• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 21
  • 20
  • 5
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 170
  • 170
  • 170
  • 60
  • 57
  • 47
  • 46
  • 46
  • 42
  • 41
  • 41
  • 32
  • 31
  • 26
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Avaliação de um sistema industrial de resfriamento de água. / Evaluation of an industrial system of cooling water.

Eduardo Hiroshi Oikawa 19 March 2012 (has links)
Neste trabalho, foi estudado o desempenho de um sistema constituído de torres de resfriamento e a sua integração em uma planta industrial de hidrogenação de butadieno. Caracterizou-se o desempenho das torres de resfriamento com base em um modelo fenomenológico, cujos parâmetros foram obtidos a partir da medição de variáveis operacionais reais. O processo de hidrogenação foi configurado em um simulador de processos, sendo o caso base estabelecido nas condições de projeto. Elaborou-se um módulo específico referente às torres de resfriamento, que foi integrado ao processo configurado no simulador. Em seguida, analisaram-se as interações das condições operacionais da torre de resfriamento no desempenho do processo industrial. / In the present work, the performance of a system composed of a cooling tower integrated in butadiene hydrogenation plant was studied. An experimental investigation was made to characterize the cooling towers based on a phenomenological model and in real process conditions. The hydrogenation process was configured on a process simulator and design specifications were considered as base case. A cooling tower module was developed and integrated to the process simulator. The interaction of the cooling tower system and the plant operation was investigated.
82

Estudo da melhoria do desempenho de sistemas de resfriamento evaporativo por micro aspersão de água / Study of improvement the evaporative cooling system performance by water misting systems

Cássio Luiz Ianni Zapaterra 29 September 2016 (has links)
Disponibilidade dos recursos energéticos junto com o despertar da consciência ambiental criaram um interesse por uma condição climática sensível compatível com os recursos disponíveis. Dentro desse cenário o trabalho se volta à necessidade de se criarem e manterem ambientes industriais termicamente adequados aos processos de produção para minimizar as interferências que as condições ambientais exercem sobre os custos dos processos de produtivos e sobre o consumo energético. Os sistemas de resfriamento evaporativo, por sua vez, têm sido a ferramenta de maior potencial de aplicação na criação de ambientes termicamente adequados aos processos. Este modelo revisto de conforto térmico nos coloca um passo à frente para o aumento eficiência energética na construção de projeto de climatização vinculados a temperaturas interiores que atendam conjuntamente tanto aos ocupantes como às atividades que desenvolvem no interior da área climatizada. Apesar de esse sistema apresentar vantagens operacionais, quando comparado a outros sistemas convencionais, existem certas limitações no seu desempenho. Uma das maiores dificuldades das instalações destes sistemas reside na existência de incertezas em qualquer resultado. Possibilitar um controle dos parâmetros, minimizando os erros de aplicação, evitando criar no ambiente um desconforto de tal grau que inviabilize sua aplicação, é o fundamento deste trabalho. A busca passa a ser pela garantia da aceitabilidade dos resultados do sistema projetado e seus limites de aplicabilidade. O estudo das variáveis que interferem no processo do resfriamento por micro aspersão permitiu desenvolver um processo que alterara esses parâmetros durante o funcionamento do sistema, interferindo, conforme a necessidade no seu desempenho, garantindo a completa evaporação da água micro aspergida. / Energy resources along with an environmental conscience awakening has created an interest in sensitive climate together with a more understanding regarding the use of available resources. Inside this scenario our work focus on the needs of creating and maintaining industrial environments thermally suited to these production processes that seeking to minimize interference that environmental conditions have on the costs of production processes and energy consumption. Evaporative cooling systems, in turn, has been a interesting tool to be used in the creation of thermally suitable environments to these processes. This new revised thermal comfort model puts us a step forward to increase energy efficiency in elaborating air treatment projects linked to indoor temperatures that meet both the occupants and the activities that develop inside the controlled area. Although this system has operational advantages when compared to other conventional systems, there are some limitations in their performance. A major difficulty of the installation envolving these systems is about the existence of uncertainty in any results. To allow the control of these parameters in order to minimize the errors in this kind of application and to avoid creating environmental discomfort to such a degree that prevent the implementation, it is the foundation of this work. The search is to ensure the acceptability of the results of the system designed and their limits of applicability. The study of the variables that affect the cooling process by misting allowed us to develop a process that altered these parameters during operation of the system, interfering, as required in its performance, ensuring complete evaporation of water applied by misting in the area.
83

