• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 32
  • 30
  • 14
  • 14
  • 14
  • 14
  • 14
  • 14
  • 6
  • 3
  • 2
  • 2
  • Tagged with
  • 191
  • 191
  • 53
  • 37
  • 33
  • 30
  • 28
  • 28
  • 20
  • 20
  • 17
  • 16
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

An Approach for the Robust Design of Data Center Server Cabinets

Rolander, Nathan Wayne 29 November 2005 (has links)
The complex turbulent flow regimes encountered in many thermal-fluid engineering applications have proven resistant to the effective application of systematic design because of the computational expense of model evaluation and the inherent variability of turbulent systems. In this thesis the integration of the Proper Orthogonal Decomposition (POD) for reduced order modeling of turbulent convection with the application of robust design principles is proposed as a practical design approach. The POD has been used successfully to create low dimensional steady state flow models within a prescribed range of parameters. The underlying foundation of robust design is to determine superior solutions to design problems by minimizing the effects of variation on system performance, without eliminating their causes. The integration of these constructs utilizing the compromise Decision Support Problem (DSP) results in an efficient, effective robust design approach for complex turbulent convective systems. The efficacy of the approach is illustrated through application to the configuration of data center server cabinets. Data centers are computing infrastructures that house large quantities of data processing equipment. The data processing equipment is stored in 2 m high enclosures known as cabinets. The demand for increased computational performance has led to very high power density cabinet design, with a single cabinet dissipating up to 20 kW. The computer servers are cooled by turbulent convection and have unsteady heat generation and cooling air flows, yielding substantial inherent variability, yet require some of the most stringent operational requirements of any engineering system. Through variation of the power load distribution and flow parameters, such as the rate of cooling air supplied, thermally efficient configurations that are insensitive to variations in operating conditions are determined. This robust design approach is applied to three common data center server cabinet designs, in increasing levels of modeling detail and complexity. Results of the application of this approach to the example problems studied show that the resulting thermally efficient configurations are capable of dissipating up to a 50% greater heat load and 15% decrease in the temperature variability using the same cooling infrastructure. These results are validated rigorously, including comparison of detailed CFD simulations with experimentally gathered temperature data of a mock server cabinet. Finally, with the approach validated, augmentations to the approach are considered for multi-scale design, extending approaches domain of applicability.
182

Estudo experimental da transferencia de calor no escoamento bifasico intermitente horizontal / Experimental study of the heat transfer in the intermittent horizontal two-phase flow pattern

Lima, Ivan Noville Rocha Correa 14 August 2018 (has links)
Orientador: Antonio Carlos Bannwart / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica, Instituto de Geociencias / Made available in DSpace on 2018-08-14T16:09:37Z (GMT). No. of bitstreams: 1 Lima_IvanNovilleRochaCorrea_M.pdf: 2854489 bytes, checksum: fec392ec12651861ca4547ea5ce279c9 (MD5) Previous issue date: 2009 / Resumo: O presente trabalho tem por objetivo central a medição experimental do coeficiente de transferência de calor bifásico no padrão gás-líquido horizontal intermitente, por ser este um padrão muito comum nas operações de produção de petróleo. Para alcançar esse objetivo, foi construído um aparato experimental consistindo de uma seção de testes alimentada por uma mistura pré-aquecida de ar e água, a diferentes pares de vazões e temperaturas de entrada. Para realizar a troca térmica, o tubo foi circundado por uma jaqueta de água gelada submetida a diversas vazões e temperaturas de entrada, formando, com o tubo central, uma seção de troca térmica de correntes paralelas. A metodologia experimental consistiu em medir a taxa de transferência de calor do fluido interno para o fluido externo e, a partir da diferença média de temperatura entre o fluido quente e a parede, determinar o coeficiente de transferência de calor entre o fluido quente e a parede, para cada elenco de condições de operação. O procedimento foi realizado tanto para os ensaios em escoamento monofásico como para o escoamento bifásico. Os resultados para o coeficiente de transferência de calor do fluido quente foram comparados às correlações e aos modelos existentes e apresentaram resultados satisfatórios. / Abstract: The main objective of the present work is the experimental measurement of the two-phase heat transfer coefficient in the intermittent horizontal gas-liquid flow pattern. This flow pattern is very common in oil production pipelines. In order to reach this objective, an experimental apparatus was built, consisting of a test section fed with an air-water mixture pre-heated at different pairs of inlet flow rates and temperatures. In order to realize the heat transfer, the pipe was surrounded by a jacket containing cold water under various inlet flow rates and temperatures, forming with the central pipe a heat transfer section of parallel current. The experimental methodology consisted of measuring the heat transfer rate from the internal to the external fluid, and from the average difference of the temperature between the hot fluid and the pipe wall, determine the heat transfer coefficient between the hot fluid and the pipe wall for each cast of operating condition. The procedure was carried through for both single phase and two-phase tests. The results of the heat transfer coefficients between the hot fluid were compared with some correlations and existing models and presented satisfactory results. / Mestrado / Explotação / Mestre em Ciências e Engenharia de Petróleo
183

