• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 3
  • Tagged with
  • 28
  • 28
  • 15
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Ext Enhanced Soergel Diagrammatics for Dihedral Groups

Li, Cailan January 2024 (has links)
We compute Ext groups between Soergel Bimodules associated to the infinite/finite dihedral group for a realization in characteristic 0 and show that they are free right 𝖱−modules with an explicit basis. We then give a diagrammatic presentation for the corresponding monoidal category of Ext-enhanced Soergel Bimodules. As applications, we compute reduced triply graded link homology 𝐇̅𝐇̅𝐇̅ of the connect sum of two Hopf links as an 𝖱−module and show that the Poincare series for the Hochschild homology of Soergel Bimodules of finite dihedral type categorifies Gomi's trace for finite dihedral groups.
22

Applications of parabolic Hecke algebras: parabolic induction and Hecke polynomials

Heyer, Claudius 09 July 2019 (has links)
Im ersten Teil wird eine neue Konstruktion der parabolischen Induktion für pro-p Iwahori-Heckemoduln gegeben. Dabei taucht eine neue Klasse von Algebren auf, die in gewisser Weise als Interpolation zwischen der pro-p Iwahori-Heckealgebra einer p-adischen reduktiven Gruppe $G$ und derjenigen einer Leviuntergruppe $M$ von $G$ gedacht werden kann. Für diese Algebren wird ein Induktionsfunktor definiert und eine Transitivitätseigenschaft bewiesen. Dies liefert einen neuen Beweis für die Transitivität der parabolischen Induktion für Moduln über der pro-p Iwahori-Heckealgebra. Ferner wird eine Funktion auf einer parabolischen Untergruppe untersucht, die als Werte nur p-Potenzen annimmt. Es wird gezeigt, dass sie eine Funktion auf der (pro-p) Iwahori-Weylgruppe von $M$ definiert, und dass die so definierte Funktion monoton steigend bzgl. der Bruhat-Ordnung ist und einen Vergleich der Längenfunktionen zwischen der Iwahori-Weylgruppe von $M$ und derjenigen der Iwahori-Weylgruppe von $G$ erlaubt. Im zweiten Teil wird ein allgemeiner Zerlegungssatz für Polynome über der sphärischen (parahorischen) Heckealgebra einer p-adischen reduktiven Gruppe $G$ bewiesen. Diese Zerlegung findet über einer parabolischen Heckealgebra statt, die die Heckealgebra von $G$ enthält. Für den Beweis des Zerlegungssatzes wird vorausgesetzt, dass die gewählte parabolische Untergruppe in einer nichtstumpfen enthalten ist. Des Weiteren werden die nichtstumpfen parabolischen Untergruppen von $G$ klassifiziert. / The first part deals with a new construction of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. This construction exhibits a new class of algebras that can be thought of as an interpolation between the pro-p Iwahori-Hecke algebra of a p-adic reductive group $G$ and the corresponding algebra of a Levi subgroup $M$ of $G$. For these algebras we define a new induction functor and prove a transitivity property. This gives a new proof of the transitivity of parabolic induction for modules over the pro-p Iwahori-Hecke algebra. Further, a function on a parabolic subgroup with p-power values is studied. We show that it induces a function on the (pro-p) Iwahori-Weyl group of $M$, that it is monotonically increasing with respect to the Bruhat order, and that it allows to compare the length function on the Iwahori-Weyl group of $M$ with the one on the Iwahori-Weyl group of $G$. In the second part a general decomposition theorem for polynomials over the spherical (parahoric) Hecke algebra of a p-adic reductive group $G$ is proved. The proof requires that the chosen parabolic subgroup is contained in a non-obtuse one. Moreover, we give a classification of non-obtuse parabolic subgroups of $G$.
23

Generic pro-p Hecke algebras, the Hecke algebra of PGL(2, Z), and the cohomology of root data