Conception, modélisation et évaluation environnementale d'un procédé de valorisation de boues organiques en combustibles solides / Design, modeling and environmental assessment of the organic sludge valorization into solid fuels

Romdhana, Mohamed Hédi 01 December 2009 (has links)
Le procédé de friture utilise les huiles usagées comme fluide de chauffe pour sécher les boues humides par contact direct tout en incorporant une fraction. Le produit obtenu est un combustible solide à fort pouvoir calorifique, hygiènisé, stockable et transportable sans risque. Une étude expérimentale et théorique a permis d'apporter les éléments nécessaires à la conception du procédé, tant sur le plan énergétique que sur les plans environnemental et sanitaire. Un modèle de cinétique de friture, est proposé pour le séchage et la dynamique d'absorption d'huile, basé sur une loi de diffusion de l'eau dans la boue et un remplacement de l'eau par l'huile volume pour volume. Le modèle est ajusté aux données expérimentales obtenues par méthode gravimétrique sur des cylindres de boues (4-12 mm). Les températures employées varient entre 110°C et 140°C. Le temps de séchage, compris entre 10 et 20 min est réalisable dans une unité de séchage en continu. Un bilan d'énergie a permis de déterminer l'évolution du coefficient de transfert convectif en mettant en évidence trois phases successives. Une corrélation adimensionnelle est proposée, regroupe le flux évaporatoire normé, les caractéristiques thermiques d'huile et la géométrie de la boue. Une étude de la cinétique de destruction thermique des micro-organismes pathogènes a permis de construire un modèle estimant le temps de friture nécessaire pour hygiéniser une boue dont la température est connue dans le temps. Les conditions de friture sous vide à une température d'ébullition de 80°C ont été étudiées et comparées à d'autres procédés de séchage. Enfin, pour évaluer l'insertion du procédé dans une filière de valorisation énergétique par combustion, une étude expérimentale des émissions atmosphériques a été réalisée pour une combustion en lit fixe (850°C). Une attention particulière a été accordée aux émissions des hydrocarbures aromatiques polycycliques vu leurs impacts cancérigènes pour la santé humaine et leur toxicité pour les écosystèmes. Les résultats ont montrés que les émissions de boues frites sont d'environ 5000 microgramme/gramme soit 10 fois plus importantes que celles du bois et 10 fois moins importantes que celles des huiles usagées. / Fry-drying is an alternative for heat and mass transfer intensification. The process re-uses waste oil as a heating medium for drying by contact with the wet sludge. The fry-dried product is a granular solid fuel with high heating value. The product is sterile, stored, and transported safely. Experimental procedure and theoretical investigation have to provide basic information for the process design, in terms of energy and environment. A kinetic model of frying is proposed for water loss and oil intake. The model has been fitted to the data obtained by a weighing method on sludge cylinders (4-12 mm diameter) at an oil temperature ranging from 110°C to 140°C. The drying time between 10 and 20 min is effective in a continuous dryer. The global energy balance has enabled the calculation of a convective heat transfer coefficient. The results show that convection is boiling flow dependent. The study suggests a dimensionless correlation involving the normalized boiling flux, thermal oil property, and the sludge size. An estimation of kinetics of thermal destruction of pathogens during vacuum frying (80°C boiling point) was made. The calculations were compared with the current thermal dryer performance. Finally, to evaluate the integration of the process in a sequence of energy recovery by combustion, an experimental study of air emissions was achieved for fixed-bed combustion (850°C). Particularly, the chemical characterization was focused on the 16 Polycyclic Aromatic Hydrocarbons a group of highly classified carcinogens. The results showed that emissions of fry-dried sludge are approximately 5000 microgramm/gramm thus 10 times higher than those of wood and 10 times smaller than those of oils.
84

La lyophilisation des vaccins : contribution de la modélisation mathématique à l'évaluation de l'hétérogénéité desproduits et des risques de changement d'échelle / Freeze-drying of vaccines : Contribution of mathematical modelling for assessing product heterogeneity and scale-up risks

