Spelling suggestions: "subject:"group actions"" "subject:"croup actions""
31 |
Principal Parts on P^1 and Chow-groups of the classical discriminants.Maakestad, Helge January 2000 (has links)
No description available.
|
32 |
Aplikace deskriptivní teorie množin v matematické analýze / Applications of descriptive set theory in mathematical analysisDoležal, Martin January 2013 (has links)
We characterize various types of σ-porosity via an infinite game in terms of winning strategies. We use a modification of the game to prove and reprove some new and older in- scribing theorems for σ-ideals of σ-porous type in locally compact metric spaces. We show that there exists a closed set which is σ-(1 − ε)-symmetrically porous for every 0 < ε < 1 but which is not σ-1-symmetrically porous. Next, we prove that the realizable by an action unitary representations of a finite abelian group Γ on an infinite-dimensional complex Hilbert space H form a comeager set in Rep(Γ, H). 1
|
33 |
Automorphismes des variétés affines / Automorphisms of affine varietiesPerepechko, Aleksandr 16 December 2013 (has links)
La thèse se compose de deux parties. La première partie est consacrée aux transformations des algèbres de dimension finie. Il est facile de voir que le groupe d'automorphismes d'une algèbre de dimension finie est un groupe algébrique affine. N.L. Gordeev et V.L. Popov ont démontré que n'importe quel groupe algébrique affine est isomorphe au groupe d'automorphismes de l'algèbre de dimension finie. Utilisant l'approche similaire nous démontrons que tout monoïde affine peut être obtenue comme un monoïde des endomorphismes d'une algèbre de dimension finie. Ensuite, nous étudions la solvabilité des groupes d'automorphismes d'algèbres commutatives de dimension finie. Nous introduisons un critère de leur solvabilité et l'appliquons aux intersections complètes et aux singularités isolées d'hypersurfaces. Nous étudions également les cas extrêmes du critère introduit. La deuxième partie de la thèse est consacrée à la transitivité infinie de groupes d'automorphismes spéciales de variétés affines et quasi-affines. Cette propriété est équivalente à la flexibilité pour les variétés affines. Tout d'abord, nous montrons l'équivalence entre la transitivité et la transitivité infinie des groupes d'automorphismes spéciaux sur un corps algébriquement clos de caractéristique arbitraire. Nous fournissons ensuite le critère de la flexibilité pour les cônes affines sur les variétés projectives et nous l'appliquons aux surfaces del Pezzo de degré 4 et 5. Enfin, nous étudions la flexibilité des torseurs universels sur les variétés couvertes par des espaces affines et fournissons une large gamme de familles de variétés flexibles. / The thesis consists of two parts. The first part is dedicated to transformations of finite-dimensional algebras. It is easy to see that the automorphism group of a finite-dimensional algebra is an affine algebraic group. N.L.~Gordeev and V.L.~Popov proved that any affine algebraic group is isomorphic to the automorphism group of some finite-dimensional algebra. We use a similar approach to prove that any affine algebraic monoid can be obtained as the endomorphisms' monoid of a finite-dimensional algebra. Next, we study the solvability of automorphism groups of commutative Artin algebras. We introduce a criterion of their solvability and apply it to complete intersections and to isolated hypersurface singularities. We also study extremal cases of the introduced criterion. The second part of the thesis is dedicated to the infinite transitivity of special automorphism groups of affine and quasiaffine varieties. This property is equivalent to the flexibility for affine varieties. Firstly, we prove the equivalence of transitivity and infinite transitivity of special automorphism groups over algebraically closed field of arbitrary characteristic. Then we provide the criterion of flexibility for affine cones over projective varieties and apply it to del Pezzo surfaces of degree 4 and 5. Finally, we study flexibility of universal torsors over varieties covered by affine spaces and provide a wide range of families of flexible varieties.
|
34 |
On Quasi-equivalence of Quasi-free KMS States restricted to an Unbounded Subregion of the Rindler SpacetimeKähler, Maximilian 26 October 2017 (has links)
The Unruh effect is one of the most startling predictions of quantum field theory. Its interpretation has been controversially discussed, since the first publications of Fulling, Davies and Unruh in the 1970ties. In a recent paper Buchholz and Solveen proposed an application of basic thermodynamic definitions to clarify the meaning of temperature and thermal equilibrium in the Unruh effect. As a result the interpretation of the KMS-parameter as an expression of local temperature has been questioned. The main result of my diploma thesis asserts quasi-equivalence of the disputed KMS states on a subregion of Rindlerspace that infinitely extends in the direction of travel of a uniformly accelerated Rindler-observer. Exploring the consequences of this result, I will present new insights on the asymptotic behaviour of such KMS states and how this fits into the picture drawn by Buchholz and Solveen.
