21 |
Deformation of hexagonal boron nitrideAlharbi, Abdulaziz January 2018 (has links)
Boron nitride (BN) materials have unique properties, which has led to interest in them in the last few years. The deformation of boron nitride materials including hexagonal boron nitride, boron nitride nanosheets (BNNSs) and boron nitride nanotubes have been studied by Raman spectroscopy. Both mechanical and liquid exfoliations were employed to obtain boron nitride nanostructures. Boron nitride glass composites were synthesised and prepared in thin films to be deformed by bending test in-situ Raman spectroscopy. Hexagonal boron nitride in the form of an individual flake and as flakes dispersed in glass matrices has been deformed and Raman measurement shows its response to strain. The shift rates were, -4.2 cm-1/%, -6.5 cm-1/% for exfoliated h-BN flake with thick and thin regions and -7.0 cm-1/%, -2.8 cm-1/% for the h-BN flakes in the h-BN/ glass (I) and glass (II) composites. Boron nitride nanosheets (BNNSs) shows a G band Raman peak at 1367.5 cm-1, and the deformation process of BNNSs/ glass composites gives a shift rate of -7.65 cm-1/% for G band. Boron nitride nanotubes (BNNTs) have a Raman peak with position at 1368 cm-1, and their deformation individually and in composites gives Raman band shift rates of -25.7 cm-1/% and -23.6 cm-1/%. Glass matrices shows compressive stresses on boron nitride fillers and this was found as an upshift in the frequencies of G band peak of boron nitride materials. Grüneisen parameters of boron nitride (BN) were used to calculate the residual strains in glass matrices of BNNSs nanocomposites as well as to estimate the band shift rates which found to be in agreement with the experimental shift rate of bulk BN and BNNTs.
|
22 |
Investigations into the interfacial interaction of graphene with hexagonal boron nitrideWoods, Colin January 2016 (has links)
This thesis, submitted to the University of Manchester, covers a range of topics related to current research in two-dimensional materials under the title: 'Investigations into the interfacial interaction of graphene with hexagonal boron nitride.'In the last decade, two-dimensional materials have become a rich source of original research and potential applications. The main advantage lies in the ability to produce novel composite structures, so-called 'layered heterostructures', which are only a few atomic layers thick. One can utilise the unique properties of several species of crystal separately, or how they interact to realise a diverse range of uses. Two such crystals are graphene and hexagonal boron nitride. Hexagonal boron nitride has, so far, been used primarily as a substrate for graphene, allowing researchers to get the most out of graphene's impressive individual properties. However, in this thesis, the non-trivial van der Waals interaction between graphene and hexagonal boron nitride is examined. The interface potential reveals itself as a relatively large-scale, orientation-dependant superlattice, which is described in chapters 1 and 2.I In Chapter 4, the effect of this superlattice is examined by measurement of its effect upon the electrons in graphene, where its modulation leads to the creation of second and third generation Dirac points, revealing Hofstadter's Butterfly. As well as an excellent example of the physics possible with graphene, it also presents a new tool with which to create novel devices possessing tailored electronic properties. II In chapter 5, the consequential effect of the superlattice potential on the structure of graphene is studied. Results are discussed within the framework of the Frenkel-Kontorova model for a chain of atoms on a static background potential. Results are consistent with relaxation of the graphene structure leading to the formation of a commensurate ground state. This has exciting consequences for the production of heterostructures by demonstrating that alignment angle can have large effects upon the physical properties of the crystals. III In chapter 6, the van der Waals potential is shown to be responsible for the self-alignment of the two crystals. This effect is important for the fabrication of perfectly aligned devices and may lead to new applications based on nanoscale motion.
