Spelling suggestions: "subject:"group actions"" "subject:"croup actions""
41 |
O tensor de Ricci e campos de killing de espaços simétricos / The Ricci tensor and symmetric space killing fieldsVasconcelos, Rosa Tayane de 13 September 2017 (has links)
VASCONCELOS, Rosa Tayane de. O tensor de Ricci e campos de killing de espaços simétricos. 2017. 81 f. Dissertação (Mestrado em Matemática)- Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-18T13:45:50Z
No. of bitstreams: 1
2017_dis_rtvasconcelos.pdf: 555452 bytes, checksum: 4ff6c8fb7950682913acabed03e9d3d7 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde,
A Dissertação de ROSA TAYANE DE VASCONCELOS apresenta a alguns erros que devem corrigidos, os mesmos seguem listados abaixo:
1- EPÍGRAFE (coloque o nome do autor da epígrafe todo em letra maiúscula)
2- RESUMO/ ABSTRACT (retire o recuo dos parágrafos do resumo e do abstract)
3- PALAVRAS-CHAVE/ KEYWORDS (coloque a letra inicial do primeiro elemento das palavras-
-chave e das Keywords em maiúscula)
4- CITAÇÕES (as citações a autores, que aparecem em todo o trabalho, não estão no padrão ABNT: se for apenas uma referência geral a uma obra, deve se colocar o último sobrenome do autor em letra maiúscula e o ano da publicação, ex.: EBERLEIN (2005). Caso seja a citação de um trecho particular da obra deve acrescentar o número da página, ex.: EBERLEIN (2005, p. 30).
OBS.: as citações não devem estar entre colchetes.
5- TÍTULOS DOS CAPÍTULOS E SEÇÕES (coloque os títulos dos capítulos e seções em negrito)
6- REFERÊNCIAS (as referências bibliográficas não estão no padrão ABNT: apenas o último sobrenome do autor, que inicia a referência, deve estar em letra maiúscula, o restante do nome deve estar em letra minúscula.
EX.: BROCKER, Theodor; TOM DIECK, Tammo. Representations of compact Lie groups, v. 98. Springer Science & Business Media, 2013.
Atenciosamente,
on 2017-09-18T15:04:06Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-09-19T13:33:40Z
No. of bitstreams: 1
2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-09-21T12:18:22Z (GMT) No. of bitstreams: 1
2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5) / Made available in DSpace on 2017-09-21T12:18:22Z (GMT). No. of bitstreams: 1
2017_dis_rtvasconcelos.pdf: 522079 bytes, checksum: ff99004fbe22e922f704a6a87365d3b6 (MD5)
Previous issue date: 2017-09-13 / This work brings a smooth and self-contained introduction to the study of the most basic aspects of symmetric spaces, having as its nal goal the characterization of the Killing vector fields and of the Ricci tensor of such riemannian manifolds. Several of the results presented in the initial chapter are not easily found, in the Diferential Geometry literature, in a way as accessible and self-contained as here. This being said, we believe that this work embodies some didactic relevance, for it others students interested in symmetric spaces a relatively smooth first contact. We shall generally look at symmetric spaces as homogeneous manifolds G=H,
where G is a Lie group and H is a closed Lie subgroup of G, such that the natural mapping : G ! G=H is a riemannian submersion. Ultimately, this map allows us to describe the relationships between the curvature, the Ricci tensor and the geodesics of G and G=H. For our purposes, the crucial remark is that, under appropriate circumstances, one guarantees the existence, in G=H, of a metric for which left translations are
isometries. Hence, a one-parameter family of such isometries gives rise to a Killing vector field, which turn into a Jacobi vector eld when restricted to a geodesic. We present explicit expressions for such Jacobi vector elds, showing that they only depend on the eigenvalues of the linear operator TX : g ! g given by TX = (adX)2, for certain vector elds X 2 g. / Este trabalho traz uma introdução suave e autocontida ao estudo dos aspectos mais básicos de espaços simétricos, tendo como objetivo final a caracterização dos campos de Killing e do tensor de Ricci de tais variedades riemannianas. Vários dos resultados obtidos nos capítulos iniciais não são encontrados, na
literatura de Geometria Diferencial, de maneira tão acessível e autocontida como apresentados aqui. Com isso, acreditamos que o trabalho reveste-se de alguma relevância didática, por oferecer aos alunos interessados no estudo de espaços simétricos um primeiro contato relativamente suave. Em linhas gerais, veremos espaços simétricos como variedades homogêneas G=H, onde G e um grupo de Lie e H um subgrupo de Lie fechado de G, tais que a aplicação natural: G ! G=H seja uma submersão riemanniana. Através dela, descrevemos relações entre a curvatura, o tensor de Ricci e as geodésicas de G e G=H. Para nossos propósitos, a observação crucial e que, sob certas hipóteses, garantimos a existência, em
G=H, de uma métrica cujas translações a esquerda são isometrias. Portanto, uma família a um parâmetro de tais isometrias d a origem a um campo de Killing que, por sua vez, restrito a geodésicas torna-se um campo de Jacobi. Apresentamos expressões para esses campos de Jacobi, mostrando que os mesmos só dependem dos autovalores do operador linear TX : g ! g dado por TX = (adX)2, para certos campos X 2 g.
