• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 16
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Climatology and firn processes in the lower accumulation area of the Greenland ice sheet

Charalampidis, Charalampos January 2016 (has links)
The Greenland ice sheet is the largest Northern Hemisphere store of fresh water, and it is responding rapidly to the warming climate. In situ observations document the changing ice sheet properties in the lower accumulation area, Southwest Greenland. Firn densities from 1840 meters above sea level retrieved in May 2012 revealed the existence of a 5.5-meter-thick, near-surface ice layer in response to the recent increased melt and refreezing in firn. As a consequence, vertical meltwater percolation in the extreme summer 2012 was inefficient, resulting in surface runoff. Meltwater percolated and refroze at six meters depth only after the end of the melt season. This prolonged autumn refreezing under the newly accumulated snowpack resulted in unprecedented firn warming with temperature at ten meters depth increased by more than four degrees Celsius. Simulations confirm that meltwater reached nine meters depth at most. The refrozen meltwater was estimated at 0.23 meters water equivalent, amounting to 25 % of the total 2012 ablation. A surface energy balance model was used to evaluate the seasonal and interannual variability of all surface energy fluxes at that elevation in the years 2009 to 2013. Due to the meltwater presence at the surface in 2012, the summer-averaged albedo was significantly reduced (0.71 in 2012; typically 0.78). A sensitivity analysis revealed that 71 % of the subsequent additional solar radiation in 2012 was used for melt, corresponding to 36 % of the total 2012 surface lowering. This interplay between melt and firn properties highlights that the lower accumulation area of the Greenland ice sheet will be responding rapidly in a warming climate. / Stability and Variations of Arctic Land Ice (SVALI) / Programme for Monitoring of the Greenland Ice Sheet (PROMICE) / Greenland Analogue Project (GAP)
12

利用多元衛星影像監測格陵蘭Russell冰河之變動行為與消融機制分析 / A remote sensing monitoring of greenland Russell glacier dynamics and analysis of melting mechanism

蔡亞倫, Tsai, Ya Lun Unknown Date (has links)
近年全球暖化現象日益嚴重,格陵蘭等極區融冰所造成之海平面上升將對全球人類帶來嚴重威脅。因冰層質量之改變與冰河移動速度高度相關,故可藉由監測格陵蘭冰層(Greenland Ice Sheet,GrIS)上冰河之移動推估全球暖化對其造成之影響。衛星影像因具有連續且快速獲得大範圍地表資訊之能力,且可結合各影像處理技術獲得地表變形量,故已廣泛應用於廣域冰河之監測。然不同影像與技術均有其優勢與限制,故本研究將使用合成孔徑雷達(Synthetic Aperture Radar,SAR)與光學影像,並結合合成孔徑雷達差分干涉(Differential Interferometric SAR,D-InSAR)、多重合成孔徑雷達干涉(Multi-aperture Interferometric SAR,MAI)與偏移偵測法(Pixel-offset,PO)技術獲得冰河表面於不同方向之位移向量,再整合各向量透過三維變動量解構法(3D decomposition)求解表面於三維方向之變形量。據此執行數值冰層動力模型(Numerical Ice Sheet Model,ISM),並結合模擬之冰底基岩渠道網絡、數化之冰面冰隙與冰面湖及氣象觀測資料後,參佐冰河變動理論,進一步了解格陵蘭Russell冰河之變動行為與機制。 / Global warming has been a worldwide issue and significantly increasing icecap melting rate over polar area. Consequently the sea level rises continuously and poses a fundamental threat to whole human beings. Since the mass loss of Greenland ice sheet (GrIS) is highly correlated to the velocity of glacier movement, this study aims to monitor the impact of global warming by tracking glacier terminus displacement over GrIS using remote sensing techniques. As there are multiple spaceborne images of various characteristics and also multiple techniques with different functions, we proposed a monitoring strategy using Synthetic Aperture Radar (SAR) and optical images, with Differential Interferometric SAR (D-InSAR), Multi-aperture Interferometric SAR (MAI) and Pixel-offset (PO) techniques to estimate glacier movement vectors. The vectors were then merged using 3D decomposition method to derive 3D deformation. Based on the resultant 3D deformation, the Numerical Ice Sheet Model (ISM) is conducted and then integrates with modeled subglacial drainage channel network and glaciological theories, the melting dynamics and mechanism of Russell glacier can be further understood.
13