Schmidt, Nicolas Alexander 08 February 2019 (has links)
Es wird die Theorie der generischen pro-$p$ Hecke-Algebren und ihrer Bernstein-Abbildungen entwickelt. Für eine Unterklasse diese Algebren, der \textit{affinen} pro-$p$ Hecke-Algebren wird ein Struktursatz bewiesen, nachdem diese Algebren unter anderem stets noethersch sind, wenn es der Koeffizientenring ist. Hilfsmittel ist dabei der Nachweis der Bernsteinrelationen, der in abstrakter Weise geführt wird und so die bestehende Theorie verallgemeinert. Ferner wird der top. Raum der Orientierungen einer Coxetergruppe eingeführt und im Falle der erweiterten modularen Gruppe $\operatorname{PGL}_2(\mathds{Z})$ untersucht, und ausgenutzt um Kenntnisse über die Struktur der zugehörigen Hecke-Algebra als Modul über einer gewissen Unteralgebra, welche zur Spitze im Unendlichen zugeordnet ist, zu erlangen. Schließlich wird die Frage des Zerfallens des Normalisators eines maximalen zerfallenden Torus innerhalb einer zerfallenden reduktiven Gruppe als Erweiterung der Weylgruppe durch die Gruppe der rationalen Punkte des Torus untersucht, und mittels zuvor erreichter Ergebnisse auf eine kohomologische Frage zurückgeführt. Zur Teilbeantwortung dieser werden dann die Kohomologiegruppen bis zur Dimension drei der Kocharaktergitter der fasteinfachen halbeinfachen Wurzeldaten einschließlich des Rangs 8 berechnet. Mittels der Theorie der $\mathbf{FI}$-Moduln wird daraus die Berechnung der Kohomologie der mod-2-Reduktion der Kowurzelgitter für den Typ $A$ in allen Rängen bewiesen. / The theory of generic pro-$p$ Hecke algebras and their Bernstein maps is developed. For a certain subclass, the \textit{affine} pro-$p$ Hecke algebras, we are able to prove a structure theorem that in particular shows that the latter algebras are always noetherian if the ring of coefficients is. The crucial technical tool are the Bernstein relations, which are proven in an abstract way that generalizes the known cases. Moreover, the topological space of orientations is introduced and studied in the case of the extended modular group $\operatorname{PGL}_2(\mathds{Z})$, and used to determine the structure of its Hecke algebra as a module over a certain subalgebra, attached to the cusp at infinity. Finally, the question of the splitness of the normalizer of a maximal split torus inside a split reductive groups as an extension of the Weyl group by the group of rational points is studied. Using results obtained previously, this questioned is then reduced to a cohomological one. A partial answer to this question is obtained via computer calculations of the cohomology groups of the cocharacter lattices of all almost-simple semisimple root data of rank up to $8$. Using the theory of $\mathbf{FI}$-modules, these computations are used to determine the cohomology of the mod 2 reduction of the coroot lattices for type $A$ and all ranks.
24

Algèbres de Cherednik et ordres sur les blocs de Calogero-Moser des groupes imprimitifs / Cherednik algebras and orders on the Calogero-Moser partition of imprimitive groups

