• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 10
  • 10
  • 8
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelo de Gross-Neveu e simetrias : soluções analíticas e dinâmica de campos térmicos

Rocha, Paulo Magalhães Marciano da 22 December 2015 (has links)
Tese (doutorado)—Universidade de Brasília, Instituto de Física, 2015. / Submitted by Kathryn Cardim Araujo (kathryn.cardim@gmail.com) on 2016-04-27T16:30:59Z No. of bitstreams: 1 2015_PauloMagalhãesMarcianoDaRocha.pdf: 595260 bytes, checksum: d0dd827f80029b5f52a2d26e668d2b5c (MD5) / Approved for entry into archive by Guimaraes Jacqueline(jacqueline.guimaraes@bce.unb.br) on 2016-04-28T13:07:36Z (GMT) No. of bitstreams: 1 2015_PauloMagalhãesMarcianoDaRocha.pdf: 595260 bytes, checksum: d0dd827f80029b5f52a2d26e668d2b5c (MD5) / Made available in DSpace on 2016-04-28T13:07:36Z (GMT). No. of bitstreams: 1 2015_PauloMagalhãesMarcianoDaRocha.pdf: 595260 bytes, checksum: d0dd827f80029b5f52a2d26e668d2b5c (MD5) / Nesta tese são discutidos dois aspectos do modelo de Gross-Neveu através da óptica de Simetria: Soluções analíticas são encontradas através da análise sistemática de simetrias das equações geradas pelo modelo e transição de fase é estudada a partir da restauração da simetria quiral por meio de efeitos de compactificação. / Within this thesis, two aspects of the Gross-Neveu model are considered in the backdrop of symmetry analysis: Analytical solutions of the model are obtained through systematic symmetry analysis of the differential equations of the model and phase transistion is studied from the point of view of the chiral symmetry restoration through compactification effects.
2

Tratamento Cinético de um sistema de muitos corpos descritos pelo modelo fermiônico quiral de Gross-Neveu. / Kinetic treatment of a many-body system described by the fermionic chiral Gross-Neveu model.

Natti, Paulo Laerte 06 April 1995 (has links)
Uma técnica de projeção é usada para tratar o problema de condição inicial na teoria quântica de campos. Neste formalismo, equações de movimento do tipo cinético são deduzidas para o conjunto de variáveis dinâmicas de um corpo. Estas equações são submetidas a uma expansão não perturbativa. Tratamos esta expansão em ordem mais baixa, correspondente a aproximacão de campo médio, para um sistema uniforme de muitos fermions fora do equilíbrio descrito pelo modelo fermiônico quiral de gross-neveu. Nesta aproximação recuperamos os resultados existentes na literatura, tais como, geração dinâmica de massa, liberdade assintótica e o fenômeno de transmutação dimensional. Estudando ainda nesta aproximção o regime de pequenas oscilações em torno do equilíbrio, obtemos soluções analíticas para a evolução dinâmica de nossas variáveis. Verificamos também as condições para existencias de estados ligados neste regime. / A time-dependent projection technique is used to treat the initial value problem in Quantum Field Theory. On the basis of the general dynamics of the fields, we derive equations of kinetic type for the set of one-body dynamics variables. A non-perturbative expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Mean-Field Approximation, for a non-equilibrium uniform many-fermions system described by Chiral Gross-Neveu Model. Several literature results are obtained such as dynamical mass generation, dimensional transmutation and asymptotic freedom. In this approximation we study the small oscillations regime obtaining analytical solution for one-body dynamical variables. We have also examined the condition for the existence of bound-state in this case.
3

Precise determination of universal finite volume observables in the Gross-Neveu model