Scutella, Bernadette 15 November 2017 (has links)
La lyophilisation est le procédé de choix dans l'industrie pharmaceutique pour la stabilisation de produits thermosensibles tels que les vaccins. Cependant, en raison du pré-conditionnement du produit dans des flacons individuels, ce processus est difficile à concevoir et aboutit souvent à des lots présentant une hétérogénéité significative dans la qualité du produit final. L'objectif principal de ce doctorat a été le développement d'un modèle mathématique pour la conception du processus de lyophilisation à un niveau de risque donné, c'est à dire un pourcentage de flacons potentiellement non conformes. Le travail a porté sur la compréhension et la quantification des sources possibles responsables de la variabilité des transferts de chaleur et de matière lors du processus. Dans un premier temps, la variabilité du transfert de chaleur entre les flacons a été étudiée en considérant les dimensions du flacon et sa position sur l'étagère de l'équipement. La variabilité des dimensions géométriques observées dans un lot de flacons (i.e., l'aire de contact entre l'étagère et le flacon et la profondeur de concavité du fond) a influencé la distribution du coefficient de transfert de chaleur entre les flacons. De plus, un modèle mathématique original en 3D a été développé dans COMSOL Multiphysics pour expliquer et prédire les transferts de chaleur atypiques observés dans les flacons situés sur les bords de l'étagère lors du processus de lyophilisation. Les phénomènes conductifs à basse pression au sein de la vapeur d'eau ont été reportés comme un mécanisme dominant expliquant ces transferts de chaleur atypiques alors que les phénomènes radiatifs liés à la présence des parois de l'équipement ont toujours été cités dans la littérature. Par ailleurs, ce modèle mathématique en 3D a été utilisé pour étudier l'effet de la configuration de chargement du lyophilisateur et des caractéristiques de l'équipement sur la variabilité du transfert de chaleur. Dans un deuxième temps, la variabilité des transferts de matière a été évaluée sur une solution de saccharose à 5 % en considérant deux paramètres, la résistance de la couche sèche au transfert de matière pendant la sublimation et le temps caractéristique de désorption. La résistance à la couche sèche a été évaluée en combinant deux approches complémentaires, les tests de remontée de pression et la méthode gravimétrique. La variabilité estimée de la résistance à la couche séchée a eu un impact plus important sur la distribution de la température du produit que la variabilité du coefficient de transfert de chaleur. La valeur et la variabilité du temps caractéristique de désorption ont été évaluées pour différentes températures et ont permis de simuler l'hétérogénéité de la teneur en eau finale entre les flacons. Dans la dernière partie du travail, les principales sources quantifiées de variabilité des transferts de chaleur et de matière ont été intégrées dans un modèle mathématique de lyophilisation. Ce modèle dynamique multi-flacons a été utilisé non seulement pour prédire l'évolution de la température et de la teneur en eau du produit pendant la lyophilisation pour un lot de 100 flacons, mais aussi pour estimer le pourcentage de flacons potentiellement non conformes. L'approche de modélisation proposée, étendue à un plus grand nombre de flacons simulés, pourrait être utilisée pour calculer les "design spaces" (espaces de travail) des étapes de dessiccation primaire et secondaire du processus de lyophilisation à un risque connu de pourcentage de flacons non conformes. / Freeze-drying is the process of choice in pharmaceutical industry for the stabilization of heat sensitive products such as vaccines. However, due the product pre-conditioning in individual vials, this process is difficult to design and often results in batches presenting a significant heterogeneity in the quality of the final product. The main goal of this Ph.D. project was the development of a mathematical model making it possible to predict the risk of failure when designing the freeze-drying process, i.e., the percentage of "rejected vials". To this end, the work focused on the understanding and quantification of the sources responsible for heat and mass transfer variability during the process. Firstly, the vial-to-vial heat transfer variability was investigated by taking the vial bottom dimensions and the vial position on the shelf of equipment into account. The variability of geometrical dimensions observed within a batch of vials (i.e., contact area between the shelf and the vial and the mean bottom curvature depth) moderately influenced the heat transfer coefficient distribution among vials (by less than 10 %). Secondly, a original 3D mathematical model was developed in COMSOL Multiphysics to explain and predict atypical heat transfer observed in vials located at the border of the shelf during the freeze-drying process. Conduction through low-pressure water vapour appeared as the dominant mechanism explaining the additional heat transfer to border vials rather than as reported in literature radiation from the walls of the drying chamber. Furthermore, this 3D mathematical model was used to investigate the effect of the vial loading configuration and of the equipment characteristics on heat transfer variability. In a second part, mass transfer variability was quantified on a 5% sucrose solution and by focusing on two parameters, the resistance of the dried layer to mass transfer during sublimation and the characteristic desorption time. The dried layer resistance was assessed by combining complementary approaches, the pressure rise test and gravimetric methods. The estimated variability of the dried layer resistance was found to have a higher impact on the product temperature distribution than the heat transfer coefficient variability. The value and variability of characteristic desorption time was evaluated for different temperatures and made it possible to simulate moisture content heterogeneity between vials in the batch. In the last part of the work, the main quantified sources of heat and mass transfer variability were integrated in a mathematical model of freeze-drying process. This multi-vial, dynamic model was used not only to predict the evolution of product temperature and moisture content during freeze-drying for a batch of 100 vials, but also to estimate the percentage of vials that could potentially be rejected. The proposed approach, extended to a greater number of simulated vials, could be applied to calculate design spaces of the primary and secondary drying steps of freezedrying process at a known risk of failure.
85