Desenvolvimento de uma técnica não intrusiva de medição do coeficiente de convecção: solução do problema térmico inverso / Development of a non-intrusive technique for measuring of the convection coefficient: solution of the inverse thermal problem

Analice Costacurta Brandi 13 August 2010 (has links)
A tomografia por sensoriamento térmico é muito utilizada em diferentes aplicações industriais, tais como a determinação de propriedades térmicas de novos materiais, o controle da produção de calor e a temperatura no processo de manufatura. Entretanto, o emprego de técnicas tomográficas em processos industriais envolvendo transferência de calor ainda carece de métodos robustos e computacionalmente eficientes. Nesse contexto, o principal objetivo deste trabalho é contribuir para o desenvolvimento de uma técnica não intrusiva de medição do coeficiente de convecção a partir de medidas externas de temperatura e fluxo de calor baseada na solução do problema térmico inverso. Para tanto é necessário resolver um problema de condução acoplado a um problema de convecção de calor. Este acoplamento ocorre através do coeficiente de convecção no interior do domínio do problema, cuja determinação pode ser feita através da aplicação de um fluxo de calor e medição das temperaturas resultantes na superfície externa. A tomografia térmica é tratada como um problema de minimização global, cuja função objetivo é um funcional de erro que quantifica a diferença entre as medidas externas não intrusivas (temperatura real) e as medidas calculadas no modelo numérico (temperatura aproximada). A natureza mal condicionada do problema assim formulado se manifesta na superfície de minimização por produzir topologias problemáticas tais como múltiplos mínimos locais, pontos de sela, vales ao redor da solução, platôs, etc. Desse modo, uma técnica bastante sofisticada, capaz de convergir para a solução correta mesmo na presença dessas patologias é necessária para obtenção da solução. Neste trabalho optou-se pelo método de Newton para a minimização deste funcional em que a inversa da matriz Hessiana é substituída por uma pseudo-inversa construída a partir da técnica de Decomposição em Valores Singulares Truncados. Os resultados mostram que a técnica proposta foi capaz de superar os problemas de convergência associados à natureza intrínseca mal condicionada do problema inverso e o coeficiente de convecção foi reconstruído com precisão razoável. / Tomography by thermal sensing is widely used in different industrial applications, such as the determination of thermal properties of new materials, the control of heat production and the temperature in manufacturing processes. However, the application of tomographic techniques in industrial processes involving heat transfer still lacks robust and computationally efficient methods. In this context, the main objective of this thesis is to contribute to the development of a non-intrusive technique for measuring of the convection coefficient from external temperature and heat flow measurements based on the solution of the inverse thermal problem. This requires solving a conduction problem coupled with a heat convection problem, which is coupled through an internal convection coefficient, determined by applying a heat flux and measuring the resulting temperatures on the external boundary. The thermal tomography is treated as a global minimization problem in which the fitness function is an error functional that quantifies the difference between non-intrusive external measurements (actual temperature) and measurements calculated in a numerical model (approximate temperature). The ill-conditioned nature of the problem manifests itself in the minimization problem for producing problematic topologies, such as multiple local minima, saddle points, valleys around the solution, plateaus, etc. Thus, a very sophisticated technique that can converge to the correct solution even in the presence of these pathologies is necessary to obtain the solution. In this thesis the Newton\'s method was used for the minimization of this functional in which the inverse Hessian matrix was replaced by a pseudo-inverse built from the truncated singular value decomposition technique. Results show that the proposed technique was capable of overcoming the convergence problems associated with the intrinsic ill-conditioned nature of the inverse problem and the convection coefficient was reconstructed within reasonable precision.
184

