• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 26
  • 26
  • 1
  • Tagged with
  • 56
  • 56
  • 31
  • 26
  • 15
  • 15
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Quantum Emulation with Probabilistic Computers

Shuvro Chowdhury (14030571) 31 October 2022 (has links)
<p>The recent groundbreaking demonstrations of quantum supremacy in noisy intermediate scale quantum (NISQ) computing era has triggered an intense activity in establishing finer boundaries between classical and quantum computing. In this dissertation, we use established techniques based on quantum Monte Carlo (QMC) to map quantum problems into probabilistic networks where the fundamental unit of computation, p-bit, is inherently probabilistic and can be tuned to fluctuate between ‘0’ and ‘1’ with desired probability. We can view this mapped network as a Boltzmann machine whose states each represent a Feynman path leading from an initial configuration of q-bits to a final configuration. Each such path, in general, has a complex amplitude, ψ which can be associated with a complex energy. The real part of this energy can be used to generate samples of Feynman paths in the usual way, while the imaginary part is accounted for by treating the samples as complex entities, unlike ordinary Boltzmann machines where samples are positive. This mapping of a quantum circuit onto a Boltzmann machine with complex energies should be particularly useful in view of the advent of special-purpose hardware accelerators known as Ising Machines which can obtain a very large number of samples per second through massively parallel operation. We also demonstrate this acceleration using a recently used quantum problem and speeding its QMC simulation by a factor of ∼ 1000× compared to a highly optimized CPU program. Although this speed-up has been demonstrated using a graph colored architecture in FPGA, we project another ∼ 100× improvement with an architecture that utilizes clockless analog circuits. We believe that this will contribute significantly to the growing efforts to push the boundaries of the simulability of quantum circuits with classical/probabilistic resources and comparing them with NISQ-era quantum computers. </p>
52

Exploring the Frustrated Spin-Chain Compound Linarite by NMR and Thermodynamic Investigations

Schäpers, Markus 28 October 2014 (has links) (PDF)
Within the last decades low-dimensional frustrated quantum spin systems have attracted great interest in the field of modern research. In these systems a competition of various magnetic interactions takes place, leading to an energetically degenerated magnetic ground state, and thus to the occurrence of exotic, unconventional physical properties at low temperatures. This thesis focuses on the quasi one-dimensional frustrated spin chain system linarite, PbCuSO4(OH)2. In this compound the basic building blocks are CuO4 plaquettes which are connected to each other along one crystallographic direction, analogue to a chain. The frustration in linarite is established due to the competition between the magnetic interactions. The nearest-neighbor magnetic spins are coupled ferromagnetically along the chain via a coupling constant J1, while the next-nearest neighbors are coupled antiferromagnetically via a coupling constant J2. For this configuration it is not possible to satisfy all magnetic couplings simultaneously, hence the system is magnetically frustrated. In this work, comprehensive thermodynamic and nuclear magnetic resonance (NMR) studies demonstrate that linarite is one of the richest and most fascinating compounds in the class of low-dimensional frustrated magnets. By means of susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements a rich magnetic phase diagram could be mapped out below a temperature of 2.8 K. The phase diagram contains five different magnetic regions/phases for an external magnetic field pointing along the chain direction. Based on the thermodynamic studies it was possible to calculate the exchange integrals within the frustrated J1-J2 model and extensions of it by using various theoretical approaches. The magnetic microscopic nature of the different long-range magnetic phases present in linarite were investigated by NMR measurements and by collaborative neutron scattering experiments. The ground state (phase I) is identified as an incommensurate elliptical helical structure. Via a theoretical modelling the 1H-NMR spectrum of the ground state could be explained, revealing a rearrangement of the zero-field structure in an external magnetic field of 2.0 T used for the NMR studies. By further increasing the external field the system undergoes a complex spin flop transition in two steps (phase I - phase III - phase IV). In phase III a phase separation takes place where one part of the spins form a circular spiral structure while the remaining fraction form a simple antiferromagnetic structure. In phase IV the remaining circular spiral structure vanishes, so that all spins collectively form the antiferromagnetic collinear phase. The most peculiar physical properties studied in this thesis take place in region V at high fields, showing only tiny features in the thermodynamic properties. The magnetic spins in region V form a sine-wave modulated spin-density structure as identified via NMR and neutron investigations. It is discussed whether region V is related to a multipolar phase or if the spin-density wave structure could possibly coexist with such a phase.
53

Exploring the Frustrated Spin-Chain Compound Linarite by NMR and Thermodynamic Investigations