|
42 |
Grupo de tranças e espaços de configuraçõesMaríngolo, Fernanda Palhares 27 June 2007 (has links)
Made available in DSpace on 2016-06-02T20:28:22Z (GMT). No. of bitstreams: 1
DissFPM.pdf: 979275 bytes, checksum: 1b13e7e3772ecbeac26224804b180369 (MD5)
Previous issue date: 2007-06-27 / Universidade Federal de Sao Carlos / In this work, we study the Artin braid group, B(n), and the confguration spaces (ordered and unordered) of a path connected manifold of dimension ¸ 2. The fundamental group of confguration space (unordered) of IR2 is identifed with the Artin braid group. This identifcation is used to conclude that the confguration space of IR2
is an Eilenberg-MacLane space of type K(B(n), 1). Therefore, it can be proved that the
braid group B(n) contains no nontrivial element of the finite order. We use this fact to
prove a generalization of a 2−dimensional version of the Borsuk-Ulam theorem presented
by Connett [3]. / Neste trabalho, apresentamos o grupo de tranças de Artin, B(n), e os espaços de configurações (ordenado e não ordenado) de uma variedade conexa por caminhos de
dimensão ¸ 2, a fim de identificar o grupo fundamental do espaço de configurações (não
ordenado) de IR2 com o grupo de tranças de Artin. Usamos este fato para concluir que
o espaço de configurações de IR2 é um espaço de Eilenberg-MacLane do tipo K(B(n), 1).
Deste modo pode ser provado que o grupo de tranças B(n) não possui elementos não
triviais de ordem finita, e usamos este fato na demonstração de uma generalização da
versão bi-dimensional do teorema de Borsuk-Ulam apresentado por Connett [3].
|
43 |
Les actions de groupe dans le contentieux international / Group actions in international litigationTabbara, Amer 29 March 2018 (has links)
La régulation du contentieux international des actions de groupe constitue le prolongement dans l'ordre international des fonctions poursuivies par une action de groupe dans l'ordre interne -l'accès en justice, l'efficacité économique et la régulation des marchés - et vise à assurer la sécurité juridique, la prévisibilité et l 'harmonie internationale des solutions ; objectifs également partagés par le droit international privé. Cette régulation s'avère pourtant difficile et complexe, notamment en raison de la concurrence exercée par les ordres juridiques en matière de redressement des dommages de masse, et de l'inadéquation des méthodes et instruments de droit international privé à la résolution d'un contentieux complexe, impliquant une multitude de parties et présentant une forte dimension régulatoire. La globalisation du contentieux international des actions de groupe soulève donc des questions complexes de conflits de juridictions, de conflits de lois, de coordination de procédures ainsi que de reconnaissance et d'exécution des décisions.C'est à ces questions complexes que cette thèse propose de répondre. Les solutions proposées tiennent compte des intérêts enchevêtrés que revêt le contentieux de groupe international, et visent essentiellement à prévenir des hypothèses de sous-régulation et de sur-régulation susceptibles d'empoisonner aujourd'hui le contentieux de masse international. / The regulation of international disputes arising out of group actions consists of safeguarding the functions underlying a domestic group action procedure in the context of international litigation (i.e. access to justice, economic efficiency and market regulation). It also aims to ensure the legal certainty, the predictability and harmony of solutions; the latters are objectives also pursued by the rules of private international law. Such regulation reveals difficult to achieve, in light of the competition arising between the legal systems in relation to the redress of global mass damages and the failure of private international law methods and instruments to address complex disputes putting at stake large number of parties and having a strong regulatory dimension. Thus, the globalisation of group actions disputes raises complex questions of conflicts of jurisdictions, conflicts of laws, coordination of procedures and enforcement of decisions.This PhD dissertation aims at addressing all these complex questions. The suggested solutions take into account the intertwined interests underlying disputes arising out of international group actions and aim essentially to prevent the current intoxication of international mass litigation resulting from the occurrence of situations of under-regulation and overregulation.