Liboz, Emilie 03 December 2012 (has links)
Cette thèse présente quelques résultats de la théorie des représentations des algèbres de Cherednikrationnelles en t=0 et traite en particulier des différents ordres construits sur la partition de Calogero-Moserdes groupes imprimitifs.On commence par généraliser au cas abélien certains résultats obtenus par M. Chlouveraki concernant lesblocs d'algèbres en système de Clifford pour un groupe cyclique, puis on construit un ordre sur les C*-pointsfixes d'une variété complexe quasi-projective normale, en utilisant la décomposition de Bialynicki-Birula.Dans la deuxième partie, on s'intéresse à la description des partitions de Calogero-Moser de deux groupesde réflexions complexes K et W quand K est un sous-groupe distingué de W et on généralise au cas abélienles résultats obtenus par G. Bellamy dans le cas d'un quotient W/K cyclique.Dans la troisième partie, on présente les différents ordres, construits par I. Gordon, sur la partition deCalogero-Moser des groupes G(l,1,n) pour certains paramètres : les ordres des a et c-fonctions, un ordrecombinatoire et l'ordre géométrique, qui est défini grâce aux C*-points fixes de certaines variétés decarquois, ces points fixes paramétrant les blocs de la partition de Calogero-Moser de G(l,1,n). On donneensuite les relations entre ces ordres, puis on étend ces constructions ainsi que ces liens à l'ensemble desparamètres.Enfin, dans la dernière partie, on tente de généraliser ces propriétés aux groupes G(l,e,n). On cherche alors,pour construire l'ordre géométrique sur la partition de Calogero-Moser de G(l,e,n), une variété dont les C*-points fixes décrivent les blocs de la partition de G(l,e,n). Dans le cas où e ne divise pas n, on construit lavariété qui nous permet de définir l'ordre géométrique et de le relier aux autres ordres. Pour le cas e divise n,on propose une variété qui pourrait décrire par ses points fixes les blocs de Calogero-Moser de G(l,e,n) etnous permettre de construire l'ordre géométrique. / This work is a contribution to the representation theory of Rational Cherednik Algebras for t=0 and deals inparticular with different orders on the Calogero-Moser partition of imprimitive reflection groups.In the first part, we generalize to the abelian case some results about blocs of algebras in Clifford systemobtained by M. Chlouveraki in the cyclic case, and then we build an order on the C*-fixed points of acomplex, quasi-projective and normal variety, using the Bialynicki-Birula decomposition.The second part deals with the Calogero-Moser partition of two groups K and W, when K is a normalsubgroup of W, and generalize to the abelian case the results that G. Bellamy obtained when the quotientW/K is cyclic.In the third part, we present the different orders that I. Gordon built in the Calogero-Moser partition of thegroups G(l,1,n) and for some parameters : the orders of the a and c-functions, a combinatorial order and thegeometric order, defined using the C*-fixed points of some quiver varieties which parametrise the blocs of theCalogero-Moser partition of G(l,1,n). Then we give some relations between these orders and we extendthese constructions and these links for all parameters.Finally, in the last part, we try to generalize these properties for the groups G(l,e,n). We are looking for avariety whose C*-fixed points describe blocs of G(l,e,n) to construct the geometric order on the Calogero-Moser partition of G(l,e,n). When n is not divided by e, we build this variety that enables us to define thegeometric order and to show all the links with the other orders. When e don't divide n, we suggest a varietywhich could describe the blocs of G(l,e,n) and allow us to build the geometric order.
25

ALGÈBRES DE HECKE, SÉRIES GÉNÉRATRICES ET APPLICATIONS

Vankov, Kirill 27 November 2008 (has links) (PDF)
Le résultat principal dans le travail présenté est le calcul explicite de la série génératrice des opérateurs de Hecke dans l'algèbre de Hecke locale pour les groupes symplectiques de genre 3 et 4. L'algorithme est basé sur l'isomorphisme de Satake, qui permet de réaliser toutes les opérations dans l'algèbre des polynômes à plusieurs variables. C'est la première fois que cette expression est calculée pour le genre 4. Pour obtenir le résultat principal, une méthode de calcul symbolique a été développée. Cette approche algorithmique s'applique à d'autres types de séries de Hecke. En particulier, nous formulons et prouvons un analogue du Lemme de Rankin pour le genre 2. Nous avons aussi calculé les séries génératrices des carrés symétriques et des cubes symétriques.<br /><br />Se basant sur nos résultats nous formulons une conjecture de modularité pour les convolutions des fonctions L spineurs associées aux formes modulaires de Siegel. Nous considérons d'autres conjectures importantes liées aux formes modulaires de Siegel et à leurs fonctions L. Nous utilisons ces constructions pour calculer les facteurs algébriques rationnels aux valeurs critiques de la fonction L spineur attachée à F12 de Miyawaki. A notre connaissance c'est le premier exemple d'une fonction L-spineur de forme parabolique de Siegel de degré 3, dont certaines valeurs spéciales peuvent être calculées explicitement.<br /><br />Finalement, nous appliquons la théorie des algèbres de Hecke pour construire des cryptosystèmes algébriques sur ensembles finis de classes à gauches dans l'algèbre de Hecke. Nous utilisons une relation entre les classes à gauches et les points sur certains variétés algébriques projectives.
26

Algèbres de Hecke cyclotomiques : représentations, fusion et limite classique.