Modélisation thermo-hydrodynamique d'un réservoir minier profond ennoyé : le cas du Bassin Houiller Lorrain / Thermo-hydrodynamical modelling of a flooded deep mine reservoir : Case of the Lorraine Coal Basin

Reichart, Guillaume 01 June 2015 (has links)
Depuis 2006, l’arrêt des pompages d’exhaure dans le Bassin Houiller Lorrain (France) a conduit à l’ennoyage des travaux miniers abandonnés, avec pour conséquence la mise en place d’un nouvel équilibre hydrodynamique régional. De récentes recherches portant sur l’exploitation de la chaleur des réservoirs ennoyés ont suscité de nouvelles interrogations, auxquelles nous nous sommes proposé de répondre. Notre travail avait pour objectif de chercher à comprendre le comportement thermo-hydrodynamique de l’eau de mine au sein d’un système en cours d’ennoyage ou récemment ennoyé. Dans un premier temps, les contextes géographique, géologique et hydrogéologique du Bassin Houiller Lorrain ont fait l’objet d’une synthèse, et une zone d’étude a été choisie. Dans un second temps, des profils de température et de conductivité électrique, complétés par des jaugeages, ont été mesurés dans d’anciens puits de mine du Bassin Houiller Lorrain, offrant une meilleure compréhension du comportement de l’eau à l’échelle d’un ouvrage profond. À partir de l’analyse de ces données, un modèle thermo-hydrodynamique et des simulations numériques ont pu être réalisés à cette échelle. Les résultats permettent d’expliquer les phénomènes observés. Leur stabilité est également étudiée. Dans un troisième temps, un modèle spatialisé maillé a été construit pour aborder la problématique du comportement hydrodynamique d’un réservoir minier entier. La montée de l’eau observée a été correctement reproduite ; le modèle peut par ailleurs être utilisé de façon prédictive pour la période suivant l’ennoyage. Plusieurs outils ont été testés, améliorés ou développés afin de faciliter l’étude des réservoirs ennoyés, notamment concernant l’homogénéisation tridimensionnelle des conductivités hydrauliques et le couplage d’un modèle spatialisé maillé avec un réseau de drains-conduits / Since 2006, cessation of dewatering in Lorraine Coal Basin (France) led to the flooding of abandoned mines, resulting in a new hydrodynamical balance in the area. Recent researches concerning geothermal exploitation of flooded reservoirs raised new questions, which we propose to answer. Our work aimed to understand the thermo-hydrodynamical behaviour of mine water in a flooding or flooded system. Firstly, we synthetized the geographical, geological and hydrogeological contexts of the Lorraine Coal Basin, and we chose a specific area for our studies. Secondly, temperature and electric conductivity log profiles were measured in old pits of the Lorraine Coal Basin, giving a better understanding of the water behaviour at a deep mineshaft scale. We were able to build a thermo-hydrodynamical model and simulate water behaviour at this scale. Flow regime stability is also studied. Thirdly, a hydrodynamical spatialized meshed model was realized to study the hydrodynamical behaviour of a mine reservoir as a whole. Observed water-table rise was correctly reproduced : moreover, the model can be used in a predictive way after the flooding. Several tools were tested, improved or developed to ease the study of flooded reservoirs, as three-dimensional upscaling of hydraulic conductivities and a coupled spatialized meshed model with a pipe network
86

Modélisation multi-échelle de la combustion d'un nuage de particules / Multiscale modeling of the combustion of a cloud of particles