|
44 |
Sous-groupes paraboliques et généricité dans les groupes d'Artin-Tits de type sphérique / Parabolic subgroups and genericity in Artin-Tits groups of spherical typeCumplido Cabello, María 03 September 2018 (has links)
Dans la première partie de cette thèse on étudiera la conjecture de généricité: dans le graphe de Cayley du groupe modulaire d'une surface fermée on regarde une boule centrée à l'identité et on s'intéresse à la proportion de sommets pseudo-Anosov dans cette boule. La conjecture de généricité affirme que cette proportion doit tendre vers 1 quand le rayon de la boule tend vers l'infini. On montre qu'elle est bornée inférieurement par un nombre strictement positif et on montre des résultats similaires pour une grande classe de sous-groupes du groupe modulaire. On présente aussi des résultats analogues pour des groupes d'Artin-Tits de type sphérique, en sachant que dans ce cas, être pseudo-Anosov est analogue à agir loxodromiquement sur un complexe delta-hyperbolique convenable. Dans la deuxième partie on donne des résultats sur les sous-groupes paraboliques des groupes d'Artin-Tits de type sphérique: le standardisateur minimal d'une courbe dans le disque troué est la tresse minimale positive qui la fait devenir ronde. On construit un algorithme pour le calculer d'une façon géométrique. Ensuite, on généralise le problème pour les groupes d'Artin-Tits de type sphérique. On montre aussi que l'intersection de deux sous-groupes paraboliques est un sous-groupe parabolique et que l'ensemble de sous-groupes paraboliques est un treillis par rapport à l'inclusion. Finalement, on définit le complexe simplicial des sous-groupes paraboliques irréductibles, et on le propose comme l'analogue du complexe de courbes. / In the first part of this thesis we study the genericity conjecture: In the Cayley graph of the mapping class group of a closed surface we look at a ball of large radius centered on the identity vertex, and at the proportion of pseudo-Anosov vertices among the vertices in this ball. The genericity conjecture states that this proportion should tend to one as the radius tends to infinity. We prove that it stays bounded away from zero and prove similar results for a large class of subgroups of the mapping class group. We also present analogous results for Artin--Tits groups of spherical type, knowing that in this case being pseudo-Anosov is analogous to being a loxodromically acting element. In the second part we provide results about parabolic subgroups of Artin-Tits groups of spherical type: The minimal standardizer of a curve on a punctured disk is the minimal positive braid that transforms it into a round curve. We give an algorithm to compute it in a geometrical way. Then, we generalize this problem algebraically to parabolic subgroups of Artin--Tits groups of spherical type. We also show that the intersection of two parabolic subgroups is a parabolic subgroup and that the set of parabolic subgroups forms a lattice with respect to inclusion. Finally, we define the simplicial complex of irreducible parabolic subgroups, and we propose it as the analogue of the curve complex for mapping class groups.