Laminar Conjugate Natural Convection And Surface Radiation In Horizontal Annuli

Shaija, A 10 1900 (has links)
Numerical studies of two-dimensional laminar conjugate natural convection flow and heat transfer in horizontal annuli formed between inner heat generating solid cylinders and outer isothermal circular boundary are performed with and without the effect of surface radiation. The two configurations of the concentrically placed inner cylinder are a circular cylinder (CC configuration) and a square cylinder (SOS, i.e., Square-On-Side, configuration). The mathematical formulation consists of the continuity equation, momentum equations with Boussinesq approximation and the solid and fluid energy equations. Numerical solutions are obtained by discretising the governing equations on a collocated mesh (non-staggered mesh) and the pressure-velocity coupling is taken into account via the SIMPLE (Semi-Implicit Method for Pressure-Linked Equations) algorithm. A cylindrical polar coordinate system is employed for CC configuration and a Cartesian coordinate system is used for the SOS configuration. The convective terms are discretised with donor-cell differencing scheme and the diffusion terms, with central differencing scheme. The algebraic equations resulting from the discretisation of the governing equations are solved using the line by line TDMA (Tri-Diagonal Matrix Algorithm). A global iteration scheme over each time step is used for better coupling of temperature and the flow variables and steady-state solutions are obtained by time-marching. Steady-state results of conjugate pure natural convection are obtained for the volumetric heat generation and outer radius based Grashof number ranging from 104 to 1010, for solid-to-fluid thermal conductivity ratios of 1, 5, 10, 50 and 100, and for the aspect ratios of 0.2 and 0.4, with air as the working medium (Pr=0.708) for the CC and SOS configurations. The flow and temperature distributions are presented in terms of isotherms and streamline maps. Results are presented for several quantities of interest such as local and average Nusselt numbers on the inner and outer boundaries, dimensionless local temperatures on the inner boundary and dimensionless maximum and average solid cylinder temperatures. The results show that the flow in the annulus is characterized by double or quadruple vortex patterns. Of the dimensionless maximum solid temperature, average solid temperature and average inner boundary temperature, the first two are much sensitive to solid-to-fluid thermal conductivity ratio. Surface radiation effects are studied numerically in conjugation with natural convection. The coupling with surface radiation arises through the solid-fluid interface thermal condition. To account for the radiation effects, configuration factors among the subsurfaces of the inner and outer boundaries formed by the computational mesh are determined. Results are obtained for CC and SOS configurations for emissivities ranging from 0.2-0.8, with the other parameters as in pure natural convection case. It is found that even at low surface emissivity, radiation plays a significant role in bringing down the convective component and enhancing the total Nusselt numbers across the annulus. The presence of radiation is found to reduce the dimensionless temperatures inside the solid and homogenise the temperature distribution in the fluid. The radiative Nusselt number is about 50-70 % of the total Nusselt number depending on the radiative parameters chosen. This factor emphasizes the need for taking into account the coupling of radiation and natural convection for the accurate prediction of the flow and heat transfer characteristics in the annulus. The solution of the conjugate problem facilitates the determination of the solid temperature distribution, which is important in connection with the safety aspects of various thermal energy systems. Correlations as functions of Grashof number and thermal conductivity ratio are constructed for the estimation of various quantities of interest for the two configurations and aspect ratios for pure natural convection and for combined natural convection and radiation cases. The results are expected to be useful in the design of thermal systems such as spent nuclear fuel casks during transportation and storage, underground transmission cables and cooling of electrical and electronic components.
185

