of this material. In particular, regarding electronic applications, the absence of energy bandgap in the band structure makes it difficult to switch off the current in graphene devices like transistors. Regarding thermoelectric properties, the gapless character is also a strong drawback since it prevents the separation of the opposite contributions of electrons and holes to the Seebeck coefficient. Thus, a sizable band gap in graphene is a requirement to overcome the disadvantages of graphene and to fully benefit from its excellent conduction properties. It has been shown that many Nano structuring techniques can be used to open such a bandgap in graphene, e.g., graphene nanoribbons, graphene bilayer with a perpendicular electric field, graphene nanotech lattices, channels based on vertical stack of graphene layers, mixed graphene/hexagonal boron nitride structures, nitrogen doped graphene, and so on. However, each of these methods has its own fabrication issues and/or need to be further confirmed by experiments. In this work, we focus on strain engineering, which offers a wide range of opportunities for modulating the electronic properties of graphene nanostructures. For this theoretical work, all calculations were performed using essentially two main methods, i.e., an atomistic tight binding Hamiltonian model to describe the electronic structure and the non-equilibrium Green's function approach of quantum transport. The main aim is to analyze in details the strain effects in graphene and to provide strategies of strain engineering to improve the performance of both electronic (transistors and diodes) and thermoelectric devices. After introducing the general context if this work and the numerical techniques developed for this purpose, we first analyze the only effect of strain. Actually, if uniformly applied, a strain of large amplitude (> 23%) is required to open a bandgap in the band structure of graphene. However, we show that with a strain of only a few percent, the strain-induced shift of the Dirac point in k-space may be enough to open a sizable conduction gap (500 meV or more) in graphene heterojunctions made of unstrained/strained junctions, though the strained material remains gapless. After analyzing in details this property according the amplitude and direction of strain and the direction of transport, we exploit this effect using appropriate strain junctions to improve the behavior and performance of several types of devices. In particular, we show that with a strain of only 5%, it is possible to switch-off transistors efficiently, so that the ON/OFF current ratio can reach 100000, which is a strong improvement with respect to pristine graphene transistors where this ratio cannot exceed 10. Then we show that by combining strain and doping engineering in such strain junctions the Seebeck coefficient can reach values higher than 1.4 mV/K, which is 17 times higher than in gapless pristine graphene. It can contribute to make graphene an excellent thermoelectric material. Finally, we study the effect of negative differential conductance (NDC) in graphene diodes made of either as single gate-induced strained barrier or a p-n junction. We show that appropriate strain engineering in these devices can lead to very strong NDC effects with peak-to-valley ratios of a few hundred at room temperature.
48

Plasma based assembly and engineering of advanced carbon nanostructures / Plasmas appliqués à la production de nanostructures de carbone avancées