Korzec, Tomasz 13 July 2007 (has links)
Bei dem Gross-Neveu Modell handelt es sich um eine in zwei Raumzeit-Dimensionen formulierte Quantenfeldtheorie, die einige Gemeinsamkeiten mit der Quantenchromodynamik aufweist. In der vorliegenden Arbeit wird zunächst ein Überblick über das Kontinuumsmodell sowie über diskretisierte Versionen gegeben. Ein Renormierungsschema wird eingeführt und getestet. Berechnungen im Grenzwert unendlich vieler Fermionfamilien und in Störungstheorie werden durchgeführt. In ausgiebigen Monte-Carlo Simulationen der Modelle mit einer und vier Fermionfamilien wird eine Reihe universeller Größen mit hoher Genauigkeit ermittelt. Simuliert wird eine Gitterversion des Modells mit Wilson-Fermionen. Für das Modell mit nur einer Fermionfamilie, welches zum masselosen Thirring-Modell äquivalent ist, werden die kontinuumsextrapolierten Ergebnisse mit einer exakten Lösung dieses Modells konfrontiert. / The Gross-Neveu model is a quantum field theory in two space time dimensions that shares many features with quantum chromo dynamics. In this thesis the continuum model and its discretized versions are reviewed and a finite volume renormalization scheme is introduced and tested. Calculations in the limit of infinitely many fermion flavors as well as perturbative computations are carried out. In extensive Monte-Carlo simulations of the one flavor and the four flavor lattice models with Wilson fermions a set of universal finite volume observables is calculated to a high precision. In the one flavor model which is equivalent to the massless Thirring model the continuum extrapolated Monte-Carlo results are confronted with an exact solution of the model.
4

Tratamento Cinético de um sistema de muitos corpos descritos pelo modelo fermiônico quiral de Gross-Neveu. / Kinetic treatment of a many-body system described by the fermionic chiral Gross-Neveu model.

Paulo Laerte Natti 06 April 1995 (has links)
Uma técnica de projeção é usada para tratar o problema de condição inicial na teoria quântica de campos. Neste formalismo, equações de movimento do tipo cinético são deduzidas para o conjunto de variáveis dinâmicas de um corpo. Estas equações são submetidas a uma expansão não perturbativa. Tratamos esta expansão em ordem mais baixa, correspondente a aproximacão de campo médio, para um sistema uniforme de muitos fermions fora do equilíbrio descrito pelo modelo fermiônico quiral de gross-neveu. Nesta aproximação recuperamos os resultados existentes na literatura, tais como, geração dinâmica de massa, liberdade assintótica e o fenômeno de transmutação dimensional. Estudando ainda nesta aproximção o regime de pequenas oscilações em torno do equilíbrio, obtemos soluções analíticas para a evolução dinâmica de nossas variáveis. Verificamos também as condições para existencias de estados ligados neste regime. / A time-dependent projection technique is used to treat the initial value problem in Quantum Field Theory. On the basis of the general dynamics of the fields, we derive equations of kinetic type for the set of one-body dynamics variables. A non-perturbative expansion can be written for these equations. We treat this expansion in lowest order, which corresponds to the Mean-Field Approximation, for a non-equilibrium uniform many-fermions system described by Chiral Gross-Neveu Model. Several literature results are obtained such as dynamical mass generation, dimensional transmutation and asymptotic freedom. In this approximation we study the small oscillations regime obtaining analytical solution for one-body dynamical variables. We have also examined the condition for the existence of bound-state in this case.
5

Integrability and Thermodynamics of the Gross-Neveu Model / Integrerbarhet och termodynamik i Gross-Neveu-modellen

Melin, Valdemar January 2023 (has links)
The Gross-Neveu model is a quantum field theory of interacting N-flavor fermions in 1+1dimensions, with interaction term $(\bar{\psi}_f\psi_f )^2$. This model is studied using the property offactorized scattering. The spectrum of bound states including the kinks are discussed andthe thermodynamic state equations are derived using the thermodynamic Bethe ansatz.The full particle-particle integral kernel and corresponding S-matrix is derived startingfrom the Gross-Neveu version of the Y -system introduced by Zamolodchikov. / Gross-Neveu-modellen är en kvantfältteori som beskriver N identiska versioner av fundamentala fermioner i 1 + 1 dimensioner, växelverkande med potentialen $(\bar{\psi}_f\psi_f )^2$. Modellen studeras med utgångspunkt i partiklarnas så kallade faktoriserade spridning. Samtligafysikaliska bundna tillstånd inklusive solitonerna diskuteras och de termodynamiska tillståndsekvationerna härleds med hjälp av Bethe-ansatsen. Alla integralkärnor och motsvarande S-matriselement beräknas på sluten form utifrån Y-systemet som först beskrevs av Zamolodchikov.
6