Belerrajoul, Mohamed 06 February 2019 (has links)
La présence de fines particules de matières oxydables est rencontrée dans de nombreuses situations industrielles. Le risque d'explosion de poussières présente une menace constante pour les industries de transformation qui fabriquent, utilisent ou manipulent des poudres ou despoussières de matières combustibles. Dans le secteur nucléaire, les scénarios envisagés traitent,en particulier, le risque d'explosion de poussières de graphite liées aux opérations dedémantèlement des réacteurs Uranium Naturel Graphite Gaz. La problématique considérée, dans le cadre de ce travail de thèse, est celle de la combustion d'un mélange dilué gaz-particules.L'objectif de cette thèse est de développer un modèle Euler-Lagrange macroscopique permettantde prédire la vitesse laminaire de flamme qui est une des données essentielles pour les modèlesde vitesse de flamme turbulente utilisés dans l'évaluation des risques d'explosion de poussières.Dans un premier temps, les équations macroscopiques de transferts massique et thermique sont dérivées à partir de la méthode de prise de moyenne volumique. L'intérêt de l'approche utilisée ici est de proposer des problèmes de fermeture permettant d'estimer les coefficients de transfertseffectifs, tels que les coefficients d'échanges thermiques et le coefficient effectif de la réactionhétérogène. Dans un deuxième temps, des simulations Euler-Lagrange sont utilisées pourdéterminer la vitesse de flamme laminaire diphasique plane en fonction des caractéristiques du mélange gazeux et des poussières de graphite. Le modèle proposé dans ce travail est comparé au modèle Euler-Lagrange classique basé sur la résolution du problème de couche limite pourune particule isolée en milieu infini. Cette étude montre que les effets du taux de dilution et deséchanges indirects entre les particules ne sont pas systématiquement négligeables dans leséchanges macroscopiques entre les deux phases. D'autre part, la présente étude laisse entrevoir la potentialité de l'approche proposée pour les simulations détaillées de l'écoulement diphasique / The presence of fine particles of oxidizable materials is encountered in many industrial situations.The risk of dust explosion presents a constant threat in transformation industries that manufacture,use or manipulate powders or combustible materials dusts. In nuclear safety analysis, one of themain scenarios is the risk of graphite dust explosion that may occur during decommissioningoperations of Uranium Natural Graphite Gas reactors. The issue considered in this thesis isrelated to combustion of a dilute gas-particle mixture. This work aims at developing a macroscopicEuler-Lagrange model for predicting laminar flame velocity, which is one of the essential data forturbulent flame velocity models used to evaluate the risk of dust explosion. First, the macroscopicheat and mass transfer equations are derived using the volume averaging method. The majorinterest of the proposed approach is to provide closure problems that allow to estimate theeffective transport coefficients, such as heat exchange coefficients and the effective coefficient ofthe heterogeneous reaction. Second, Euler-Lagrange simulations are used to determine the planetwo-phase laminar flame velocity as a function of gas mixture and graphite dust characteristics.The proposed model is compared to the classical Euler-Lagrange model based on the resolutionof the boundary layer problem in the vicinity of an isolated particle in infinite medium. Results showthat the dilution rate and the indirect particle-particle exchanges are not systematically negligible inthe macroscopic exchanges between the two-phases. On the other hand, this study suggests thepotentiality of the proposed approach for detailed simulations of two-phase flow
87

Dropwise condensation in the presence of non-condensable gas

Zheng, Shaofei 16 January 2020 (has links)
Dropwise condensation, which collects the condensate liquid in the form of droplets, has attracted a growing interest due to much higher heat transfer coefficient. One important and challenging issue in dropwise condensation is the presence of non-condensable gas (NCG) which drastically reduces its heat transfer performance. Concerning the mechanism understanding, this thesis is aiming to investigate dropwise condensation in case of NCG by combing different methods. Firstly, convective dropwise condensation out of moist air is experimentally investigated under controllable conditions. In modeling, some crucial aspects are reasonably captured: the coupled heat and mass transfer during droplet growth by a multi-scale droplet growth model; the inter-droplet interaction defined by a distributed point sink method; the enhancement of the convective mass transfer using the droplet Sherwood number. Furthermore, a multi-component multi-phase thermal pseudopotential-based LB model is developed to advance the directly numerical simulation of dropwise condensation.
88

Gleichungsorientierte Modellierung der Wärme- und Stoffübertragungsprozesse in Verdunstungskühltürmen