Vieitas de Amaral Dias, Ana Inês 04 October 2018 (has links)
L’environnement réactif du plasma constitue un outil puissant dans la science des matériaux, permettant la création de matériaux innovatifs et l'amélioration de matériaux existants qui ne serait autrement pas possible.Le plasma fournit simultanément des fluxes de particules chargées, des molécules chimiquement actives, des radicaux, de la chaleur, des photons, qui peuvent fortement influencer les voies d'assemblage à différentes échelles temporelles et spatiales, y compris à l’échelle atomique.Dans cette thèse de doctorat, des méthodes tenant pour base des plasmas micro-ondes ont été utilisées pour la synthèse de nanomatériaux de carbone, y compris graphène, graphène dopé à l'azote (N-graphène) et structures de type diamant.À cette fin, ce travail est lié à optimisation de la synthèse de nanostructures 2D du carbone, comme graphène et N-graphène par la poursuite de l'élaboration et du raffinement de la méthode développée en Plasma Engineering Laboratory (PEL). La synthèse de graphène de haute qualité et en grandes quantités a été accomplie avec succès en utilisant des plasmas d'Ar-éthanol à ondes de surface dans des conditions de pression ambiante. De plus, le N-graphène a été synthétisé par un procédé en une seule étape, de l'azote a été ajouté au mélange d’Ar-éthanol, et par un procédé en deux étapes, en soumettant des feuilles de graphène préalablement synthétisées ont été exposées à un traitement plasma argon-azote à basse pression. Les atomes d'azote ont été incorporés avec succès dans le réseau de graphène hexagonal, formant principalement liaisons pyrroliques, pyridiniques et quaternaires. Un niveau de dopage de 25 at.% a été atteint.Différents types de nanostructures de carbone, y compris du graphène et des structures de type diamant, ont été synthétisées au moyen d'un plasma d’argon en utilisant du méthane et du dioxyde de carbone comme précurseurs du carbone.De plus, des plasmas à couplage capacitif ont également été utilisés pour la fonctionnalisation du graphène et pour la synthèse de nanocomposites, tels que les composites de Polyaniline (PANI)-graphène. Les utilisations potentielles de ces matériaux ont été étudiées et les deux structures ont démontré avoir des attributs remarquables pour leur application aux biocapteurs. / Plasma environments constitute powerful tools in materials science by allowing the creation of innovative materials and the enhancement of long existing materials that would not otherwise be achievable. The remarkable plasma potential derives from its ability to simultaneously provide dense fluxes of charged particles, chemically active molecules, radicals, heat and photons which may strongly influence the assembly pathways across different temporal and space scales, including the atomic one.In this thesis, microwave plasma-based methods have been applied to the synthesis of advanced carbon nanomaterials including graphene, nitrogen-doped graphene (N-graphene) and diamond-like structures. To this end, the focus was placed on the optimization of the production processes of two-dimensional (2D) carbon nanostructures, such as graphene and N-graphene, by further elaboration and refinement of the microwave plasma-based method developed at the Plasma Engineering Laboratory (PEL). The scaling up of the synthesis process for high-quality graphene using surface-wave plasmas operating at atmospheric pressure and argon-ethanol mixtures was successfully achieved. Moreover, N-graphene was synthetized via a single-step process, by adding nitrogen to the argon-ethanol mixture, and via two-step process, by submitting previously synthetized graphene to the remote region of a low-pressure argon-nitrogen plasma. Nitrogen atoms were usefully incorporated into the hexagonal graphene lattice, mainly as pyrrolic, pyridinic and quaternary bonds. A doping level of 25% was attained.Different types of carbon nanostructures, including graphene and diamond-like nanostructures, were also produced by using methane and carbon dioxide as carbon precursors in an argon plasma.Additionally, capacitively-coupled radio-frequency plasmas have been employed in the functionalization of graphene and in the synthesis of Polyaniline (PANI)-graphene composites. The potential uses of these materials were studied, with both showing favourable characteristics for their applicability in biosensing applications.
49