The Schrödinger functional for Gross-Neveu models

Leder, Björn 25 July 2007 (has links)
In dieser Arbeit werden Gross-Neveu Modelle mit einer endlichen Anzahl von Fermiontypen auf einem zweidimensionalen Euklidischen Raumzeitgitter betrachtet. Modelle dieses Typs sind asymptotisch frei und invariant unter einer chiralen Symmetrie. Aufgrund dieser Gemeinsamkeiten mit QCD sind sie sehr gut geeignet als Testumgebungen für Fermionwirkungen die in großangelegten Gitter-QCD-Rechnungen benutzt werden. Das Schrödinger Funktional für die Gross-Neveu Modelle wird definiert für Wilson und Ginsparg-Wilson Fermionen. In 1-Schleifenstörungstheorie wird seine Renormierbarkeit gezeigt. Die Vier-Fermionwechselwirkungen der Gross-Neveu Modelle habe dimensionslose Kopplungskonstanten in zwei Dimensionen. Die Symmetrieeigenschaften der Vier-Fermionwechselwirkungen und deren Beziehungen untereinander werden diskutiert. Im Fall von Wilson Fermionen ist die chirale Symmetrie explizit gebrochen und zusätzliche Terme müssen in die Wirkung aufgenommen werden. Die chirale Symmetrie wird durch das Einstellen der nackten Masse und einer der Kopplungen bis auf Cut-off-Effekte wiederhergestellt. Die kritische Masse und die symmetriewiederherstellende Kopplung werden bis zur zweiten Ordnung in Gitterstörungstheorie berechnet. Dieses Resultat wird in der 1-Schleifenberechnung der renormierten Kopplungen und der zugehörigen Betafunktionen benutzt. Die renormierten Kopplungen werden definiert mit Hilfe von geeignete Rand-Rand-Korrelatoren. Die Rechnung reproduziert die bekannten führenden Koeffizienten der Betafunktionen. Eine der Kopplungen hat eine verschwindende Betafunktion. Die Rechnung wird mit dem vor kurzem vorgeschlagenen Schrödinger Funktional mit exakter chiraler Symmetrie, also Ginsparg Wilson Fermionen, wiederholt. Es werden die gleichen Divergenzen gefunden, wie im Fall von Wilson Fermionen. Unter Benutzung des regularisierungsabhängigen, endlichen Teils der renormierten Kopplungen werden die Verhältnisse der Lambda-Parameter bestimmt. / Gross-Neveu type models with a finite number of fermion flavours are studied on a two-dimensional Euclidean space-time lattice. The models are asymptotically free and are invariant under a chiral symmetry. These similarities to QCD make them perfect benchmark systems for fermion actions used in large scale lattice QCD computations. The Schrödinger functional for the Gross-Neveu models is defined for both, Wilson and Ginsparg-Wilson fermions, and shown to be renormalisable in 1-loop lattice perturbation theory. In two dimensions four fermion interactions of the Gross-Neveu models have dimensionless coupling constants. The symmetry properties of the four fermion interaction terms and the relations among them are discussed. For Wilson fermions chiral symmetry is explicitly broken and additional terms must be included in the action. Chiral symmetry is restored up to cut-off effects by tuning the bare mass and one of the couplings. The critical mass and the symmetry restoring coupling are computed to second order in lattice perturbation theory. This result is used in the 1-loop computation of the renormalised couplings and the associated beta-functions. The renormalised couplings are defined in terms of suitable boundary-to-boundary correlation functions. In the computation the known first order coefficients of the beta-functions are reproduced. One of the couplings is found to have a vanishing beta-function. The calculation is repeated for the recently proposed Schrödinger functional with exact chiral symmetry, i.e. Ginsparg-Wilson fermions. The renormalisation pattern is found to be the same as in the Wilson case. Using the regularisation dependent finite part of the renormalised couplings, the ratio of the Lambda-parameters is computed.
7

