• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 3
  • Tagged with
  • 26
  • 26
  • 11
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Energetická bilance bioteplárny / Energy balance of biomass heating plant

Žmolík, Václav January 2009 (has links)
This thesis deals with a design of a biomass heating plant combinating a Rankin-Clausius cyklus and a CHP unit. The CHP unit fuel is a biogas and the boiler fuel is a wooden chip. The adapted CHP unit regenerates feed-water of the R-C cycles. This design is technicaly and economicalty compared with the Rankin-Clausius cycle without feed-water regeneration by the CHP unit.
22

Lokal provtagning och analys på rökgaskondensat för driftövervakning av tungmetallrening med jonbytarmassor

Olofsson, Emelie January 2020 (has links)
I värme- och kraftvärmeverk förbränns olika typer av bränslen för produktion av el och fjärrvärme. Vid förbränningen bildas rökgaser som innehåller föroreningar, till exempel tungmetaller, från bränslet. Anläggningarna har ofta krav på utsläpp både via rökgaserna och avloppsvatten. Rökgaserna renas därmed genom olika tekniker var av en vanlig teknik är rökgaskondensering. Vid rökgaskondenseringen bildas en vätska, kallad rökgaskondensat, som delvis innehåller tungmetaller från bränslet. Rökgaskondensatet måste renas innan det kan lämna anläggningen och det görs bland annat med tungmetalljonbytare. Jonbytarmassan i tungmetalljonbytarkolonnerna behöver bytas ungefär två gånger per driftsäsong då den inte längre kan binda mer tungmetaller. Detta är en kostnad för värme- och kraftvärmeverken som de vill minimera. I denna studie undersöktes om lokal provtagning och analys på ett kraftvärmeverk av ett antal utvalda tungmetaller i rökgaskondensat är en bra metod för att optimering av reningssteget med tungmetalljonbytare. Samt om detta kan säkerställa att miljökraven för tungmetaller i det renade rökgaskondensatet uppfylls. Med optimering avses att jonbytarmassornas fulla kapacitet utnyttjas, d.v.s. att byten av jonbytarmassor kan reduceras utan att riskera otillåtna halter av tungmetaller i de renade rökgaskondensatet till följd av att jonbytarmassorna använts för länge. Även tiden som behöver avsättas för lokal provtagning och analys dokumenterades. I dagsläget sker analyser hos ackrediterade laboratorium där det tar drygt två veckor att få resultatet och under väntetiden kan mycket på anläggningen förändras. En verifiering av resultaten från studien gjordes mot resultat från ett sådant. I denna studie undersöktes lokal provtagning och analys med mätinstrumentet FREEDD som bygger på tekniken kvartskristall mikrobalans (QCM-teknik). Andra alternativ för lokal analys har inte undersökts här.  Resultatet visade att det i dagsläget är svårt att med lokal provtagning optimera reningssteget med jonbytarmassor samt kontrollera utsläppen av tungmetaller via det renade rökgaskondensatet. Korrigeringar hos mätinstrumentet och provpunkterna behöver göras för att få pålitligt resultat. Tiden som behöver avsättas för provtagning och analys beror på vilken metall som ska analyseras då tiden för preparering av prov varierar. Men om det kan möjliggöra att anläggningarna kan använda jonbytarmassorna längre samt får kontroll på utsläppen via det renade rökgaskondensatet kan det vara lönsamt att avvara den tiden. / In heating and combined heat and power plants, different types of fuels are burned to produce electricity and district heating. During the combustion flue gases containing pollutants, such as heavy metals, are formed from the flue. The plants have requirements for low emissions, both from the flue gases and the wastewater. The flue gases are purified by various techniques and a common technique is flue gas condensation. During the flue gas condensation, a liquid called flue gas condensate, is formed, which partly contains heavy metals from the flue. The flue gas condensate must be cleaned before it can leave the plant. A step in the purification of the flue gas condensate is usually heavy metal ion-exchanger. The ion-exchange mass in the heavy metal ion-exchange columns needs to be changed approximately twice per operating season as it no longer has room to bind more heavy metals. This is an expensive cost for the heating and combined heat and power plants that they want to minimize. This study investigated whether local sampling and analysis at a cogeneration plant of a number selected heavy metals in flue gas condensate is a good method for optimizing the purifications step with heavy metal ion-exchangers. And if this can ensure that the environmental requirements for the heavy metals in the purified flue gas condensate are met. Optimization means that the full capacity of the ion-exchange masses is utilized, i.e. that the exchange of ion-exchange masses can be reduced without risking unauthorized levels of heavy metals in the purified flue gas condensate as a result of the ion exchange masses being used for too long.  The time needed for local sampling and analysis was also documented. At present, analyzes are done at accredited laboratories where it takes over two weeks to get the result and during that time much can be changes at the plant. A verification of the result of the study was also made against the result of an accredited laboratory. In this study, local analysis was made with the measuring instrument FREEDD which is based on quartz crystal microbalance (QCM-technology). Other options for local sampling and analysis have not been investigated. The result showed that, in the present, it is difficult to optimize the purification step with ion-exchange masses and check emissions of heavy metals with the purified flue gas condensate. To obtain reliable result, corrections to the measuring instrument and test points need to be made. The time that needs to be set aside for sampling and analysis depends on the metal, as the time for sample preparation varies.  But if it can enable the plants to use the ion-exchange masses longer and gain control of the emissions of heavy metals with the purified flue gas condensate, it can be profitable to save that time.
23

Mapping Carbon Storage and Potential Bioenergy Production in Södertälje Using High-resolution Biotope Database