Remote sensing of rapidly draining supraglacial lakes on the Greenland Ice Sheet

Williamson, Andrew Graham January 2018 (has links)
Supraglacial lakes in the ablation zone of the Greenland Ice Sheet (GrIS) often drain rapidly (in hours to days) by hydraulically-driven fracture (“hydrofracture”) in the summer. Hydrofracture can deliver large meltwater volumes to the ice-bed interface and open-up surface-to-bed connections, thereby routing surface meltwater to the subglacial system, altering basal water pressures and, consequently, the velocity profile of the GrIS. The study of rapidly draining lakes is thus important for developing coupled hydrology and ice-dynamics models, which can help predict the GrIS’s future mass balance. Remote sensing is commonly used to identify the location, timing and magnitude of rapid lake-drainage events for different regions of the GrIS and, with the increased availability of high-quality satellite data, may be able to offer additional insights into the GrIS’s surface hydrology. This study uses new remote-sensing datasets and develops novel analytical techniques to produce improved knowledge of rapidly draining lake behaviour in west Greenland over recent years. While many studies use 250 m MODerate-resolution Imaging Spectroradiometer (MODIS) imagery to monitor intra- and inter-annual changes to lakes on the GrIS, no existing research with MODIS calculates changes to individual and total lake volume using a physically-based method. The first aim of this research is to overcome this shortfall by developing a fully-automated lake area and volume tracking method (“the FAST algorithm”). For this, various methods for automatically calculating lake areas and volumes with MODIS are tested, and the best techniques are incorporated into the FAST algorithm. The FAST algorithm is applied to the land-terminating Paakitsoq and marine-terminating Store Glacier regions of west Greenland to investigate the incidence of rapid lake drainage in summer 2014. The validation and application of the FAST algorithm show that lake areas and volumes (using a physically-based method) can be calculated accurately using MODIS, that the new algorithm can identify rapidly draining lakes reliably, and that it therefore has the potential to be used widely across the GrIS to generate novel insights into rapidly draining lakes. The controls on rapid lake drainage remain unclear, making it difficult to incorporate lake drainage into models of GrIS hydrology. The second aspect of this study therefore investigates whether various hydrological, morphological, glaciological and surface-mass-balance controls can explain the incidence of rapid lake drainage on the GrIS. These potential controlling factors are examined within an Exploratory Data Analysis statistical technique to elicit statistical similarities and differences between the rapidly and non-rapidly draining lake types. The results show that the lake types are statistically indistinguishable for almost all factors, except lake area. It is impossible, therefore, to elicit an empirically-supported, deterministic method for predicting hydrofracture in models of GrIS hydrology. A frequent problem in remote sensing is the need to trade-off high spatial resolution for low temporal resolution, or vice versa. The final element of this thesis overcomes this problem in the context of monitoring lakes on the GrIS by adapting the FAST algorithm (to become “the FASTER algorithm”) to use with a combined Landsat 8 and Sentinel-2 satellite dataset. The FASTER algorithm is applied to a large, predominantly land-terminating region of west Greenland in summers 2016 and 2017 to track changes to lakes, identify rapidly draining lakes, and ascertain the extra quantity of information that can be generated by using the two satellites simultaneously rather than individually. The FASTER algorithm can monitor changes to lakes at both high spatial (10 to 30 m) and temporal (~3 days) resolution, overcoming the limitation of low spatial or temporal resolution associated with previous remote sensing of lakes on the GrIS. The combined dataset identifies many additional rapid lake-drainage events than would be possible with Landsat 8 or Sentinel-2 alone, due to their low temporal resolutions, or with MODIS, due to its inferior spatial resolution.
14