|
35 |
Shape Spaces and Shape Modelling: Analysis of planar shapes in a Riemannian frameworkKähler, Maximilian 16 April 2018 (has links)
This dissertation presents some of the recent developments in the modelling of shape spaces. Forming the basis for a quantitative analysis of shapes, this is relevant for many applications involving image recognition and shape classification. All shape spaces discussed in this work arise from the general situation of a Lie group acting isometrically on some Riemannian manifold. The first chapter summarizes the most important results about this general set-up, which are well known in other branches of mathematics. A particular focus is laid on Hamiltonian methods that explore the relation of symmetry and conserved momenta. As a classical example these results are applied to Kendall’s shape space. More recent approaches of continuous shape models are then summarized and put in the same concise framework. In more
detail the square root velocity shape representation, recently developed by Srivastava et al., is being discussed. In particular, the phenomenon of unclosed orbits under the action of reparametrization is addressed. This issue is partially resolved by an extended equivalence relation along with a well defined, non-degenerate, metric on the resulting quotient space.
|
36 |
Actions des groupes algébriques sur les variétés affines et normalité d'adhérences d'orbites / Actions of algebraic groups on affine varieties and normality of orbits closuresKuyumzhiyan, Karine 10 May 2011 (has links)
Cette thèse est consacrée aux actions des groupes de transformations algébriques sur les variétés affines algébriques. Dans la première partie, on étudie la normalité des adhérences des orbites de tore maximal dans un module rationnel de groupe algébrique simple. La seconde partie porte sur les actions du groupe d'automorphismes d'une variété affine. Nous nous intéressons aux propriétés de transitivité et de transitivité multiple de ces actions sur le lieu lisse de la variété. / This thesis is devoted to the actions of groups of algebraic transformations on affine algebraic varieties. In the first part we study normality of closures of maximal torus orbits in the rational modules of simple algebraic groups. The second part deals with actions of automorphism groups on affine varieties. We study here transitivity and multiple transitivity of such an action on the set of smooth points.
|
37 |
Propriété (T) de Kazhdan relative à l'espace / Kazhdan's property (T) relative to the spaceBouljihad, Mohamed 28 June 2016 (has links)
L'objet de cette thèse est l'étude de la propriété (T) relative à l'espace (ou rigidité au sens de Popa) d'actions de groupes dénombrables sur des espaces de probabilité standards préservant une mesure de probabilité (pmp). Ces dix dernières années, la propriété (T) relative à l'espace a permis de résoudre de nombreux problèmes dans le cadre de la théorie ergodique des actions de groupes et des algèbres de von Neumann. Néanmoins, certains aspects théoriques de cette notion restent largement mystérieux. Une question encore ouverte consiste à déterminer les groupes admettant une action libre ergodique pmp ayant la propriété (T) relative à l'espace. Nous montrons dans cette thèse que les groupes de type fini non-moyennables linéaires sur un corps de caractéristique nulle admettent une action ergodique pmp possédant cette propriété. Si le groupe est à radical résoluble trivial, l'action que nous construisons est aussi libre.Pour ce faire, nous commençons par étudier la stabilité de la propriété (T) relative à l'espace vis-à-vis de différentes constructions d'actions pmp : produit, restriction, co-induction, induction. Puis, nous donnons une caractérisation de la propriété (T) relative à l'espace dans le cas d'actions pmp sur un espace homogène G/Λ de groupe de Lie p-adique d'un sous-groupe dénombrable Γ du groupe des transformations affines de G stabilisant le réseau Λ. L'action de Γ sur G/Λ a la propriété (T) relative à l'espace si et seulement s'il n'existe pas de mesure de probabilité Γ-invariante sur l'espace projectif de l'algèbre de Lie de G. Par ailleurs, nous étudions le cas d'actions de groupes par automorphismes sur des nilvariétés définies par des graphes finis. / The purpose of this thesis is to study the Kazhdan's property (T) relative to the space (also called rigidity in the sense of Popa) of probability measure preserving actions of countable groups on standard probability measure spaces (p.m.p.).This last decade, some problems in the theory of ergodic theory and von Neumann algebras were solved using the property (T) relative to the space. However, the theoretical aspects of its study remain largely mysterious. An open question asks which groups admit a p.m.p. free and ergodic action which has the property (T) relative to the space. We show in this dissertation that every finitely-generated non-amenable linear groups over a field of characteristic zero admits a p.m.p. ergodic action which has this property. If this group has trivial solvable radical, we prove that these actions can be chosen to be free.In order to obtain these results, we start by investigating natural questions concerning the stability of the property (T) relative to the space through standard constructions : products, restriction, co-induction, induction. Then, we give a criterion for the property (T) relative to the space to hold in the case of p.m.p. actions on homogeneous space G/ Λ of a p-adic Lie group for a countable subgroup Γ of affine transformations of G stabilizing the lattice Λ. The action of Γ on G/Λ has the property (T) relative to the space if and only if the induced action of Γ on the projective space of the Lie algebra of G admits no invariant probability measure.Moreover, we study the case of actions by automorphims on nilvarietes defined by finite graphs.