Poulain d andecy, Loic 03 July 2012 (has links)
Une approche inductive est développée pour la théorie des représentations de la chaîne des algèbres de Hecke cyclotomiques de type G(m,1,n). Cette approche repose sur l'étude du spectre d'une famille commutative maximale, formée par les analogues des éléments de Jucys--Murphy.Les représentations irréductibles, paramétrées par les multi-partitions, sont construites avec l'aide d'une nouvelle algèbre associative, dont l'espace vectoriel sous-jacent est le produit tensoriel de l'algèbre de Hecke cyclotomique avec l'algèbre associative libre engendrée par les multi-tableaux standards.L'analogue de cette approche est présentée pour la limite classique, c'est-à-dire la chaîne des groupes de réflexions complexes de type G(m,1,n).Dans une seconde partie, une base des algèbres de Hecke cyclotomiques est donnée et la platitude de la déformation est montrée sans utiliser la théorie des représentations. Ces résultats sont généralisés aux algèbres de Hecke affines de type A.Ensuite, une procédure de fusion est présentée pour les groupes de réflexions complexes et les algèbres de Hecke cyclotomiques de type G(m,1,n). Dans les deux cas, un ensemble complet d'idempotents primitifs orthogonaux est obtenu par évaluation consécutive d'une fonction rationnelle.Dans une troisième partie, une nouvelle présentation est obtenue pour les sous-groupes alternés de tous les groupes de Coxeter. Les générateurs sont reliés aux arêtes orientées du graphe de Coxeter. Cette présentation est ensuite étendue, pour tous les types, aux extensions spinorielles des groupes alternés, aux algèbres de Hecke alternées et aux sous-groupes alternés des groupes de tresses. / An inductive approach to the representation theory of the chain of the cyclotomic Hecke algebras of type G(m,1,n) is developed. This approach relies on the study of the spectrum of a maximal commutative family formed by the analogues of the Jucys--Murphy elements.The irreducible representations, labelled by the multi-partitions, are constructed with the help of a new associative algebra, whose underlying vector space is the tensor product of the cyclotomic Hecke algebra with the free associative algebra generated by the standard multi-tableaux.The analogue of this approach is presented for the classical limit, that is for the chain of complex reflection groups of type G(m,1,n).In a second part, a basis of the cyclotomic Hecke algebras is given and the flatness of the deformation is proved without using the representation theory. These results are extended to the affine Hecke algebras of type A.Then a fusion procedure is presented for the complex reflection groups and the cyclotomic Hecke algebras of type G(m,1,n). In both cases, a complete set of primitive orthogonal idempotents is obtained by successive evaluations of a rational fonction.In a third part, a new presentation is obtained for the alternating subgroups of all Coxeter groups. The generators are related to oriented edges of the Coxeter graph. This presentation is then extended, for all types, to the spinor extensions of the alternating groups, the alternating Hecke algebras and the alternating subgroups of braid groups.
27

Calcul des invariants de groupes de permutations par transformée de Fourier / Calculate invariants of permutation groups by Fourier Transform