Senzor pro měření průtoku / Flow sensor

Symerský, Tomáš January 2011 (has links)
This diploma thesis is divided into two parts - theoretical and practical. In its first, theoretical part, deals with the theory of fluid and gas flow, heat transfer and diversification of sensors for flow measurement working on the electrical principle. It also deals with thermodynamic principle, which can be used for measuring very small flow and low-temperature ceramics that is used to implement microcanals for sensing very low flows. The practical part of the thesis deals with the very simulation of the entire structure in the program “COMSOL Multiphysics” - both in 2D and 3D views. Then there is shown the implementation and measurement of the flow sensor in a low-temperature ceramics, working on a thermodynamic principle.
186

Měření součinitele přestupu tepla v kruhových minikanálech / Tubular minichannel heat transfer coefficient measurement

Snášel, Jan January 2013 (has links)
The master’s thesis is describing measurement of heat transfer coefficient for heat exchanger with tubular minichannels. For understanding of the process, basic theory of heat transfer has its part in this work. The advanteges of minichannels and their clasiffication are also stated here. Another part describes the calculation for determination of heat transfer coefficient using the Wilson plot method and the method of direct determination of heat transfer coefficient. Measurement data are evaluated and comparison is made for results of both methods. This results are used for formulation of correlation equation for given flow regime.
187

Convecção natural de fluidos de lei de potência e de Bingham em cavidade fechada preenchida com meio heterogêneo

Lavarda, Jairo Vinícius 20 March 2015 (has links)
CAPES / Vários estudos numéricos investigaram cavidades fechadas sob o efeito da convecção natural preenchidas com fluidos newtonianos generalizados (FNG) nos últimos anos pelas aplicações diretas em trocadores de calor compactos, no resfriamento de sistemas eletrônicos e na engenharia de polímeros. Neste trabalho é realizada a investigação numérica do processo de convecção natural de fluidos de lei de Potência e de Bingham em cavidades fechadas, aquecidas lateralmente e preenchidas com meios heterogêneos e bloco centrado. O meio heterogêneo é constituído de blocos sólidos, quadrados, desconectados e condutores de calor. Como parâmetros são utilizados a faixa de Rayleigh de 104 à 107, índice de potência n de 0, 6 à 1, 6, número de Bingham de 0, 5 até Bimax , sendo investigado da influência do número de Prandtl para cada modelo de fluido. Nas cavidades com meio heterogêneo são utilizadas as quantidades de blocos de 9, 16, 36 e 64, mantendo-se a razão entre a condutividade térmica do sólido e do fluido κ = 1. Para as cavidades com bloco centrado, são utilizados os tamanhos adimensionais de 0, 1 à 0, 9 com κ = 0, 1; 1 e 10. A modelagem matemática é realizada pelas equações de balanço de massa, de quantidade de movimento e de energia. As simulações são conduzidas no programa comercial ANSYS FLUENT R . Inicialmente são resolvidos problemas com fluidos newtonianos em cavidade limpa, seguida de cavidade preenchida com meio heterogêneo e posteriormente bloco centrado para validação