|
38 |
Dynamique d'action de groupes dans des espaces homogènes de rang supérieur et de volume infini / Dynamics of group action on homogeneous spaces of higher rank and infinite volumeDang, Nguyen-Thi 23 September 2019 (has links)
Soit G un groupe de Lie semisimple (de rang supérieur) et Γ un sous-groupe discret Zariski dense de G (de covolume infini). Dans cette thèse, on traite de deux questions reliées au cône limite de Benoist de Γ : l’une de marche aléatoire et l’autre de mélange topologique du flot directionnel des chambres de Weyl. Dans l’introduction, on énonce les résultats principaux de cette thèse dans leur contexte. Le second chapitre comporte des rappels sur les groupes de Lie et les éléments loxodromiques. Dans le troisième chapitre, on réalise tous les points de l’intérieur du cône limite par des vecteurs de Lyapunov. Dans le quatrième chapitre, on construit des coordonnées locales de G ainsi que des outils cruciaux pour la suite. Dans le cinquième chapitre, on introduit les ensembles invariants naturels de G. Dans le dernier chapitre de cette thèse, on prouve le critère de mélange topologique des flots directionnels réguliers des chambres de Weyl obtenu avec O. Glorieux et on généralise partiellement ce critère de mélange à Γ\G pour une classe de groupes de Lie incluant SL(n, R), SL(n, C), SO (p, p + 2). / Let G be a semisimple Lie group (of higher rank) and Γ a Zariski dense subgroup of G (of infinite covolume). In this thesis, we discuss two questions related to the Benoist limit cone of Γ : one concerns random walks, the other topological mixing of the directional Weyl chamber flow. In the introduction, we state the main results of this thesis in their context. In the second chapter, we recall some general facts about Lie groups and loxodromic elements. In the third chapter, we prove that every point of the interior of the limit cone is a Lyapunov vector. In the fourth chapter, we construct local coordinates of G and give key tools for the remaining parts. In the fifth chapter, we introduce the invariant subsets of G. In the last chapter of this thesis, we prove the topological mixing criterion of regular directional Weyl chamber flow obtained with O. Glorieux and we generalize this criterion to Γ\G for a class of Lie groups including SL(n, R), SL(n, C), SO(p, p + 2).
|
39 |
Algebraic and definable closure in free groups / Clôture algébrique et définissable dans les groupes libresVallino, Daniele 05 June 2012 (has links)
Nous étudions la clôture algébrique et définissable dans les groupes libres. Les résultats principaux peuvent être résumés comme suit. Nous montrons un résultat de constructibilité des groupes hyperboliques sans torsion au-dessus de la clôture algébrique d'un sous-ensemble engendrant un groupe non abélien. Nous avons cherché à comprendre la place qu'occupe la clôture algébrique acl_G(A) dans certaines décompositions de G. Nous avons étudié la possibilité de la généralisation de la méthode de Bestvina-Paulin dans d'autres directions, en considérant les groupes de type fini qui agissent d'une manière acylindrique (au sens de Bowditch) sur les graphes hyperboliques. Enfin, nous avons étudié les relations qui existent entre les différentes notions de clôture algébrique et entre la clôture algébrique et la clôture définissable / In Chapter 1 we give basics on combinatorial group theory, starting from free groups and proceeding with the fundamental constructions: free products, amalgamated free products and HNN extensions. We outline a synthesis of Bass-Serre theory, preceded by a survey on Cayley graphs and graphs of groups. After proving the main theorem of Bass-Serre theory, we present its application to the proof of Kurosh subgroup theorem. Subsequently we recall main definitions and properties of hyperbolic spaces. In Section 1.4 we define algebraic and definable closures and recall a few other notions of model theory related to saturation and homogeneity. The last section of Chapter 1 is devoted to asymptotic cones. In Chapter 2 we prove a theorem similar to Bestvina-Paulin theorem on the limit of a sequence of actions on hyperbolic graphs. Our setting is more general: we consider Bowditch-acylindrical actions on arbitrary hyperbolic graphs. We prove that edge stabilizers are (finite bounded)-by-abelian, that tripod stabilizers are finite bounded and that unstable edge stabilizers are finite bounded. In Chapter 3 we introduce the essential notions on limit groups, shortening argument and JSJ decompositions. In Chapter 4 we present the results on constructibility of a torsion-free hyperbolic group from the algebraic closure of a subgroup. Also we discuss constructibility of a free group from the existential algebraic closure of a subgroup. We obtain a bound to the rank of the algebraic and definable closures of subgroups in torsion-free hyperbolic groups. In Section 4.2 we prove some results about the position of algebraic closures in JSJ decompositions of torsion-free hyperbolic groups and other results for free groups. Finally, in Chapter 5 we answer the question about equality between algebraic and definable closure in a free group. A positive answer has been given for a free group F of rank smaller than 3. Instead, for free groups of rank strictly greater than 3 we found some counterexample. For the free group of rank 3 we found a necessary condition on the form of a possible counterexample.