Impactites from the Hiawatha crater, North-West Greenland

Gustafsson, Jacob January 2020 (has links)
The recent discovery of the 31-km-wide Hiawatha impact crater has raised unanswered questions about its age, impactor and highly unusual organic carbon component. Previous research suggests a fractionated iron meteorite impactor, a probable maximum 3–2.4 Ma impact age and a possible Younger Dryas impact age. The first objective in this study has been to investigate a possible link between the Cape York meteorites and the Hiawatha impact crater by comparing the chromium isotopic signature in chromite from a Cape York meteorite with the chromium isotopic signature in potential chromite from the Hiawatha impactor. The second objective has been to investigate a possible Hiawatha signature in the Younger Dryas deposits from Baffin Bay. The third objective has been to study the organic carbon component in impactites derived from the Hiawatha impact crater. Heavy mineral grains were separated from glaciofluvial sediment which contains Hiawatha impactite grains. Not a single chromite grain was found and the possible link to the Cape York meteorites could not be tested. The petrographic examination of Younger Dryas marine deposits resulted in absence of impact-related Hiawatha grains. A petrological investigation revealed that organic carbon was likely found in five of six variably shocked impactites derived from the Hiawatha impact crater. The character of the organic carbon varies between the samples and also within individual samples. Vitrinite reflectance measurements of the organic carbon in two impactites yielded low reflectance values compared to charcoalification experiments of wood. Organic particles with different reflectance in the same sample suggest that the particles had different impact histories prior to settling and becoming a rock. Diagnostic conifer cellular texture was found in at least one of the samples. The character of the organic particles in the impactites supports the suggestion in a previous study that the sources of the Hiawatha organic carbon component are unmetamorphosed surficial deposits containing dead conifer tree trunks and fine-grained layered clay and organic matter.  In this study it is concluded that the apparent absence of chromite in the examined glaciofluvial sediment sample corroborates the significance of previous research which suggests that the Hiawatha impactor was an iron meteorite. The apparent absence of impact related grains in the Younger Dryas deposits suggests that although a Younger Dryas age for the Hiawatha impact crater is less likely now, the possibility remains open. The organic carbon with diagnostic conifer cellular texture in the Hiawatha impactites corroborates the conclusion in a previous study that the Hiawatha impact-related organic carbon component stems from local, thermally degraded conifer trees with a probable age of ca. 3–2.4 Ma. It is also concluded that the relatively low reflectance values of the organic carbon in the Hiawatha impactites seem to be related to the short duration of the high-temperature excursion during the hypervelocity impact event.
15

Comprendre l’évolution de la cryosphère et du climat du Pliocène à la transition Plio-Pléistocène / Understanding the cryosphere and climate evolution from Pliocene to Plio-Pleistocene transition

Tan, Ning 25 April 2018 (has links)
Cette thèse est consacrée à l’étude de l’interaction cryosphère-climat depuis le milieu du Pliocène jusqu’au quaternaire pendant l’installation pérenne de la calotte groenlandaise. Nous étudions d’abord les causes du développement et de la disparition de l’importante mais courte glaciation qui a eu lieu pendant le stade isotopique marin M2 (MIS M23.264-¬3.312 Ma). Ensuite, dans le cadre du programme international sur la modélisation du Pliocène (PLIOMIP2), nous étudions le climat de la période chaude du Plaisancien moyen(MPWP, 3.3-3.0Ma). Enfin, la troisième période étudiée est la transition Plio-Pléistocène transition (PPT, 3.0-2.5Ma), que nous avons étudiée grâce à un couplage asynchrone entre un modèle de climat et un modèle de calotte. A travers ces différentes périodes, nous avons amélioré la connaissance des relations entrepCO2, tectonique et climat pendant la transition d’un monde chaud et riche en CO2 vers le monde bien plus froid et à faible pCO2 des glaciations quaternaires. Ce résultat montre l’importance de mieux comprendre les relations entre dynamique océanique, pCO2 et climat. / This thesis is devoted tounderstanding the interaction betweencryosphere and climate from the mid Plioceneto the early Quaternary during the onset ofNorthern Hemisphere Glaciation (NHG).Firstly, we investigate the causes for thedevelopment and decay of the large but shortliving glaciation that occurred during MarineIsotope Stage 2 (M2, 3.264-¬3.312 Ma);Secondly, in the framework of the internationalPliocene Model Intercomparison Project(PLIOMIP2), we study the climate of Mid-Piacenzian Warm Period (MPWP, 3.3-3.0Ma).Thirdly, we explore the Plio-PleistoceneTransition (PPT, 3.0-2.5Ma) with anappropriate asynchronously coupled climatecryosphere model. Through these differentperiods, we provide a better understanding ofthe relationship between pCO2, tectonics andclimat during the transition from a warm andhigh-CO2 world to the cold and low-CO2Quaternary glaciations. This work also pointsout the necessity to further study the linkbetween ocean dynamics, carbon cycle andclimate.
16