da metodologia de solução. Na segunda etapa é realizada o estudo com os modelos de fluidos de lei de Potência e de Bingham seguindo a mesma sequência. Os resultados são apresentados na forma de linhas de corrente, isotermas e pelo número de Nusselt médio na parede quente. De maneira geral, a transferência de calor na cavidade é regida pelo número de Rayleigh, tamanho e condutividade térmica dos blocos, pelo índice de potência para o modelo de lei de Potência e do número de Bingham para o modelo de Bingham. O número de Prandtl tem grande influência nos dois modelos de fluidos. O meio heterogêneo reduz a transferência de calor na cavidade quando interfere na camada limite térmica para ambos os fluidos, sendo feita uma previsão analítica para o fluido de lei de Potência. Para bloco centrado, a interferência na camada limite com fluido de lei de Potência também foi prevista analiticamente. A transferência de calor aumentou com bloco de baixa condutividade térmica e pouca interferência e com bloco de alta condutividade térmica e grande interferência, para ambos os fluidos. / Many studies have been carried out in square enclosures with generalized Newtonian fluids with natural convection in past few years for directly applications in compact heat exchangers, cooling of electronics systems and polymeric engineering. The natural convection in square enclosures with differently heated sidewalls, filled with power-law and Bingham fluids in addition with heterogeneous medium and centered block are analyzed in this study. The heterogeneous medium are solid, square, disconnected and conducting blocks. The parameters used are the Rayleigh number in the range 104 - 107 , power index n range of 0, 6 - 1, 6, Bingham number range of 0, 5 - Bimax , being the influence of Prandtl number investigated for each fluid model. The number of blocks for heterogeneous medium are 9, 16, 36 and 64, keeping constant solid to fluid conductive ratio, κ = 1. For enclosures with centered block are used the nondimensional block size from 0, 1 to 0, 9, with solid to fluid conductive ratio in range κ = 0, 1; 1 and 10. Mathematical modeling is done by mass, momentum and energy balance equations. The solution of equations have been numerically solved in ANSYS FLUENT R software. Firstly, numerical solutions for validation with Newtonian fluids in clean enclosures are conducted, followed by enclosures with heterogeneous medium and centered block. Subsequently, numerical solutions of power-law and Bingham fluids with same enclosures configurations are conducted. The results are reported in the form of streamlines, isotherms and average Nusselt number at hot wall. In general, the heat transfer process in enclosure is governed by Rayleigh number, size and thermal conductivity of the blocks, power index n for power-law fluid and Bingham number for Bingham fluid. Both fluid models are very sensitive with Prandtl number changes. Heterogeneous medium decrease heat transfer in enclosure when affects thermal boundary layer for both fluid models. One analytical prediction was made for power-law fluid. An increase in heat transfer occurs with low thermal conductivity block and few interference and with high thermal conductivity block and great interference, for both fluids.
188