O modelo de Gross-Neveu em um ponto de Lifshitz

Martinez von Dossow, Ricardo Andrés 19 February 2016 (has links)
Submitted by Vasti Diniz (vastijpa@hotmail.com) on 2017-09-12T12:27:38Z No. of bitstreams: 1 arquivototal.pdf: 987629 bytes, checksum: 073f4a58e014f0b46588edf144d4a42b (MD5) / Made available in DSpace on 2017-09-12T12:27:38Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 987629 bytes, checksum: 073f4a58e014f0b46588edf144d4a42b (MD5) Previous issue date: 2016-02-19 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this dissertation we work with the Horava-Lifshitz-like Gross-Neveu model in (2+1) dimensions in the Large N expansion. Firstly we make an article revision [6] where it is shown that the Gross-Neveu Model in the 1/N expansion presents a dynamic mass generation by means of the introduction of an auxiliary field, which results in the dynamical parity broken. We calculate the gap equation where we will see the generated mass dependence with the coupling constant. After that, we will put a gauge field to the model and study the polarization tensor which will generate an induced Chern-Simons term in the Effective Lagrangian. As a novelty, we work with the Gross-Neveu Model in the context of Horava-Lifshitz, where anisotropic scaling is done, thus breaking the Lorentz invariance. We introduce an auxiliary field and we study the cases which the value of the critical dynamic exponent Z is even and when it is odd. In the case where z is even, there is no dynamic mass generation so the parity symmetry is conserved and we will not have the term induced of Chern-Simons either. In the case where z is odd, we will have the dynamic mass generation and the dynamic parity symmetry will occur. Finally we couple a gauge field in the model and find the Chern-Simons term, which clearly shows the anisotropy of space and time for values of z> 1 / Nesta dissertacao trabalhamos corn o modelo de Gross-Neveu ern (2+1) dimensoes na expansao 1/N no contexto de Horava-Lifshitz. Primeiro, faremos uma revisao do artigo [6], onde se mostra que o Modelo de Gross-Neveu na expansao 1/N apresenta uma geracao dinamica de massa mediante a introducao de urn campo auxiliar, o que traz como consequencia a quebra dinamica da simetria de paridade. Calculamos a equacao de gap, onde veremos a dependencia da massa gerada corn a constante de acoplamento. ApOs isso, acoplaremos urn campo de gauge ao modelo, estudamos o tensor de polarizacao, o qual vai gerar urn termo induzido de tipo Chern-Simons na lagrangiana efetiva. Como novidade, trabalhamos corn o Modelo de Gross-Neveu no contexto de Horava-Lifshitz, onde se faz urn escalonamento anisotrOpico, quebrando, assim, a invariancia de Lorentz. Introduzimos urn campo auxiliar e estudamos os casos ern que o valor do exponente dinamico critico z é par quando é Impar. No caso ern que z é par, nao ha geracao dinamica de massa pelo que a simetria de paridade é conservada e tambern nao teremos o termo induzido de Chern-Simons. No caso ern que z é impar, vamos ter a geracao dinamica de massa vai ocorrer a quebra dinamica de simetria de paridade. Finalmente, acoplamos urn campo de gauge no modelo e encontramos o termo tipo Chern-Simons, o qual mostra claramente a anisotropia do espaco tempo para valores de z > 1.
8