|
23 |
Etudes magnéto-Raman de systèmes - graphène multicouches et hétérostructures de graphène-nitrure de bore / Magneto-optical spectroscopy of multilayer graphene and graphene-hexagonal boron nitride hetero-structuresHenni, Younes 24 October 2016 (has links)
Comme le quatrième élément le plus abondant dans l’univers, le carbone joue un rôle important dans l’émergence de la vie sur la terre comme nous la connaissons aujourd’hui. L’ère industrielle a vu cet élément au cœur des applications technologiques en raison des différentes façons dont les atomes forment les liaisons chimiques, ce qui donne lieu à une série d’allotropies chacun ayant des propriétés physiques extraordinaires. Par exemple, l’allotrope le plus thermodynamiquement stable du carbone, le cristal de graphite, est connu pour être un très bon conducteur électrique, tandis que le diamant, très apprécié pour sa dureté et sa conductivité thermique, est néanmoins considéré comme un isolant électrique en raison de sa structure cristallographique différente par rapport au graphite. Les progrès de la recherche scientifique ont montré que les considérations cristallographiques ne sont pas le seul facteur déterminant pour une telle variété dans les propriétés physiques des structures à base de carbone. Ces dernières années ont vu l’émergence de nouvelles formes allotropiques de structures de carbone qui sont stables dans les conditions ambiantes, mais avec dimensionnalité réduite, ce qui entraîne des propriétés largement différentes par rapport aux structures en trois dimensions. Parmi ces nouvelles classes d’allotropes il y a le graphene, qui est le premier matériau à deux dimensions. L’isolation réussi de monocouches de graphène a contesté une croyance établie depuis longtemps en physique : le fait que les matériaux purement 2D ne peuvent pas exister dans les conditions ambiantes parce qu'ils sont instables en raison de l’augmentation des fluctuations thermiques lorsqu’ils se prolongent dans les 2D. Afin de minimiser son énergie, un matériau se brisera en îlots coagulées. Le graphène arrive cependant à surmonter cette barrière en formant des ondulations continues sur la surface du substrat et est stable même à température ambiante et pression atmosphérique. Une grande intention dans la communauté scientifique a été donnée au graphène, après les premiers résultats publiés sur les propriétés électroniques de ce matériau. Les propriétés fondamentales et mécaniques du graphène sont fascinants. Grace aux atomes de carbone qui sont emballés dans un mode sp2 hybridé, formant ainsi une structure de réseau hexagonal, le graphène possède le plus grand module de Young et la plus grande capacité d’étirement, en même temps des centaines de fois plus dur que l’acier. Il conduit la chaleur et l’électricité de manière très efficace. L’aspect le plus fascinant à propos du graphène est surement la nature de ses porteurs de charge à basse énergie. En effet, le graphène présente des bandes d’énergie linéaires au point de neutralité de charge, donnant aux porteurs de charge une nature relativiste. De nombreux phénomènes observés dans ce matériau sont des conséquences de la nature relativiste de ses porteurs. Transport balistique, conductivité optique universelle, absence de rétrodiffusion, et une nouvelle classe d’effet Hall quantique sont de bons exemples de phénomènes nouvellement découverts dans ce matériau. Il est cependant encore trop tôt pour affirmer que toutes les propriétés physiques du graphene sont bien comprises. Dans cette thèse, nous avons mené des expériences de spectroscopie magnéto-Raman pour répondre à certaines des questions ouvertes dans la physique du graphène, notamment l’effet de couplage de Coulomb sur le spectre d’énergie du graphène, et le changement dans les propriétés physiques du graphène multicouche en fonction de sa cristallographie. Nos echantillions ont été soumis à de forts champs magnétiques, appliqués perpendiculairement aux plans atomiques. Le spectre d’excitation sous champ magnétique montre un couplage entre ces excitations et les modes de vibratoires. Cette approche expérimentale permet de remonter à la structure de bande du graphene en champs nul, ainsi que de nombreuses autres propriétés du matériau. / As the fourth most abundant element in the universe, Carbon plays an important rolein the emerging of life in earth as we know it today. The industrial era has seen this element at the heart of technological applications due to the different ways in which carbon forms chemical bonds, giving rise to a series of allotropes each with extraordinary physical properties. For instance, the most thermodynamically stable allotrope of carbon, graphite crystal, is known to be a very good electrical conductor, while diamond very appreciated for its hardness and thermal conductivity is nevertheless considered as an electrical insulator due to different crystallographic structure compared to graphite. The advances in scientific research have shown that crystallographic considerations are not the only determining factor for such a variety in the physical properties of carbon based structures. Recent years have seen the emergence of new allotropes of carbon structures that are stable at ambient conditions but with reduced dimensionality, resulting in largely different properties compared to the three dimensional structures. Among these new classes of carbon allotropes is the first two-dimensional material: graphene.The successful isolation of monolayers of graphene challenged a long established belief in the scientific community: the fact that purely 2D materials cannot exist at ambient conditions. The Landau-Peierls instability theorem states that purely 2D materials are very unstable due to increasing thermal fluctuations when the material in question extends in both dimensions. To minimize its energy, the material will break into coagulated islands, an effect known as island