Convecção natural de fluidos de lei de potência e de Bingham em cavidade fechada preenchida com meio heterogêneo

Lavarda, Jairo Vinícius 20 March 2015 (has links)
CAPES / Vários estudos numéricos investigaram cavidades fechadas sob o efeito da convecção natural preenchidas com fluidos newtonianos generalizados (FNG) nos últimos anos pelas aplicações diretas em trocadores de calor compactos, no resfriamento de sistemas eletrônicos e na engenharia de polímeros. Neste trabalho é realizada a investigação numérica do processo de convecção natural de fluidos de lei de Potência e de Bingham em cavidades fechadas, aquecidas lateralmente e preenchidas com meios heterogêneos e bloco centrado. O meio heterogêneo é constituído de blocos sólidos, quadrados, desconectados e condutores de calor. Como parâmetros são utilizados a faixa de Rayleigh de 104 à 107, índice de potência n de 0, 6 à 1, 6, número de Bingham de 0, 5 até Bimax , sendo investigado da influência do número de Prandtl para cada modelo de fluido. Nas cavidades com meio heterogêneo são utilizadas as quantidades de blocos de 9, 16, 36 e 64, mantendo-se a razão entre a condutividade térmica do sólido e do fluido κ = 1. Para as cavidades com bloco centrado, são utilizados os tamanhos adimensionais de 0, 1 à 0, 9 com κ = 0, 1; 1 e 10. A modelagem matemática é realizada pelas equações de balanço de massa, de quantidade de movimento e de energia. As simulações são conduzidas no programa comercial ANSYS FLUENT R . Inicialmente são resolvidos problemas com fluidos newtonianos em cavidade limpa, seguida de cavidade preenchida com meio heterogêneo e posteriormente bloco centrado para validação da metodologia de solução. Na segunda etapa é realizada o estudo com os modelos de fluidos de lei de Potência e de Bingham seguindo a mesma sequência. Os resultados são apresentados na forma de linhas de corrente, isotermas e pelo número de Nusselt médio na parede quente. De maneira geral, a transferência de calor na cavidade é regida pelo número de Rayleigh, tamanho e condutividade térmica dos blocos, pelo índice de potência para o modelo de lei de Potência e do número de Bingham para o modelo de Bingham. O número de Prandtl tem grande influência nos dois modelos de fluidos. O meio heterogêneo reduz a transferência de calor na cavidade quando interfere na camada limite térmica para ambos os fluidos, sendo feita uma previsão analítica para o fluido de lei de Potência. Para bloco centrado, a interferência na camada limite com fluido de lei de Potência também foi prevista analiticamente. A transferência de calor aumentou com bloco de baixa condutividade térmica e pouca interferência e com bloco de alta condutividade térmica e grande interferência, para ambos os fluidos. / Many studies have been carried out in square enclosures with generalized Newtonian fluids with natural convection in past few years for directly applications in compact heat exchangers, cooling of electronics systems and polymeric engineering. The natural convection in square enclosures with differently heated sidewalls, filled with power-law and Bingham fluids in addition with heterogeneous medium and centered block are analyzed in this study. The heterogeneous medium are solid, square, disconnected and conducting blocks. The parameters used are the Rayleigh number in the range 104 - 107 , power index n range of 0, 6 - 1, 6, Bingham number range of 0, 5 - Bimax , being the influence of Prandtl number investigated for each fluid model. The number of blocks for heterogeneous medium are 9, 16, 36 and 64, keeping constant solid to fluid conductive ratio, κ = 1. For enclosures with centered block are used the nondimensional block size from 0, 1 to 0, 9, with solid to fluid conductive ratio in range κ = 0, 1; 1 and 10. Mathematical modeling is done by mass, momentum and energy balance equations. The solution of equations have been numerically solved in ANSYS FLUENT R software. Firstly, numerical solutions for validation with Newtonian fluids in clean enclosures are conducted, followed by enclosures with heterogeneous medium and centered block. Subsequently, numerical solutions of power-law and Bingham fluids with same enclosures configurations are conducted. The results are reported in the form of streamlines, isotherms and average Nusselt number at hot wall. In general, the heat transfer process in enclosure is governed by Rayleigh number, size and thermal conductivity of the blocks, power index n for power-law fluid and Bingham number for Bingham fluid. Both fluid models are very sensitive with Prandtl number changes. Heterogeneous medium decrease heat transfer in enclosure when affects thermal boundary layer for both fluid models. One analytical prediction was made for power-law fluid. An increase in heat transfer occurs with low thermal conductivity block and few interference and with high thermal conductivity block and great interference, for both fluids.
189

Influence of Marangoni and buoyancy convection on the propagation of reaction-diffusion fronts / Influence de la convection sur la propagation de fronts de réaction-diffusion