Schulze, Tobias 24 July 2015 (has links)
Zur Kühlung von Prozessströmen kommen aufgrund hoher Leistungsdichten häufig Verdunstungskühltürme zum Einsatz. Um die Übertragungsfläche für Wärme und Stoff zu vergrößern, werden in diesen Kühltürmen Struktureinbauten integriert. Die Weiterentwicklung von Kühlturmeinbauten und die Untersuchung der den Kühlprozess beeinflussenden Faktoren erfolgt empirisch, was eine Vielzahl von Versuchen notwendig macht. Eine numerische Simulation des Kühlprozesses kann diese Messungen unterstützen und so helfen eine Vielzahl an Versuchen einzusparen. Des Weiteren können bei versuchsbegleitender Simulation mit einem geeigneten Modell weitere Untersuchungen durchgeführt und Erkenntnisse gewonnen werden, die bei Messungen am Versuchskühlturm verborgen bleiben. In dieser Arbeit werden zwei Ansätze der numerischen Simulation eines Verdunstungskühlturms betrachtet. Es werden eine CFD-Simulation und ein vereinfachtes Modellkonzept hinsichtlich der Anwendbarkeit auf diese Problemstellung untersucht. Schwerpunkt der vorliegenden Arbeit ist die methodische Entwicklung eines solchen vereinfachten mathematischen Modells. Dieses beruht auf der physikalisch deterministischen Beschreibung der im Kühlturm ablaufenden Prozesse der Wärme- und Stoffübertragung unter Berücksichtigung des Stoffverhaltens. Aufgrund der Nichtlinearität des Stoffverhaltens und der erforderlichen Inkrementierung des Berechnungsgebiets ist ein methodisches Vorgehen erforderlich, um die Erstellung der Modellgleichungen und deren Lösung überhaupt realisieren zu können. Hierfür wird auf allgemeine Methoden der gleichungsorientierten Simulation technischer Systeme zurückgegriffen. Das entwickelte Modellkonzept wird für die Modellierung und Simulation eines Versuchskühlturms angewandt. Mit den so ermittelten Messdaten wird das Modell kalibriert und validiert. Es zeigt sich, dass mit dem erstellten Modell quantitativ und qualitativ valide Ergebnisse erzielt werden können. / Due to the high power density, the cooling of process streams is often done bei evaporative cooling towers. To enlarge the exchange area for the heat and mass transfer, these cooling towers contain integrated structural fills. The future development of cooling tower fills and the research regarding the cooling process and its influencing parameters will be carried out empirically, resulting in a large number of required experiments. A numeric simulation of the cooling process can support theses measurements and reduce the vast number of needed experiments. Furthermore, with the use of test-related simulations and adapted models, it will be possible to gain knowledge and do research in areas which are omitted during regular measurements on cooling towers. In this study it is looked to two different approaches of numeric simulation of a evaporative cooling tower. There will be an examination of a CFD-Simulation and a simplified model concept regarding their respective applicability for this problem. This work is focussed on the systematic developement of such simplified mathematical models, based on the physical deterministic description of the occurring processes of heat and mass transfer in cooling towers considering the stock behaviour. Due to the non-linearity of the stock behaviour and the required incrementation of the calculation area, a systematic approach is needed to model equations and their respective solutions. For this purpose it is necessary to access general techniques of equation-based simulations of technological systems. The developed model concept will be applied for the modelation and simulation of an experimental cooling tower. The model will be calibrated and validated with data from this experimental tower. It shows, that the results from this model are qualitatively and quantitatevily valid.
89