growth. Graphene happens to overcome such barrier by forming continuous ripples on the surface of its substrate and thus is stable even at room temperature and atmospheric pressure.A great intention from the scientific community has been given to graphene, since 2004. Both fundamental and mechanical properties of graphene are fascinating. Thanks to its carbon atoms that are packed in a sp2 hybridized fashion, thus forming a hexagonal lattice structure, graphene has the largest young modulus and stretching power, yet it is hundreds of times stronger than steel. It conducts heat and electricity very efficiently, achieving an electron mobility as high as 107 cm−2V−1 s−1 when suspended over the substrate. The most fascinating aspect about graphene is the nature of its low energy charge carriers. Indeed, graphene has a linear energy dispersion at the charge neutrality, giving the charge carriers in graphene a relativistic nature. Many phenomena observed in this material are consequences of this relativistic nature of its carriers. Ballistic transport, universal optical conductivity, absence of back-scattering, and a new class of room temperaturequantum Hall effect are good examples of newly discovered phenomena in thismaterial. Graphene has become an active research area in condensed matter physics since 2004. It is however still early to state that all the physical properties of this material are well understood. In this thesis we conducted magneto-Raman spectroscopy experiments to address some of the open questions in the physics of graphene, such as the effect of electron-electron coupling on the energy spectrum of monolayer graphene, and the change in the physical properties of multilayer graphene as a function of the crystallographic stacking order. In all our experiments, the graphene-based systems have been subject to strong continuous magnetic fields, applied normal to the graphene layers. We study the evolution of its energy excitation spectra in the presence of the magnetic field, and also the coupling between these excitations and specific vibrational modes that are already in the system. This experimental approach allows us to deduce the band structure of the studied system at zero field, as well as many other lowenergy properties.
|
24 |
Strong and Flexible TEMPO-CNF/Boron Nitride Nanocomposite Films / Starka och flexibla nanokompositfilmer av TEMPO-CNF/boronnitridSadatifard, Sara January 2023 (has links)
Nanokompositfilmer med fem olika sammansättningar av hexagonala bornitrid nanosheet och TEMPO-CNF tillverkades med hjälp av vakuumassisterad filtreringsteknik. sond-ultraljudsteknik användes som en grön väg för exfoliering av bornitridpulver i vattenhaltigt medium. TEMPO-CNF spelade nyckelroller som både matris och dispergeringsmedel för stabilisering av bornitrid nanosheets i kompositen. Nanokompositfilmerna var flexibla och formbara och de visade höga mekaniska egenskaper inklusive hög draghållfasthet och god brottöjning. / Nanocomposite films with five different compositions of hexagonal boron nitride nanosheets and TEMPO-CNF were fabricated using vacuum-assisted filtration technique. probe-ultrasonication technique was applied as a green route for exfoliation of boron nitride powder in aqueous medium. TEMPO-CNF played key roles as both matrix and dispersant agent for stabilization of the boron nitride nanosheets in the composite. The nanocomposite films were flexible and ductile, and they showed high mechanical properties including high tensile strength and good elongation at break.
|
25 |
Design of a Wearable Flexible Resonant Body Temperature Sensor with Inkjet-PrintingHorn, Jacqueline Marie 05 1900 (has links)
A wearable body temperature sensor would allow for early detection of fever or infection, as well as frequent and accurate hassle-free recording. This thesis explores the design of a body-temperature-sensing device inkjet-printed on a flexible substrate. All structures were first modeled by first-principles, theoretical calculations, and then simulated in HFSS. A variety of planar square inductor geometries were studied before selecting an optimal design. The designs were fabricated using multiple techniques and compared to the simulation results. It was determined that inductance must be carefully measured and documented to ensure good functionality. The same is true for parallel-plate and interdigitated capacitors. While inductance remains relatively constant with temperature, the capacitance of the device with a temperature-sensitive dielectric layer will result in a shift in the resonant frequency as environmental or ambient temperature changes. This resonant frequency can be wirelessly detected, with no battery required for the sensing device, from which the temperature can be deduced. From this work, the optimized version of the design comprises of conductive silver in with a temperature-sensitive graphene oxide layer, intended for inkjet-printing on flexible polyimide substrates. Graphene oxide demonstrates a high dielectric permittivity with good sensing capabilities and high accuracy. This work pushes the state-of-the-art in applying these novel materials and techniques to enable flexible body temperature sensors for future biomedical applications.
|
26 |
Growth of graphene/hexagonal boron nitride heterostructures using molecular beam epitaxyNakhaie, Siamak 24 May 2018 (has links)
Zweidimensionale (2D) Materialien bieten eine Vielzahl von neuartigen Eigenschaften und sind aussichtsreich Kandidaten für ein breites Spektrum an Anwendungen. Da hexagonales Bornitrid (h-BN) für eine Integration in Heterostrukturen mit anderen 2D Materialien geeignet ist, erweckte dieses in letzter Zeit großes Interesse. Insbesondere van-der-Waals-Heterostrukturen, welche h-BN und Graphen verbinden, weisen viele potenzielle Vorteile auf, verbleiben in ihrer großflächigen Herstellung von kontinuierlichen Filmen allerdings problematisch.