|
45 |
Sous-variétés spéciales des espaces homogènes / Special subvarieties of homogeneous spacesBenedetti, Vladimiro 20 June 2018 (has links)
Le but de cette thèse est de construire de nouvelles variétés algébriques complexes de Fano et à canonique triviale dans les espaces homogènes et d'analyser leur géométrie. On commence en construisant les variétés spéciales comme lieux de zéros de fibrés homogènes dans les grassmanniennes généralisées. On donne une complète classification en dimension 4. On prouve que les uniques variétés de dimension 4 hyper-Kahleriennes ainsi construites sont les exemples de Beauville-Donagi et Debarre-Voisin. Le même résultat vaut dans les grassmanniennes ordinaires en toute dimension quand le fibré est irréductible. Ensuite on utilise les lieux de dégénérescence orbitaux (ODL), qui généralisent les lieux de dégénérescence classiques, pour construire d'autres variétés. On rappelle les propriétés basiques des ODL, qu'on définit à partir d'une adhérence d'orbite. On construit trois schémas de Hilbert de deux points sur une K3 comme ODL, et beaucoup d'autres exemples de variétés de Calabi-Yau et de Fano. Puis on étudie les adhérences d'orbites dans les représentations de carquois, et on décrit des effondrements de Kempf pour celles de type A_n et D_4; ceci nous permet de construire davantage de variétés spéciales comme ODL. Pour finir, on analyse les grassmanniennes bisymplectiques, qui sont des Fano particulières. Elles admettent l'action d'un tore avec un nombre fini de points fixes. On étudie leurs petites déformations. Ensuite, on étudie la cohomologie (équivariante) des grassmanniennes symplectiques, qui est utile pour mieux comprendre la cohomologie des grassmanniennes bisymplectiques. On analyse en détail un cas explicite en dimension 6. / The aim of this thesis is to construct new interesting complex algebraic Fano varieties and varieties with trivial canonical bundle and to analyze their geometry. In the first part we construct special varieties as zero loci of homogeneous bundles inside generalized Grassmannians. We give a complete classification for varieties of small dimension when the bundle is completely reducible. Thus, we prove that the only fourfolds with trivial canonical bundle so constructed which are hyper-Kahler are the examples of Beauville-Donagi and Debarre-Voisin. The same holds in ordinary Grassmannians when the bundle is irreducible in any dimension. In the second part we use orbital degeneracy loci (ODL), which are a generalization of classical degeneracy loci, to construct new varieties. ODL are constructed from a model, which is usually an orbit closure inside a representation. We recall the fundamental properties of ODL. As an illustration of the construction, we construct three Hilbert schemes of two points on a K3 surface as ODL, and many examples of Calabi-Yau and Fano threefolds and fourfolds. Then we study orbit closures inside quiver representations, and we provide crepant Kempf collapsings for those of type A_n, D_4; this allows us to construct some special varieties as ODL.Finally we focus on a particular class of Fano varieties, namely bisymplectic Grassmannians. These varieties admit the action of a torus with a finite number of fixed points. We find the dimension of their moduli space. We then study the equivariant cohomology of symplectic Grassmannians, which turns out to help understanding better that of bisymplectic ones. We analyze in detail the case of dimension 6.
|
46 |
L'action de groupe : étude franco-américaine des actions collectives en défense des intérêts individuels d'autrui / Class actions in French and American lawAllard, Baptiste 25 November 2016 (has links)
Le débat maintenant ancien que mènent les juristes français autour de l'action de groupe est marqué par une contradiction importante : alors que les class actions américaines, systématiquement évoquées, semblent exercer une influence déterminante sur leurs réflexions, elles restent largement méconnues. Suscitant l'espoir autant que la crainte, l'exemple des class actions peut expliquer à la fois l'arrivée de l'action de groupe dans l'ordre juridique français, les hésitations législatives et doctrinales qui l'ont précédée et les défauts qui affectent tant les textes entrés en vigueur que ceux encore en projet. D'un côté, l'intérêt porté en France aux class actions est l'expression d"une insatisfaction à l'égard du droit français, particulièrement du droit de la responsabilité civile. Les class actions sont alors envisagées comme une solution possible à un problème donné, à savoir l'absence en droit français d'un outil efficace pour appréhender les situations dans lesquelles un grand nombre de personnes subit des dommages individuels rattachables à un fait unique (ou une série de faits identiques). De l'autre, le mécanisme sur lequel les class actions s'appuient suscite fréquemment la perplexité, voire l'hostilité. Reposant sur une présomption de consentement de la part des membres du groupe représentés (« opt-out »), elles seraient contraires aux règles traditionnelles de la procédure civile française, réputée éminemment individualiste. Le rôle central confié aux avocats américains encouragerait en outre les actions illégitimes sans bénéfice réel pour les personnes représentées. Dans cette perspective, un examen approfondi des conditions historiques dans lesquelles les class actions sont apparues aux États-Unis et des règles qui les encadrent, confronté à l'étude de l'ensemble des actions pour autrui existant en droit français, est le moyen de vérifier la légitimité des espoirs et des craintes qui structurent le débat français. Ses enseignements, nombreux, permettent de proposer une vue d'ensemble des principes cardinaux d'organisation des actions de groupe dans l'optique de la construction d'un régime efficace, quelle que soit la tradition juridique concernée. La pertinence de cette approche reste entière au regard des limites sérieuses qui caractérisent l'action de groupe introduite en France en 2014. En premier lieu, la comparaison des droits français et américain révèle la très grande diversité des schémas procéduraux envisageables, en fonction des demandes formulées dans le cadre de ces actions et des buts assignés à la procédure envisagée, qui dérivent eux-mêmes souvent des fonctions réparatrices, compensatoires ou punitives attribuées au droit de la responsabilité civile. En second lieu, il relativise le caractère exceptionnel de la présomption de consentement tout en confirmant que l'efficacité des actions de groupe dépend pour une large part des conditions dans lesquelles est défini le groupe de personnes qui subit les effets de la décision de fond rendue à l'issue de la procédure. En troisième lieu, il fait apparaître l'importance de la dimension économique de ces actions. Dans la mesure où elles permettent la défense des intérêts individuels d'autrui, elles exigent une prise en compte de la réalité des incitations et des moyens propres à chaque acteur de la procédure, notamment celui qui l'initie. / The French debate on collective actions is characterised by a central contradiction: while US class actions almost systematically serve as the starting point of discussions among French lawyers, they remain widely unknown to them. Being a reason for hope, admiration as well as fear, the American model of class actions can explain why the introduction of collective actions in French law was decided, why it was delayed for so long, and the many flaws of the resulting legislation.