COMPLIANT MICROSTRUCTURES FOR ENHANCED THERMAL CONDUCTANCE ACROSS INTERFACES

Jin Cui (9187607) 04 August 2020 (has links)
<p>With the extreme increases in power density of electronic devices, the contact thermal resistance imposed at interfaces between mating solids becomes a major challenge in thermal management. This contact thermal resistance is mainly caused by micro-scale surface asperities (roughness) and wavy profile of surface (nonflatness) which severely reduce the contact area available for heat conduction. High contact pressures (1~100 MPa) can be used to deform the surface asperities to increase contact area. Besides, a variety of conventional thermal interface materials (TIM), such as greases and pastes, are used to improve the contact thermal conductance by filling the remaining air gaps. However, there are still some applications where such TIMs are disallowed for reworkability concerns. For example, heat must be transferred across dry interfaces to a heat sink in pluggable opto-electronic transceivers which needs to repeatedly slide into / out of contact with the heat sink. Dry contact and low contact pressures are required for this sliding application.</p> <p>This dissertation presents a metallized micro-spring array as a surface coating to enhance dry contact thermal conductance under ultra-low interfacial contact pressure. The shape of the micro-springs is designed to be mechanically compliant to achieve conformal contact between nonflat surfaces. The polymer scaffolds of the micro-structured TIMs are fabricated by using a custom projection micro-stereolithography (μSL) system. By applying the projection scheme, this method is more cost-effective and high-throughput than other 3D micro-fabrication methods using a scanning scheme. The thermal conductance of polymer micro-springs is further enhanced by metallization using plating and surface polishing on their top surfaces. The measured mechanical compliance of TIMs indicates that they can deform ~10s μm under ~10s kPa contact pressures over their footprint area, which is large enough to accommodate most of surface nonflatness of electronic packages. The measured thermal resistances of the TIM at different fabrication stages confirms the enhanced thermal conductance by applying metallization and surface polishing. Thermal resistances of the TIMs are compared to direct metal-to-metal contact thermal resistance for flat and nonflat mating surfaces, which confirms that the TIM outperforms direct contact. A thin layer of soft polymer is coated on the top surfaces of the TIMs to accommodate surface roughness that has a smaller spatial period than the micro-springs. For rough surfaces, the polymer-coated TIM has reduced thermal resistance which is comparable to a benchmark case where the top surfaces of the TIM are glued to the mating surface. A polymer base is designed under the micro-spring array which can provide the advantages for handling as a standalone material or integration convenience, at the toll of an increased insertion resistance. Through-holes are designed in the base layer and coated with thermally conductive metal after metallization to enhance thermal conductance of the base layer; a thin layer of epoxy is applied between the base layer and the working surface to reduce contact thermal resistance exposed on the base layer. Cycling tests are conducted on the TIMs; the results show good early-stage reliability of the TIM under normal pressure, sliding contact, and temperature cycles. The TIM is thermally demonstrated on a pluggable application, namely, a CFP4 module, which shows enhanced thermal conductance by applying the TIM. </p> To further enhance the potential mechanical compliance of microstructured surfaces, a stable double curved beam structure with near-zero stiffness composed of intrinsic negative and positive stiffness elastic elements is designed and fabricated by introducing residual stresses. Stiffness measurements shows that the positive-stiffness single curved beam, which is the same as the top beam in the double curved beam, is stiffer than the double curved beam, which confirms the negative stiffness of the bottom beam in the double curved beam. Layered near zero-stiffness materials made of these structures are built to demonstrate the scalability of the zero-stiffness zone.
90

Membrane-Based Energy Recovery Ventilator Coupled with Thermal Energy Storage Using Phase Change Material for Efficient Building Energy Savings

Mohiuddin, Mohammed Salman 12 1900 (has links)
This research work is focused on a conceptual combination of membrane-based energy recovery ventilator (ERV) and phase change material (PCM) to provide energy savings in building heating, ventilation & air-conditioning (HVAC) systems. An ERV can recover thermal energy and moisture between the outside fresh air (OFA) entering into the building and the exhaust air (EA) leaving from the building thus reducing the energy consumption of the HVAC system for cooling and heating the spaces inside the building. The membranes were stacked parallel to each other forming adjacent channels in a counter-flow arrangement for OFA and EA streams. Heat and moisture is diffused through the membrane core. Flat-plate encapsulated PCM is arranged in OFA duct upstream/downstream of the ERV thereby allowing for further reduction in temperature by virtue of free cooling. Paraffin-based PCMs with a melting point of 24°C and 31°C is used in two different configurations where the PCM is added either before or after the ERV. Computational fluid dynamics (CFD), and heat and mass transfer modeling is employed using COMSOL Multiphysics v5.3 to perform the heat and mass transfer analysis for the membrane-based ERV and flat-plate PCMs. An 8-story office building was considered to perform building energy simulation using eQUEST v3.65 from Department of Energy (DOE). Based on the heat and mass transfer analysis, it is found that the sensible effectiveness (heat recovery) stood in the range of 65%-97% while the latent effectiveness (moisture recovery) stood at 55%-80%. Also, the highest annual energy savings achieved were 72,700 kWh in electricity consumption and 358.45 MBtu in gas consumption.

Page generated in 0.1189 seconds