|
40 |
Mappe comomento omotopiche in geometria multisimplettica / HOMOTOPY COMOMENTUM MAPS IN MULTISYMPLECTIC GEOMETRYMITI, ANTONIO MICHELE 01 April 2021 (has links)
Le mappe comomento omotopiche sono una generalizzazione della nozione di mappa momento introdotta al fine di estendere il concetto di azione hamiltoniana al contesto della geometria multisimplettica.
L'obiettivo di questa tesi è fornire nuove costruzioni esplicite ed esempi concreti di azioni di gruppi di Lie su varietà multisimplettiche che ammettono delle mappe comomento.
Il primo risultato è una classificazione completa delle azioni di gruppi compatti su sfere multisimplettiche.
In questo caso, l'esistenza di mappe comomento omotopiche dipende dalla dimensione della sfera e dalla transitività dell'azione di gruppo.
Il secondo risultato è la costruzione esplicita di un analogo multisimplettico dell’inclusione dell'algebra di Poisson di una varietà simplettica dentro il corrispondente algebroide di Lie twistato.
E’ possibile dimostrare che questa inclusione soddisfa una relazione di compatibilità nel caso di varietà multisimplettiche gauge-correlate in presenza di un'azione di gruppo Hamiltoniana.
Tale costruzione potrebbe giocare un ruolo nella formulazione di un analogo multisimplettico della procedura di quantizzazione geometrica.
L’ultimo risultato è una costruzione concreta di una mappa comomento omotopica relativa all'azione multisimplettica del gruppo di diffeomorfismi che preservano la forma volume dello spazio Euclideo.
Questa mappa ammette naturalmente un’interpretazione idrodinamica, nello specifico trasgredisce alla mappa comomento idrodinamica introdotta da Arnol'd, Marsden, Weinstein e altri.
La mappa comomento così costruita può essere inoltre messa in relazione alla teoria dei nodi avvalendosi dell’approccio ai link nel formalismo dei vortici. Questo punto di apre la strada a un'interpretazione semiclassica del polinomio HOMFLYPT nel linguaggio della quantizzazione geometrica. / Homotopy comomentum maps are a higher generalization of the notion of moment map introduced to extend the concept of Hamiltonian actions to the framework of multisymplectic geometry.
Loosely speaking, higher means passing from considering symplectic $2$-form to consider differential forms in higher degrees.
The goal of this thesis is to provide new explicit constructions and concrete examples related to group actions on multisymplectic manifolds admitting homotopy comomentum maps.
The first result is a complete classification of compact group actions on multisymplectic spheres. The existence of a homotopy comomentum maps pertaining to the latter depends on the dimension of the sphere and the transitivity of the group action. Several concrete examples of such actions are also provided.
The second novel result is the explicit construction of the higher analogue of the embedding of the Poisson algebra of a given symplectic manifold
into the corresponding twisted Lie algebroid.
It is also proved a compatibility condition for such embedding for gauge-related multisymplectic manifolds in presence of a compatible Hamiltonian group action. The latter construction could play a role in determining the multisymplectic analogue of the geometric quantization procedure.
Finally a concrete construction of a homotopy comomentum map for the action of the group of volume-preserving diffeomorphisms on the multisymplectic 3-dimensional Euclidean space is proposed.
This map can be naturally related to hydrodynamics. For instance, it transgresses to the standard hydrodynamical co-momentum map of Arnol'd, Marsden and Weinstein and others.
A slight generalization of this construction to a special class of Riemannian manifolds is also provided.
The explicitly constructed homotopy comomentum map can be also related to knot theory
by virtue of the aforementioned hydrodynamical interpretation.
Namely, it allows for a reinterpretation of (higher-order) linking numbers in terms of multisymplectic conserved quantities.
As an aside, it also paves the road for a semiclassical interpretation of the HOMFLYPT polynomial in the language of geometric quantization.
|
Page generated in 0.882 seconds