Åkerström, Lisa January 2022 (has links)
Global warming is caused by the human induced increase of Greenhouse Gases (GHG) in the atmosphere. GHG emissions need to be reduced, and carbon dioxide (CO2) emissions from fossil sources ceased to mitigate global warming. Energy production and use is a main contributor to fossil sourced emissions in Europe. Sweden has a high part renewable power production but not completely, to have a 100% renewable power production by 2040 is a goal set by Swedish government. By 2045 Sweden also plans to have net zero emissions nationwide and afterwards negative emissions of CO2, to reduce global warming and reach the Paris agreement of maximum 1.5°C global warming level it is urgent and vital to create Carbon (C) sinks and to reach neutral and even negative emissions within the energy sector. Negative emissions can be reached in Combined Heat and Power plants (CHP) by Bio Carbon Capture and Storage (Bio-CCS). Demand on wood chips and bio-energy fuel is increasing on the European continent. A local source of biofuel might contribute to shorter transports, a local C-sink, security in supply and a way to meet both the increasing competition of fuel and the environmental political targets. Here we investigate the available land for local production of bioenergy forests in Södertälje and the amount of energy possible to produce from that. Using a detailed biotope database over the municipality, Biotopdatabasen, and a Geographical Information System (GIS) based approach 5 scenarios of potential land areal for planting of energy forests in the municipality have been analysed. Different criteria selections in biotopes, grasslands and historical crop fields, and land use, used or un-used, builds the scenarios; 1. All available grasslands, 1010 ha, 2. All available grasslands on earlier crop fields, 815 ha, 3. Unused available grassland on earlier crop field, 300 ha, 4. Available land on earlier crop fields, including forestry, 1715 ha, 5. Unused available land on earlier crop fields, 366 ha. Gross annual energy yields from energy forest in the scenarios were estimated to; 1. 46,2-65,1 GWh/y, 2. 37,3-52,5 GWh/y, 3. 13,7-19,3 GWh/y, 4. 78,4-110,5 GWh/y, 5. 16,7-23,6 GWh/y. The yield from all these scenarios will, in the expected gross normal yield scenario, match the energy produced today by fossil fuels in the local CHP and heating plant (0.64%, 2020) yields 0.69-3.96% of total energy produced. Scenarios 3 and 5 are considered likely scenarios but the effect on spreading pathways and thereby biodiversity needs to be assessed, using old crop fields lowers the risk of harming important biodiversity and possibly help restore C sink in soils.
24

Využití odpadního tepla provozu Špitálka / Utilization of Waste Heat from Heating Plant Spitalka

Hromádka, Martin January 2018 (has links)
This master’s thesis deals with utilization of waste heat from heating plant Spitalka. The aim of the thesis is to explain the general principle of the operation of the heating plants, respectively the heating circuit, then to describe the operation of heating plant Spitalka and to try to identify possible sources of waste heat. Other goals are to make the calculation of waste heat and to make the proposal for its utilization. The final aim of the thesis was to design technological device for utilization of waste heat and to carry out economic evaluation. The master’s thesis describes the principle of functioning of the heating circuit. It explains the issue of combined heat and power production, the principle of functioning of the main technological elements, but also the ecology of operation or distribution of heat through the district heating. Then there is a description of the heating plant Spitalka. The thesis also deals with the water treatment and the description of the technological circuit from the beginning to the distribution to the customer. Next, the waste heat source is identified as water in a closed cooling circuit. The amount of this heat energy is calculated and suggestions for its possible utilization are made. As an application, there are selected two systems, heating and domestic hot water heating. The heating is made by heat pump. Based on the calculations, a heating system using two heat pumps in a bivalent way of connection was designed. In conclusion, the results of the design of the heating system are summarized and an economic evaluation is carried out.
25

Centrum chytré čtvrti Špitálka / Smart District Špitalka

Pelčák, Vlastimil January 2021 (has links)
This thesis deals with an architectural case study of the urban block in the Svitava industrial zone bordered by the Svitava River in the east, Ring Road in the west, Milady Horákové Street in the north and Zvonařka Street in the south. Špitálka Smart City has been designed to be in this area. The thesis is modelled on the Špitálka Smart City urban study, that was the outcome of the pre-thesis seminar in the winter term 2020/21. The urban study objective was the urban renewal of the Brno teplárny (heating plant) area and its surroundings as well as a design of a new urban boulevard. The thesis focuses on a design of a selected urban block in the Smart City Špitálka. This mixed-use development provides commercial, administrative and residential functions. The block is divided into two parts; either part consists of three sections. Two underground storeys providing parking space and space for building services are intended for the whole block. The case study further develops only the section that is labeled Coworking offering six floors for coworking spaces. On the ground floor there are spaces for a café, commerce and also the main entry to the co-working offices. A sky-office and a venue for rent are located on the seventh floor. The venue can be used for a wide range of events from smaller conferences, through corporate meetings & teambuildings to private parties. Both the sky-office and the venue have access to the rooftop terrace. The design creates a modern office building concept in the former industrial zone.
26

Parní turbina jako točivá redukce / Steam turbine for steam reduction

Brabec, Vít January 2011 (has links)
The dissertation analyses a possibility to install a steam turbine for steam reduction in the heating plant with a combined cycle, Červený Mlýn. In the first part of this work the constituent parts of Červený Mlýn plant are briefly described. Basic information is included about two considered solutions to the steam turbine for steam reduction. Then the thermic diagram of the whole heating plant and the heat exchanger station itself is presented. On the basis of the given values of the heat required in the hydrothermal system, duration of the steam flow through both variants of the steam turbine for steam reduction is determined. The thermodynamic calculation of the steam turbine for steam reduction is aimed at determination of the power output and its comparison with the power outputs of the steam turbines for steam reduction considered. In the economical profitability calculation, basic economical quantities are given for both the solutions and the more suitable solution is recommended.

Page generated in 0.4416 seconds