|
47 |
Sur la dynamique hamiltonienne et les actions symplectiques de groupesSarkis Atallah, Marcelo 07 1900 (has links)
Cette thèse contient quatre articles qui étudient les phénomènes de rigidité des transforma- tions hamiltoniennes des variétés symplectiques.
Le premier article, rédigé en collaboration avec Egor Shelukhin, examine les obstructions à l’existence de symétries hamiltoniennes d’ordre fini sur une variété symplectique fermée (M,ω); c’est-à-dire de torsion hamiltonienne. En d’autres termes, nous étudions les sous- groupes finis du groupe des difféomorphismes hamiltoniens Ham(M,ω). Nous identifions trois sources principales d’obstructions:
Contraintes topologiques. Inspirés par un résultat de Polterovich montrant que les variétés symplectiques asphériques n’admettent pas de torsion hamiltonienne, nous établissons que la présence d’un sous-groupe fini non trivial de Ham(M, ω) implique l’existence d’une sphère A ∈ π2(M) avec ⟨[ω],A⟩ > 0 et ⟨c1(M),A⟩ > 0. En particulier, les variétés symplectiques négativement monotones et les variétés symplectiques Calabi-Yau n’admettent pas de torsion hamiltonienne.
Présence de courbes J-holomorphes. De manière générale, il y a de nombreux exemples de torsion hamiltonienne, par exemple toute rotation de la sphère de dimension deux par une fraction irrationnelle de π. Lorsque (M,ω) est positivement monotone, nous montrons que l’existence de torsion hamiltonienne impose une condition géométrique qui implique que les sphères J-holomorphes non constantes sont présentes partout. Ce phénomène était prédit dans une liste de problèmes contenue dans la monographie d’introduction de McDuff et de Salamon.
Rigidité métrique spectrale. Notre analyse révèle que, pour les variétés symplectiques posi- tivement monotones, il existe un voisinage de l’identité dans Ham(M,ω) dans la topologie induite par la métrique spectrale qui ne contient aucun sous-groupe fini non trivial.
Le principal résultat du deuxième article établit que, pour une large classe de variétés sym- plectiques, le flux d’un lacet de difféomorphismes symplectiques est entièrement déterminé par la classe d’homotopie de ses orbites. Comme application, nous obtenons de nouveaux exemples où l’existence d’un point fixe d’une action symplectique du cercle implique qu’elle est hamiltonienne et de nouvelles conditions assurant que le groupe de flux est trivial. De plus, nous obtenons des obstructions à l’existence d’éléments non triviaux de Symp0(M,ω) ayant un ordre fini.
Le troisième article, rédigé en collaboration avec Han Lou, démontre une version de la conjecture de Hofer-Zehnder pour les variétés symplectiques fermées semi-positives dont l’homologie quantique est semi-simple; ce résultat généralise le travail révolutionnaire de Shelukhin sur les variétés symplectiques monotones. Le résultat montre qu’un difféomor- phisme hamiltonien possédant plus de points fixes contractiles, comptés homologiquement, que le nombre total de Betti de la variété doit avoir une infinité de points périodiques. La composante clé de la preuve est une nouvelle étude de l’effet de la réduction modulo p, un nombre premier, sur les bornes de l’homologie de Floer filtrée qui proviennent de la semi- simplicité. Cette étude repose sur la théorie des extensions algébriques des corps équipés d’une norme non-archimédienne.