Schäpers, Markus 07 October 2014 (has links)
Within the last decades low-dimensional frustrated quantum spin systems have attracted great interest in the field of modern research. In these systems a competition of various magnetic interactions takes place, leading to an energetically degenerated magnetic ground state, and thus to the occurrence of exotic, unconventional physical properties at low temperatures. This thesis focuses on the quasi one-dimensional frustrated spin chain system linarite, PbCuSO4(OH)2. In this compound the basic building blocks are CuO4 plaquettes which are connected to each other along one crystallographic direction, analogue to a chain. The frustration in linarite is established due to the competition between the magnetic interactions. The nearest-neighbor magnetic spins are coupled ferromagnetically along the chain via a coupling constant J1, while the next-nearest neighbors are coupled antiferromagnetically via a coupling constant J2. For this configuration it is not possible to satisfy all magnetic couplings simultaneously, hence the system is magnetically frustrated. In this work, comprehensive thermodynamic and nuclear magnetic resonance (NMR) studies demonstrate that linarite is one of the richest and most fascinating compounds in the class of low-dimensional frustrated magnets. By means of susceptibility, magnetization, specific heat, magnetocaloric effect, magnetostriction, and thermal-expansion measurements a rich magnetic phase diagram could be mapped out below a temperature of 2.8 K. The phase diagram contains five different magnetic regions/phases for an external magnetic field pointing along the chain direction. Based on the thermodynamic studies it was possible to calculate the exchange integrals within the frustrated J1-J2 model and extensions of it by using various theoretical approaches. The magnetic microscopic nature of the different long-range magnetic phases present in linarite were investigated by NMR measurements and by collaborative neutron scattering experiments. The ground state (phase I) is identified as an incommensurate elliptical helical structure. Via a theoretical modelling the 1H-NMR spectrum of the ground state could be explained, revealing a rearrangement of the zero-field structure in an external magnetic field of 2.0 T used for the NMR studies. By further increasing the external field the system undergoes a complex spin flop transition in two steps (phase I - phase III - phase IV). In phase III a phase separation takes place where one part of the spins form a circular spiral structure while the remaining fraction form a simple antiferromagnetic structure. In phase IV the remaining circular spiral structure vanishes, so that all spins collectively form the antiferromagnetic collinear phase. The most peculiar physical properties studied in this thesis take place in region V at high fields, showing only tiny features in the thermodynamic properties. The magnetic spins in region V form a sine-wave modulated spin-density structure as identified via NMR and neutron investigations. It is discussed whether region V is related to a multipolar phase or if the spin-density wave structure could possibly coexist with such a phase.
54

On Classical and Quantum Mechanical Energy Spectra of Finite Heisenberg Spin Systems

Exler, Matthias 16 May 2006 (has links)
Since the synthesis of Mn12, which can be regarded as the birth of the class of magnetic molecules, many different molecules of various sizes and structures have been produced. The magnetic nature of these molecules originates from a number of paramagnetic ions, whose unpaired electrons form collective angular momenta, referred to as spins. The interaction between these spins can often be described in the Heisenberg model. In this work, we use the rotational band model to predict the energy spectrum of the giant Keplerate {Mo72Fe30}. Based on the approximate energy spectrum, we simulate the cross-section for inelastic neutron scattering, and the results are compared to experimental data. The successful application of our approach substantiates the validity of the rotational band model. Furthermore, magnetic molecules can serve as an example for studying general questions of quantum mechanics. Since chemistry now allows the preparation of magnetic molecules with various spin quantum numbers, this class of materials can be utilized for studying the relations between classical and quantum regime. Due to the correspondence principle, a quantum spin system can be described exactly by classical physics for an infinitely large spin quantum number s. However, the question remains for which quantum numbers s a classical calculation yields a reasonable approximation. Our approach in this work is to develop a converging scheme that adds systematic quantum corrections to the classical density of states for Heisenberg spin systems. To this end, we establish a correspondence of the classical density of states and the quantum spectrum by means of spin-coherent states. The algorithm presented here allows the analysis of how the classical limit is approached, which gives general criteria for the similarity of the classical density of states to the quantum spectrum.
55

DFT-based microscopic magnetic modeling for low-dimensional spin systems

Janson, Oleg 26 September 2012 (has links) (PDF)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined. Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%). Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations. Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration. To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data. The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized. Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization. Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales. Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems. The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound. Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models. The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.
56

DFT-based microscopic magnetic modeling for low-dimensional spin systems

Janson, Oleg 29 June 2012 (has links)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined. Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%). Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations. Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration. To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data. The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized. Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization. Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales. Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems. The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound. Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models. The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.:List of Figures List of Tables List of Abbreviations 1. Introduction 2. Magnetism of cuprates 3. Experimental methods 4. DFT-based microscopic modeling 5. Simulations of a magnetic model 6. Model spin systems: challenging the computational approach 7. Kagome lattice compounds 8. Summary and outlook Appendix Bibliography List of publications Acknowledgments

Page generated in 0.0495 seconds