Conductivité pour des fermions de Dirac près d’un point critique quantique

Martin, Simon 08 1900 (has links)
Les matériaux de Dirac constituent une classe intéressante de systèmes pouvant subir une transition de phase quantique à température nulle, lorsqu’un paramètre non-thermique atteint un point critique quantique. À l’approche d’un tel point, les observables physiques sont affectées par les importantes fluctuations thermiques et quantiques. Dans ce mémoire, on utilise des techniques de théorie conforme des champs afin d’étudier le tenseur de conductivité électrique dans des théories en 2 + 1 dimensions contenant des fermions de Dirac près d’un point critique quantique. À basse énergie, ces dernières décrivent de façon adéquate de nombreux matériaux de Dirac ainsi que leur transition de phase quantique. La conductivité est étudiée dans le régime des hautes fréquences, à température non-nulle et lorsque le paramètre non-thermique est près de sa valeur critique. Dans ce projet, l’emphase est mise sur les points critiques quantiques invariants sous la parité et le renversement du temps. Dans ce cas, l’expansion de produit d’opérateurs (Operator product expansion en anglais) ainsi que la théorie des perturbations conforme permettent d’obtenir une expression générale pour l’expansion à grandes fréquences des conductivités longitudinales et transverses (de Hall) lorsque le point critique quantique est déformé par un opérateur scalaire relevant. Grâce à ces dernières, nous sommes en mesure de déduire des règles de somme exactes pour ces deux quantités. À titre d’exemple, nos résultats généraux sont appliqués dans le cadre du modèle interagissant de Gross-Neveu, où nous obtenons l’expansion des deux conductivités ainsi que les règles de somme pour un nombre de saveurs de fermions de Dirac N arbitraire. Ces mêmes expressions sont ensuite obtenues par un calcul explicite à N = infini, permettant la comparaison avec les résultats pour un N quelconque. Par la suite, des résultats généraux similaires sont obtenus dans le cas où le point critique quantique est déformé par un opérateur pseudoscalaire relevant. Ces derniers sont finalement appliqués à une théorie de fermions de Dirac libres perturbée par un terme de masse. / Dirac materials constitute an interesting class of systems that can undergo a quantum phase transition at zero temperature, when a non-thermal parameter reaches a quantum critical point. As we approach such a point, physical observables are altered by the important thermal and quantum fluctuations. In this thesis, conformal field theory techniques are used to study the electrical conductivity tensor in theories with Dirac fermions in 2+1 dimensions close to a quantum critical point. At low energies, these adequately describe various Dirac materials as well as their quantum phase transition. In this project, we focus on theories that have a quantum critical point invariant under parity and time-reversal. In this case, the operator product expansion and conformal perturbation theory allow to obtain a general expression for the large frequency expansion of the longitudinal and transverse (Hall) conductivities when the quantum critical point is deformed by a relevant scalar operator. Using these, we are able to deduce exact sum rules for both quantities. As an example, our general results are applied to the Gross-Neveu model, where we obtain the large frequency expansion for both conductivities and the associated sum rules for an arbitrary number of Dirac fermion flavors N. The same expressions are then obtained by an explicit calculation at N = infinity, allowing to compare with our results for any N. Afterwards, analogous general results are obtained for theories where the quantum critical point is deformed by a relevant pseudoscalar. These are finally applied to a theory of massless free Dirac fermions perturbed by a mass term.
9

Criticalité quantique et opérateurs chargés dans la Famille Gross-Neveu à partir de la Limite de Grand 𝛮

Fallah Zarrinkar, Amirhossein 05 1900 (has links)
Comprendre les transitions de phase quantiques dans les systèmes de fermions itinérants en interaction est crucial pour faire progresser notre connaissance de la criticité quantique. Cet intérêt est motivé par des expériences sur des matériaux fortement corrélés. L'attention récente s'est portée sur les matériaux bidimensionnels \((2D)\), tels que le graphène, les surfaces d'isolants topologiques et certains liquides de spin. Ces matériaux sont caractérisés par une dispersion de Dirac pseudo-relativiste. Dans ce mémoire, nous étudions les points critiques quantiques dans les systèmes de Dirac en calculant les dimensions d'échelle des bilinéaires de charge \(2\) à travers diverses classes d'universalité de Gross-Neveu, incluant Gross-Neveu, chiral Ising Gross-Neveu, chiral XY Gross-Neveu, et chiral d'Heisenberg Gross-Neveu. Nous utilisons la méthode d'expansion en grand \(N\) pour calculer les dimensions anormales en termes de \(1/N\). Ces dimensions d'échelle sont essentielles pour comprendre les transitions de phase quantiques d'un semimétal de Dirac à une phase isolante, comme observé dans des systèmes tels que le modèle \(t-V\) et des matériaux semblables au graphène. De plus, nous proposons un opérateur dual dans une théorie bosonique, qui est une combinaison de doublets monopôles invariants de jauge pour les bilinéaires dans le modèle d'Heisenberg Gross-Neveu, basé sur des conjectures précédentes. / Understanding quantum phase transitions in systems of interacting itinerant fermions is crucial for advancing our knowledge of quantum criticality. This interest is driven by experiments on strongly correlated materials. Recent focus has been on two-dimensional \((2D)\) materials, such as graphene, surfaces of topological insulators, and certain spin liquids. These materials are characterized by a pseudo-relativistic Dirac dispersion in their freely moving fermions, which lack classical analogs. In this thesis, we study the quantum critical points in Dirac systems by computing the scaling dimensions of charge \(2\) bilinears across various Gross-Neveu universality classes, including Gross-Neveu, chiral Ising Gross-Neveu, chiral XY Gross-Neveu, and chiral Heisenberg Gross-Neveu. We utilize the large \(N\) expansion method to compute the anomalous dimensions in terms of \(1/N\). These scaling dimensions are instrumental in understanding the quantum phase transitions from a Dirac semimetal to an insulating phase, as observed in systems like the \(t-V\) model and graphene-like materials. Additionally, we propose a dual operator in a bosonic theory, which is a combination of gauge-invariant monopole doublets for bilinears in the Gross-Neveu Heisenberg model, based on previous conjectures.
10