Diese Dissertation stellt eine Untersuchung betreffend des Wachstums von h-BN und vertikalen Heterostrukturen von Graphen und h-BN auf Ni-Substraten durch Molekularstrahlepitaxie (MBE) vor.
Zuerst wurde das Wachstum von h-BN mittels elementarer B- und N-Quellen auf Ni als Wachstumssubstrat untersucht. Kristalline h-BN-Schichten konnten durch Raman-spektroskopie nachgewiesen werden. Wachstumsparameter für kontinuierliche und atomar dünne Schichten wurden erlangt. Das Keimbildungs- und Wachstumsverhalten so wie die strukturelle Güte von h-BN wurden mittels einer systemischen Veränderung der Wachstumstemperatur und -dauer untersucht. Die entsprechenden Beobachtungen wie der Änderungen der bevorzugten Keimbildungszentren, der Kristallgröße und der Bedeckung des h-BN wurden diskutiert. Ein Wachstum von großflächigen vertikalen h-BN/Graphen Heterostrukturen (h-BN auf Graphen) konnte mittels einem neuartigen, MBE-basierenden Verfahren demonstriert werden, welche es h-BN und Graphen jeweils erlaubt sich in der vorteilhaften Wachstumsumgebung, welche von Ni bereitgestellt wird, zu formen. In diesem Verfahren formt sich Graphen an der Schnittstelle von h-BN und Ni durch Präzipitation von zuvor in der Ni-Schicht eingebrachten C-Atomen. Schließlich konnte noch ein großflächiges Wachstum von Graphen/h-BN-Heterostrukturen (Graphen auf h-BN) durch das direkte abscheiden von C auf MBE-gewachsenen h-BN gezeigt werden. / Two-dimensional (2D) materials offer a variety of novel properties and have shown great promise to be used in a wide range of applications. Recently, hexagonal boron nitride (h-BN) has attracted significant attention due to its suitability for integration into heterostructures with other 2D materials. In particular, van der Waals heterostructures combining h-BN and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas.
This thesis presents an investigation regarding the growth of h-BN and vertical heterostructures of graphene and h-BN on Ni substrates using molecular beam epitaxy (MBE).
The growth of h-BN from elemental sources of B and N was investigated initially by using Ni as the growth substrate. The presence of crystalline h-BN was confirmed using Raman spectroscopy. Growth parameters resulting in continuous and atomically thin h-BN films were obtained. By systematically varying the growth temperature and time the structural quality as well as the nucleation and growth behavior of h-BN was studied. Corresponding observations such as changes in preferred nucleation site, crystallite size, and coverage of h-BN were discussed. Growth of h-BN/graphene vertical heterostructures (h-BN on graphene) over large areas was demonstrated by employing a novel MBE-based technique, which allows both h-BN and graphene to form in the favorable growth environment provided by Ni. In this technique, graphene forms at the interface of h-BN/Ni via the precipitation of C atoms previously dissolved in the thin Ni film. No evidence for the formation of BCN alloy could be found. Additionally, the suitability of ultraviolet Raman spectroscopy for characterization of h-BN/graphene heterostructures was demonstrated. Finally, growth of large-area graphene/h-BN heterostructures (graphene on h-BN) was demonstrated via the direct deposition of C on top of MBE-grown h-BN.
|
27 |
Příprava a charakterizace dvourozměrných heterostruktur / Fabrication and characterization of two-dimensional heterostructuresMajerová, Irena January 2019 (has links)
After the experimental discovery of graphene at the beginning of the 21st century, many other interesting 2D materials have been discovered. However, the electrical and optical properties of these layers are greatly influenced by the composition and quality of the surrounding materials. In order to preserve the exceptional properties of thin films, attention has gradually been drawn to heterostructures from 2D composite materials. This thesis describes the preparation and characterization of heterostructures composed of graphene and hexagonal boron nitride. In addition, a specific focus will be placed on optimizing the production process of heterostructures by the dry thin film transfer process, prepared by micromechanical exfoliation. Characterization and quality of prepared layers are controlled by Raman spectroscopy, while morphology is examined by atomic force microscope (AFM). Furthermore, the electrical properties of the graphene-hBN device are discussed and the charge carrier of the graphene field-effect transistor is measured.