Étude par imagerie Raman du dopage d’échantillons de graphène hydrogéné

Godbout, Émile 08 1900 (has links)
Depuis une vingtaine d’années, le graphène est étudié à travers le monde pour ses propriétés opto-électroniques remarquables. Malgré tous ces efforts et la simplicité apparente de ce feuillet monoatomique de carbone, sa physique subtile continue de surprendre et reste à découvrir. Cette étude exploratoire vise à évaluer l’effet du dopage et de l’hydrogénation sur le spectre Raman du graphène afin de mieux comprendre les propriétés électroniques sous-jacentes. Pour ce faire, on utilise le RIMA, un imageur Raman hyperspectral qui se distingue des montages Raman traditionnels par sa capacité à produire rapidement des cartes Raman d’une centaine de microns de côté, ce qui permet de résoudre spatialement les propriétés de l’échantillon en plus d’avoir un nombre statistique de spectres. Les échantillons sont produits intégralement dans nos laboratoires et chaque procédé est contrôlé et détaillé dans ce mémoire. Le graphène est synthétisé par dépôt chimique en phase vapeur (Chemical Vapor Deposition, CVD) puis exposé à un faisceau d’hydrogène atomique à haute température pour former des liens C-H sur la surface. Le dopage est généré et contrôlé en immergeant simplement l’échantillon dans une solution de pH variable en ayant préalablement déposé des nanoparticules de platine à sa surface. L’équilibre chimique impliquant le couple rédox Pt/PtO permet de fixer son énergie à un pH donné et d’effectuer un transfert de charge efficace avec le graphène. On obtient ainsi un dopage ajustable, allant d’un fort dopage p à un faible dopage n. Nos résultats révèlent la présence d’un mécanisme de dégradation inattendu relié à l’exposition continue au laser qui suggère une migration de l’hydrogène à la surface pour se concentrer dans la région irradiée. L’évolution des propriétés optiques laisse croire qu’on atteint une densité suffisante d’hydrogène pour modifier la structure de bandes du graphène et le rendre significativement semi-conducteur. Les cartes Raman ont aussi révélé que l’hydrogénation ne semble pas homogène à l’échelle de nos mesures. La densité de défauts a été quantifiée avec deux méthodes différentes qui sont généralement en accord. Au niveau du dopage, notre méthode ne semble pas produire un transfert de charges aussi important que prévu par la loi de Nernst, ce qui pourrait être expliqué par un mauvais contact entre le platine et le graphène. Par contre, on observe en général les tendances prévues dans la littérature, mais avec un décalage en énergie qui pourrait être expliqué par une augmentation du travail de sortie du graphène de 100-200 meV après hydrogénation. / For the past twenty years, graphene has been studied worldwide for its remarkable optoelectronic properties. Despite all these efforts and the apparent simplicity of this monoatomic sheet of carbon, its subtle physics continues to surprise and remains to be discovered. The aim of this exploratory study is to assess the effect of doping and hydrogenation on the Raman spectrum of graphene, in order to better understand the underlying electronic properties. To do this, we are using RIMA, a hyperspectral Raman imager that differs from traditional Raman setups in its ability to rapidly produce Raman maps of around 100 microns on a side, enabling us to spatially resolve the properties of the sample in addition to having a statistical number of spectra. The samples are produced entirely in our laboratories, and each process is controlled and detailed in this thesis. Graphene is synthesized by chemical vapor deposition (CVD), then exposed to a high-temperature atomic hydrogen beam to form C-H bonds on the surface. Doping is generated and controlled simply by immersing the sample in a solution of variable pH, having previously deposited platinum nanoparticles on its surface. The chemical equilibrium involving the redox couple Pt/PtO enables its energy to be fixed for a given pH and an efficient charge transfer to take place with the graphene. This results in an adjustable doping, ranging from high p-doping to low n-doping. Our results reveal the presence of an unexpected degradation mechanism linked to continuous laser exposure, suggesting hydrogen migration across the surface to concentrate in the irradiated region. The evolution of optical properties suggests that a sufficient density of hydrogen is reached to modify the band structure of graphene and render it significantly semiconducting. Raman maps also revealed that hydrogenation does not appear to be homogeneous at the scale of our measurements. Defect density was quantified using two different methods which are in general agreement. In terms of doping, our method does not seem to produce as much charge transfer as predicted by Nernst’s law, which could be explained by poor contact between platinum and graphene. On the other hand, we generally observe the trends predicted in the literature, but with an energy shift that could be explained by an increase in graphene work function of 100-200 meV after hydrogenation.
50

Étude des propriétés électroniques des états fondamentaux aux facteurs de remplissage entiers dans la bicouche de graphène

Lemonde, Marc-Antoine January 2010 (has links)
Dans ce document, on étudie les propriétés électroniques d'un système composé de deux couches de graphène séparées par un diélectrique en présence d'un fort champ magnétique perpendiculaire. L'épaisseur du diélectrique est choisie de façon à pouvoir négliger le transfert de charges par effet tunnel. Ce type de système est étudié par quelques groupes de recherche dans le principal but de prédire et comprendre la formation de condensat de Bose-Einstein d'excitons dont les composants sont des fermions relativistes sans masse [1] [2] [3]. Nous nous intéressons à l'effet de l'interaction électron-électron sur les états fondamentaux de ce système et à leurs excitations collectives à facteur de remplissage entier. Plus précisément, nous étudions les diagrammes de phase de cette bicouche de graphène sans terme tunnel dans le niveau de Landau n = 0 pour les facteurs de remplissage ? = 1 et ? = 2 dans la limite où la température tend vers zéro. Lors de cette étude, nous appuyons les prédictions faites par Allan H. MacDonald et Yogesh N. Joglekar à propos de la formation d'un condensat de Bose-Einstein d'excitons pour différentes zones des diagrammes de phase. Nous étudions aussi la relation de dispersion des excitations collectives soutenues par les états fondamentaux et leur effet sur le système. Finalement, nous nous intéressons à la conductivité du système. Nous démontrons alors les règles de sélection pour l'absorption inter-niveaux de Landaux et nous étudions l'effet des modes collectifs sur l'absorption intra-niveau de Landau. Ce dernier phénomène ressort directement de la forme particulière du réseau atomique du graphène et nous proposons dans ce document une toute première étude de ce concept.

Page generated in 0.4362 seconds