Rongy, Laurence 03 July 2008 (has links)
Motivated by the existence of complex behaviors arising from interactions between chemistry and fluid dynamics in numerous research problems and every-day life situations, we theoretically investigate the dynamics resulting from the interplay between chemistry, diffusion, and fluid motions in a reactive aqueous solution. As a chemical reaction induces changes in the temperature and in the composition of the reactive medium, such a reaction can modify the properties of the solution (density, viscosity, surface tension,…) and thereby trigger convective motions, which in turn affect the reaction. Two classes of convective flows are commonly occurring in solutions open to air, namely Marangoni flows arising from surface tension gradients and buoyancy flows driven by density gradients. As both flows can be induced by compositional changes as well as thermal changes and in turn modify them, the resulting experimental dynamics are often complex. The purpose of our thesis is to gain insight into these intricate dynamics thanks to the theoretical analysis of model systems where only one type of convective flow is present. In particular, we numerically study the spatio-temporal evolution of model chemical fronts resulting from the coupling between reactions, diffusion, and convection. Such fronts correspond to self-organized interfaces between the products and the reactants, which typically have different density and surface tension. Fluid motions are therefore spontaneously induced due to these differences across the front.<p><p>In this context, we first address the propagation of a model autocatalytic front in a horizontal solution layer, in the presence of pure Marangoni convection on the one hand and of pure buoyancy convection on the other hand. We evidence that, in both cases, the system attains an asymptotic dynamics characterized by a steady fluid vortex traveling with the front at a constant speed. The presence of convection results in a deformation and acceleration of the chemical front compared to the reaction-diffusion situation. However we note important differences between the Marangoni and buoyancy cases that could help differentiate experimentally between the influence of each hydrodynamic effect arising in solutions open to the air. We also consider how the kinetics and the exothermicity of the reaction influence the dynamics of the system. The propagation of an isothermal front occurring when two diffusive reactants are initially separated and react according to a simple bimolecular reaction is next studied in the presence of chemically-induced buoyancy convection. We show that the reaction-diffusion predictions established for convection-free systems are modified in the presence of fluid motions and propose a new way to classify the various possible reaction-diffusion-convection dynamics./En induisant des changements de composition et de température, une réaction chimique peut modifier les propriétés physiques (densité, viscosité, tension superficielle,…) de la solution dans laquelle elle se déroule et ainsi générer des mouvements de convection qui, à leur tour, peuvent affecter la réaction. Les deux sources de convection les plus courantes en solution ouverte à l’air sont les gradients de tension superficielle, ou effets Marangoni, et les gradients de densité. Comme ces deux sources sont en compétition et peuvent toutes deux résulter de différences de concentration ou de température, les dynamiques observées expérimentalement sont souvent complexes. Le but de notre thèse est de contribuer à la compréhension de telles dynamiques par une étude théorique analysant des modèles réaction-diffusion-convection simples. En particulier, nous étudions numériquement l’évolution spatio-temporelle de fronts chimiques résultant du couplage entre chimie non-linéaire, diffusion et hydrodynamique. Ces fronts constituent l’interface auto-organisée entre les produits et les réactifs qui typiquement ont des densités et tensions superficielles différentes. Des mouvements du fluide peuvent dès lors être spontanément initiés dus à ces différences au travers du front.<p> <p>Dans ce contexte, nous étudions la propagation d’un front chimique autocatalytique se propageant dans une solution aqueuse horizontale, d’une part en la seule présence d’effets Marangoni, et d’autre part en présence uniquement d’effets de densité. Nous avons montré que dans les deux cas, le système atteint une dynamique asymptotique caractérisée par la présence d’un rouleau de convection stationnaire se propageant à vitesse constante avec le front. Ce front est à la fois déformé et accéléré par les mouvements convectifs par rapport à la situation réaction-diffusion. Nous avons mis en évidence d’importantes différences entre les deux régimes hydrodynamiques qui pourraient aider les expérimentateurs à différencier les effets de tension superficielle de ceux de densité générés par la propagation de fronts chimiques en solution. Nous avons également considéré l’influence de la cinétique de réaction ainsi que de l’exothermicité sur la dynamique de ces fronts. Enfin, nous avons étudié la propagation en présence de convection d’un front de réaction impliquant deux espèces de densités différentes, initialement séparées et réagissant selon une cinétique bimoléculaire. Nous avons montré que la convection modifie les propriétés réaction-diffusion du système et nous proposons de nouveaux critères pour classifier les dynamiques réaction-diffusion-convection.<p><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
190

Výběr vhodného uspořádání toku pracovních látek s laminárním režimem proudění v trubkovém chladiči / Selection of suitable fluid flow directions in laminar flow tubular cooler

Krobot, David January 2009 (has links)
This master’s thesis is devoted to problematic of selection of suitable flow directions in double pipe heat exchanger. First chapter is oriented to the construction of tube heat exchangers. It is also discussed impact of construction solution to the flow character and changing of his process parameters. The difference between parallel and countercurrent flow is also occurred in this parts. The next chapter is focused to the basics of heat-hydraulic calculations of heat exchanger. This also means explanation of ways of heat transfer and heat exchanger function. There are told about specific access to the solving problem of fluid laminar flow. The third chapter is detailed focused to the calculating of heat exchanger. At first is discussed factors, which have impact to the flow character. Next are detailed descriptions of design and controlling calculations, including more alternative ways to solve it. Next chapter exploit those results for deciding, which flow arrangement will be better for given case. Last chapter contain realization and reformulating of process heat exchanger calculating to the program code in Maple. There is also description of used algorithms and operating with them, so any user could be able to work with it. In this master’s thesis are used many examples from attached programs on different parts.

Page generated in 0.0983 seconds