Hydrology and Bed Topography of the Greenland Ice Sheet : Last known surroundings

Lindbäck, Katrin January 2015 (has links)
The increased temperatures in the Arctic accelerate the loss of land based ice stored in glaciers. The Greenland Ice Sheet is the largest ice mass in the Northern Hemisphere and holds ~10% of all the freshwater on Earth, equivalent to ~7 metres of global sea level rise. A few decades ago, the mass balance of the Greenland Ice Sheet was poorly known and assumed to have little impact on global sea level rise. The development of regional climate models and remote sensing of the ice sheet during the past decade have revealed a significant mass loss. To monitor how the Greenland Ice Sheet will affect sea levels in the future requires understanding the physical processes that govern its mass balance and movement. In the southeastern and central western regions, mass loss is dominated by the dynamic behaviour of ice streams calving into the ocean. Changes in surface mass balance dominate mass loss from the Greenland Ice Sheet in the central northern, southwestern and northeastern regions. Little is known about what the hydrological system looks like beneath the ice sheet; how well the hydrological system is developed decides the water’s impact on ice movement. In this thesis, I have focused on radar sounding measurements to map the subglacial topography in detail for a land-terminating section of the western Greenland Ice Sheet. This knowledge is a critical prerequisite for any subglacial hydrological modelling. Using the high-resolution ice thickness and bed topography data, I have made the following specific studies: First, I have analysed the geological setting and glaciological history of the region by comparing proglacial and subglacial spectral roughness. Second, I have analysed the subglacial water drainage routing and revealed a potential for subglacial water piracy between adjacent subglacial water catchments with changes in the subglacial water pressure regime. Finally, I have looked in more detail into englacial features that are commonly observed in radar sounding data from western Greenland. In all, the thesis highlights the need not only for accurate high-resolution subglacial digital elevation models, but also for regionally optimised interpolation when conducting detailed hydrological studies of the Greenland Ice Sheet. / De ökade temperaturerna i Arktis påskyndar förlusten av landbaserad is lagrad i glaciärer och permafrost. Grönlands inlandsis är den största ismassan på norra halvklotet och lagrar ca 10% av allt sötvatten på jorden, vilket motsvarar ca 7 meter global havsnivåhöjning. För ett par decennier sedan var inlandsisens massbalans dåligt känd och antogs ha liten inverkan på dagens havsnivåhöjning. Utvecklingen av regionala klimatmodeller och satellitbaserad fjärranalys av inlandsisen har under de senaste decenniet påvisat en betydande massförlust. För att förutse vilken inverkan inlandsisen har på framtida havsnivåhöjningar krävs en förståelse för de fysikaliska processerna som styr dess massbalans och isrörelse. I de sydöstra och centrala västra delarna av inlandsisen domineras massförlusten av dynamiska processer i isströmmar som kalvar ut i havet. Massförlusten i de centrala norra, sydvästra och nordöstra delarna domineras av isytans massbalans. Ytterst lite är känt om hur det hydrologiska systemet ser ut under inlandsisen; hur väl det hydrologiska systemet är utvecklat avgör vattnets påverkan på isrörelsen. I denna doktorsavhandling har jag använt markbaserade radarmätningar för att kartlägga den subglaciala topografin för en del av den västra landbaserade inlandsisen. Denna kunskap är en viktig förutsättning för att kunna modellera den subglaciala hydrologin. Med hjälp av rumsligt högupplöst data över istjockleken och bottentopografin har jag gjort följande specifika studier: Först har jag analyserat de geologiska och glaciologiska förhållandena i regionen genom att jämföra proglacial och subglacial spektralanalys av terrängens ytojämnheter. Sedan har jag analyserat den subglaciala vattenavrinningen och påvisat en potential för att avrinningsområdena kan ändras beroende på vattentryckförhållandena på botten. Slutligen har jag tittat mer i detalj på englaciala radarstrukturer som ofta observerats i radardata från västra Grönland. Sammanfattningsvis belyser avhandlingen behovet av inte bara noggranna rumsligt högupplösta subglaciala digitala höjdmodeller, utan även regionalt optimerad interpolering när detaljerade hydrologiska studier ska utföras på Grönlands inlandsis.

Page generated in 0.05 seconds