Le quatrième article, écrit en collaboration avec Habib Alizadeh et Dylan Cant, examine la déplaçabilité d’une sous-variété lagrangienne fermée L d’une variété symplectique convexe á l’infini par un difféomorphisme hamiltonien à support compact. Nous concluons qu’un difféomorphisme hamiltonien φ dont la norme spectrale est plus petite qu’un ħ(L) > 0 ne dépendant que de L ⊆ W ne peut pas déplacer L. De plus, nous établissons une estimation du nombre de valeurs d’action en terme de la longueur du cup-produit pour le nombre de valeurs d’action; lorsque L est rationnelle, cela implique une estimation du nombre de points d’intersection L ∩ φ(L) en terme de la longueur du cup-produit. Ainsi, nous montrons que le nombre de points fixes d’un difféomorphisme hamiltonien d’une variété symplectique fermée rationnelle (M, ω) dont la norme spectrale est plus petite que la constante de rationalité est au moins de 1 plus la longueur du cup-produit de M. / This thesis comprises four articles that study rigidity phenomena of Hamiltonian transfor- mations of symplectic manifolds.
The first article, co-authored with Egor Shelukhin, examines obstructions to the existence of Hamiltonian symmetries of finite order on a closed symplectic manifold (M,ω); Hamil- tonian torsion. In other words, we study the finite subgroups of the group of Hamiltonian diffeomorphisms Ham(M, ω). We identify three primary sources of obstructions:
Topological constraints. Inspired by a result of Polterovich showing that symplectically aspherical symplectic manifolds do not admit Hamiltonian torsion, we establish that the presence of a non-trivial finite subgroup of Ham(M,ω) implies that there exists a sphere A ∈ π2(M) with ⟨[ω],A⟩ > 0 and ⟨c1(M),A⟩ > 0. In particular, symplectically Calabi-Yau, and spherically negative-monotone symplectic manifolds do not admit Hamiltonian torsion.
The presence of J-holomorphic curves. For general closed symplectic manifolds, there are plenty of examples of Hamiltonian torsion, for instance, any rotation of the two-sphere by an irrational fraction of π. When (M, ω) is spherically positive-monotone, we show the existence of Hamiltonian torsion imposes geometrical uniruledness, which implies that non-constant J-holomorphic spheres are ubiquitous. This phenomenon was predicted in a list of problems contained in the introductory monograph of McDuff and Salamon.
The spectral metric rigidity. Our study reveals that for spherically positive-monotone (M, ω), there exists a neighbourhood of the identity in Ham(M,ω), in the topology induced by the spectral metric, that does not contain any non-trivial finite subgroup.
The main result of the second article establishes that for a broad class of symplectic manifolds the flux of a loop of symplectic diffeomorphisms is completely determined by the homotopy class of its orbits. As an application, we obtain a new vanishing result for the flux group and new instances where the existence of a fixed point of a symplectic circle action implies that it is Hamiltonian. Moreover, we obtain obstructions to the existence of non-trivial elements of Symp0(M,ω) that have finite order.
The third article, co-authored with Han Lou, proves a version of the Hofer-Zehnder conjec- ture for closed semipositive symplectic manifolds whose quantum homology is semisimple; this result generalizes the groundbreaking work of Shelukhin in the spherically positive- monotone setting. The result shows that a Hamiltonian diffeomorphism possessing more contractible fixed points, counted homologically, than the total Betti number of the mani- fold, must have infinitely many periodic points. The key component of the proof is a new study of the effect of reduction modulo a prime on the bounds on filtered Floer homology that arise from semisimplicity. It relies on the theory of algebraic extensions of non-Archimedean normed fields.
The fourth article, co-authored with Habib Alizadeh and Dylan Cant, investigates the dis- placeability of a closed Lagrangian submanifold L of a convex-at-infinity symplectic manifold by a compactly supported Hamiltonian diffeomorphism. We conclude that a Hamiltonian diffeomorphism φ whose spectral norm is smaller than some ħ(L) > 0, depending only on L ⊂ W , cannot displace L. Furthermore, we establish a cup-length estimate for the number of action values; when L is rational, this implies a cup-length estimate on the number of intersection points L ∩ φ(L). As a corollary, we demonstrate that the number of fixed points of a Hamiltonian diffeomorphism of a closed rational symplectic manifold (M,ω), whose spectral norm is smaller than the rationality constant, is bounded below by one plus the cup-length of M.
|
Page generated in 0.1058 seconds