Aspects of Higher Spin Theories Conformal Field Theories and Holography

Raju, Avinash January 2017 (has links) (PDF)
This dissertation consist of three parts. The first part of the thesis is devoted to the study of gravity and higher spin gauge theories in 2+1 dimensions. We construct cosmological so-lutions of higher spin gravity in 2+1 dimensional de Sitter space. We show that a consistent thermodynamics can be obtained for their horizons by demanding appropriate holonomy conditions. This is equivalent to demanding the integrability of the Euclidean boundary CFT partition function, and reduces to Gibbons-Hawking thermodynamics in the spin-2 case. By using a prescription of Maldacena, we relate the thermodynamics of these solutions to those of higher spin black holes in AdS3. For the case of negative cosmological constant we show that interpreting the inverse AdS3 radius 1=l as a Grassmann variable results in a formal map from gravity in AdS3 to gravity in flat space. The underlying reason for this is the fact that ISO(2,1) is the Inonu-Wigner contraction of SO(2,2). We show how this works for the Chern-Simons actions, demonstrate how the general (Banados) solution in AdS3 maps to the general flat space solution, and how the Killing vectors, charges and the Virasoro algebra in the Brown-Henneaux case map to the corresponding quantities in the BMS3 case. Our results straightforwardly generalize to the higher spin case: the flat space higher spin theories emerge automatically in this approach from their AdS counterparts. We also demonstrate the power of our approach by doing singularity resolution in the BMS gauge as an application. Finally, we construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, the left-moving solution has Drinfeld-Sokolov reduced form, but on the right-moving solution all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the “most general” AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine sl(3)k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. The second part is devoted to the problem of Neumann boundary condition in Einstein’s gravity. The Gibbons-Hawking-York (GHY) boundary term makes the Dirichlet problem for gravity well defined, but no such general term seems to be known for Neumann boundary conditions. In our work, we view Neumann boundary condition not as fixing the normal derivative of the metric (“velocity”) at the boundary, but as fixing the functional derivative of the action with respect to the boundary metric (“momentum”). This leads directly to a new boundary term for gravity: the trace of the extrinsic curvature with a specific dimension-dependent coefficient. In three dimensions this boundary term reduces to a “one-half” GHY term noted in the literature previously, and we observe that our action translates precisely to the Chern-Simons action with no extra boundary terms. In four dimensions the boundary term vanishes, giving a natural Neumann interpretation to the standard Einstein-Hilbert action without boundary terms. We also argue that a natural boundary condition for gravity in asymptotically AdS spaces is to hold the renormalized boundary stress tensor density fixed, instead of the boundary metric. This leads to a well-defined variational problem, as well as new counter-terms and a finite on-shell action. We elaborate this in various (even and odd) dimensions in the language of holographic renormalization. Even though the form of the new renormalized action is distinct from the standard one, once the cut-off is taken to infinity, their values on classical solutions coincide when the trace anomaly vanishes. For AdS4, we compute the ADM form of this renormalized action and show in detail how the correct thermodynamics of Kerr-AdS black holes emerge. We comment on the possibility of a consistent quantization with our boundary conditions when the boundary is dynamical, and make a connection to the results of Compere and Marolf. The difference between our approach and microcanonical-like ensembles in standard AdS/CFT is emphasized. In the third part of the dissertation, we use the recently developed CFT techniques of Rychkov and Tan to compute anomalous dimensions in the O(N) Gross-Neveu model in d = 2 + dimensions. To do this, we extend the “cow-pie contraction” algorithm of Basu and Krishnan to theories with fermions. Our results match perfectly with Feynman diagram computations.

Page generated in 0.0604 seconds