|
28 |
Ultra-Wide Bandgap Crystals for Resonant Nanoelectromechanical Systems (NEMS)Zheng, Xuqian 23 May 2019 (has links)
No description available.
|
29 |
Контроль качества микро- и нанопорошков гексагонального нитрида бора методами рамановской, катодолюминесцентной и рентгеновской спектроскопии : магистерская диссертация / Quality control of micro- and nanopowders of hexagonal boron nitride by Raman, cathodoluminescent and X-ray spectroscopyМихалевский, Г. Б., Mikhalevskii, G. B. January 2021 (has links)
Основными технологическими и трудно определяемыми примесями в h-BN выступают углерод и кислород. На производстве возникает необходимость в контроле качества с высоким пространственным разрешением как отдельных нанослоев h-BN, так и готовых гетероструктур на его основе. Целью работы является разработка способа неразрушающего контроля дефектности и примесного состава тонких слоев h-BN методами комбинационного рассеяния света и катодолюминесцентной спектрометрии. Выполнен литературный обзор особенностей материала гексагонального нитрида бора и его люминесцентных свойств. Проведены измерения исследуемых образцов при помощи рамановского спектрометра, сканирующего электронного микроскопа с катодолюминесцентной приставкой и электронно-зондового микроанализатора. Выполнен анализ полученных результатов. / The main technological and difficult-to-determine impurities in h-BN are carbon and oxygen. In production, there is a need for quality control with high spatial resolution of both individual h-BN nanolayers and heterostructures based on it. The aim of the work is to develop a method for non-destructive testing of the defects and impurity composition of h-BN thin layers by Raman scattering and cathodoluminescence spectrometry. A literature review of the features of the material of hexagonal boron nitride and its luminescent properties is performed. The samples were measured using a Raman spectrometer, a scanning electron microscope with a cathodoluminescent attachment, and an electron probe microanalyzer. The analysis of the obtained results is performed. Areas of application: diagnostics and quality control.
|
30 |
Additives in a steam engine to decrease friction : Friction testing of solid lubricants in powder form / Tillsatser i en ångmotor för att minska friktion : Friktionstester av fasta smörjmedel i pulverformLange, Viktor January 2023 (has links)
This thesis aims to investigate the coefficient of friction between steel on steel contacts with the addition of solid lubricants such as h-BN, WS2, MoS2 in powder form, in dry conditions and wet conditions. More specifically, the purpose is to enhance the sliding between the piston rings and cylinder block in a modern high temperature steam engine developed by RANOTOR. The friction test was carried out as a linear sliding test with determined loads and sliding speed. Hertzian contact theory was deployed to calculate contact pressure and shear stresses to make sure the contact was elastic, alternatively plastic. It was found that WS2 and MoS2 lowered the coefficient of friction quite heavily in dry conditions, acting as a thin protective-lubricating film. h-BN performed rather poorly, increasing the coefficient of friction. In a water slurry, none of the powders managed to decrease the COF due to the particles not interacting with the surfaces.The solid lubricants tested should be further tested as coatings since they acted like it in dry conditions. / Denna rapport syftar till att undersöka friktionskoefficienten i stålkontakter med tillsats av fasta smörjmedel som h-BN, WS2, MoS2 i pulverform, under torra och våta förhållanden. Mer specifikt är syftet att förbättra glidningen mellan kolvringarna och insidan av cylindern i en modern högtemperatur-ångmotor utvecklad av RANOTOR. Friktionstestet genomfördes som ett linjärt glidtest med bestämda belastningar och glidhastighet. Hertzian-kontaktteorin användes för att beräkna kontakttryck och skjuvspänningar för att säkerställa att kontakten var elastisk alternativt plastisk. Det visade sig att WS2och MoS2 kraftigt sänkte friktionskoefficienten under torra förhållanden genom att agera som en tunn skyddande-smörjfilm. h-BN presterade dåligt och ökade friktionskoefficienten. I vattenblandning lyckades inget av pulverna minska friktionskoefficienten eftersom partiklarna inte interagerade med ytorna. De testade fasta smörjmedlen bör vidare testas som beläggningar eftersom de fungerade som dessa under torra förhållanden.
|
Page generated in 0.0388 seconds