Borie, Nicolas 07 December 2011 (has links)
Cette thèse porte sur trois problèmes en combinatoire algébrique effective et algorithmique.Les premières parties proposent une approche alternative aux bases de Gröbner pour le calcul des invariants secondaires des groupes de permutations, par évaluation en des points choisis de manière appropriée. Cette méthode permet de tirer parti des symétries du problème pour confiner les calculs dans un quotient de petite dimension, et ainsi d'obtenir un meilleur contrôle de la complexité algorithmique, en particulier pour les groupes de grande taille. L'étude théorique est illustrée par de nombreux bancs d'essais utilisant une implantation fine des algorithmes. Un prérequis important est la génération efficace de vecteurs d'entiers modulo l'action d'un groupe de permutation, dont l'algorithmique fait l'objet d'une partie préliminaire.La quatrième partie cherche à déterminer, pour un certain quotient naturel d'une algèbre de Hecke affine, quelles spécialisations des paramètres aux racines de l'unité donne un comportement non générique.Finalement, la dernière partie présente une conjecture sur la structure d'une certaine $q$-déformation des polynômes harmoniques diagonaux en plusieurs paquets de variables pour la famille infinie de groupes de réflexions complexes.Tous ces chapitres s'appuient fortement sur l'exploration informatique, et font l'objet de multiples contributions au logiciel Sage. / This thesis concerns algorithmic approaches to three challenging problems in computational algebraic combinatorics.The firsts parts propose a Gröbner basis free approach for calculating the secondary invariants of a finite permutation group, proceeding by using evaluation at appropriately chosen points. This approach allows for exploiting the symmetries to confine the calculations into a smaller quotient space, which gives a tighter control on the algorithmic complexity, especially for large groups. The theoretical study is illustrated by extensive benchmarks using a fine implementation of algorithms. An important prerequisite is the generation of integer vectors modulo the action of a permutation group, whose algorithmic constitute a preliminary part of the thesis.The fourth part of this thesis is determining for a certain interesting quotient of an affine Hecke algebra exactly which root-of-unity specialization of its parameter lead to non-generic behavior.Finally, the last part presents a conjecture on the structure of certain q-deformed diagonal harmonics in many sets of variables for the infinite family of complex reflection groups.All chapters proceed widely by computer exploration, and most of established algorithms constitute contributions of the software Sage.
28

Interval structures, Hecke algebras, and Krammer’s representations for the complex braid groups B(e,e,n) / Structures d'Intervalles, algèbres de Hecke et représentations de Krammer des goupes de tresses complexes B(e,e,n)

Neaime, Georges 26 June 2018 (has links)
Nous définissons des formes normales géodésiques pour les séries générales des groupes de réflexions complexes G(de,e,n). Ceci nécessite l'élaboration d'une technique combinatoire afin de déterminer des décompositions réduites et de calculer la longueur des éléments de G(de,e,n) sur un ensemble générateur donné. En utilisant ces formes normales géodésiques, nous construisons des intervalles dans G(e,e,n) qui permettent d'obtenir des groupes de Garside. Certains de ces groupes correspondent au groupe de tresses complexe B(e,e,n). Pour les autres groupes de Garside, nous étudions certaines de leurs propriétés et nous calculons leurs groupes d'homologie sur Z d'ordre 2. Inspirés par les formes normales géodésiques, nous définissons aussi de nouvelles présentations et de nouvelles bases pour les algèbres de Hecke associées aux groupes de réflexions complexes G(e,e,n) et G(d,1,n) ce qui permet d'obtenir une nouvelle preuve de la conjecture de liberté de BMR (Broué-Malle-Rouquier) pour ces deux cas. Ensuite, nous définissons des algèbres de BMW (Birman-Murakami-Wenzl) et de Brauer pour le type (e,e,n). Ceci nous permet de construire des représentations de Krammer explicites pour des cas particuliers des groupes de tresses complexes B(e,e,n). Nous conjecturons que ces représentations sont fidèles. Enfin, en se basant sur nos calculs heuristiques, nous proposons une conjecture sur la structure de l'algèbre de BMW. / We define geodesic normal forms for the general series of complex reflection groups G(de,e,n). This requires the elaboration of a combinatorial technique in order to determine minimal word representatives and to compute the length of the elements of G(de,e,n) over some generating set. Using these geodesic normal forms, we construct intervals in G(e,e,n) that give rise to Garside groups. Some of these groups correspond to the complex braid group B(e,e,n). For the other Garside groups that appear, we study some of their properties and compute their second integral homology groups. Inspired by the geodesic normal forms, we also define new presentations and new bases for the Hecke algebras associated to the complex reflection groups G(e,e,n) and G(d,1,n) which lead to a new proof of the BMR (Broué-Malle-Rouquier) freeness conjecture for these two cases. Next, we define a BMW (Birman-Murakami-Wenzl) and Brauer algebras for type (e,e,n). This enables us to construct explicit Krammer's representations for some cases of the complex braid groups B(e,e,n). We conjecture that these representations are faithful. Finally, based on our heuristic computations, we propose a conjecture about the structure of the BMW algebra.

Page generated in 0.0402 seconds