1 |
Multifractal Methods for Anderson TransitionsCharles, Noah S. January 2020 (has links)
No description available.
|
2 |
Efeito Kondo e magnetismo em uma rede KagomeSilva Junior, José Luiz Ferreira da January 2012 (has links)
Neste trabalho estudamos o modelo da rede de Kondo em uma rede kagome, buscando uma maior compreensão dos efeitos da frustração geométrica em sistemas de férmions pesados. Para tanto, fizemos uma aproximação de campo médio no hamiltoniano do sistema que serve para todas as fases do sistema. Analisamos inicialmente o caso não magnético. Obtemos neste limite as energias eletrônicas e as funções de Green necessárias ao cálculo numérico autoconsistente das ocupações e do parâmetro de Kondo. Os resultados encontrados estão em concordância qualitativa com trabalhos publicados em outras geometrias. A seguir analisamos o caso magnético, onde introduzimos uma aproximação suplementar, a qual é compatível com a de campo médio já considerada e, em princípio, existente apenas em sistemas com frustração geométrica. Realizamos cálculos autoconsistentes através de somas sobre as frequências de Matsubara. Os resultados mostram que não há coexistência entre ordem magnética e efeito Kondo, além de haver a supressão do antiferromagnetismo com o aumento de temperatura e variações no preenchimento de bandas. / In this work we study the Kondo Lattice model for the kagome lattice, in order to understand better the effects of geometrical frustration in heavy-fermion systems. In this context, we consider a mean field scheme valid for all the system’s phases. Firstly, we analyzed the nonmagnetic case. In this approximation the electron energies and spectral functions are reachable, then we use the density of states to calculate the occupations selfconsistently. Our results are qualitatively compared with previous works in other geometries. In the second part we introduce an approximation for magnestism, which takes into account the mean field scheme considered and the presence of geometrical frustration. Self-consistent calculations are done through the frequencies summation method. Our results show that the magnetism is supressed when the temperature is increased or the band filling deviates from half-filling. Besides, the coexistence of magnetic order and Kondo effect is not observable.
|
3 |
Efeito Kondo e magnetismo em uma rede KagomeSilva Junior, José Luiz Ferreira da January 2012 (has links)
Neste trabalho estudamos o modelo da rede de Kondo em uma rede kagome, buscando uma maior compreensão dos efeitos da frustração geométrica em sistemas de férmions pesados. Para tanto, fizemos uma aproximação de campo médio no hamiltoniano do sistema que serve para todas as fases do sistema. Analisamos inicialmente o caso não magnético. Obtemos neste limite as energias eletrônicas e as funções de Green necessárias ao cálculo numérico autoconsistente das ocupações e do parâmetro de Kondo. Os resultados encontrados estão em concordância qualitativa com trabalhos publicados em outras geometrias. A seguir analisamos o caso magnético, onde introduzimos uma aproximação suplementar, a qual é compatível com a de campo médio já considerada e, em princípio, existente apenas em sistemas com frustração geométrica. Realizamos cálculos autoconsistentes através de somas sobre as frequências de Matsubara. Os resultados mostram que não há coexistência entre ordem magnética e efeito Kondo, além de haver a supressão do antiferromagnetismo com o aumento de temperatura e variações no preenchimento de bandas. / In this work we study the Kondo Lattice model for the kagome lattice, in order to understand better the effects of geometrical frustration in heavy-fermion systems. In this context, we consider a mean field scheme valid for all the system’s phases. Firstly, we analyzed the nonmagnetic case. In this approximation the electron energies and spectral functions are reachable, then we use the density of states to calculate the occupations selfconsistently. Our results are qualitatively compared with previous works in other geometries. In the second part we introduce an approximation for magnestism, which takes into account the mean field scheme considered and the presence of geometrical frustration. Self-consistent calculations are done through the frequencies summation method. Our results show that the magnetism is supressed when the temperature is increased or the band filling deviates from half-filling. Besides, the coexistence of magnetic order and Kondo effect is not observable.
|
4 |
Efeito Kondo e magnetismo em uma rede KagomeSilva Junior, José Luiz Ferreira da January 2012 (has links)
Neste trabalho estudamos o modelo da rede de Kondo em uma rede kagome, buscando uma maior compreensão dos efeitos da frustração geométrica em sistemas de férmions pesados. Para tanto, fizemos uma aproximação de campo médio no hamiltoniano do sistema que serve para todas as fases do sistema. Analisamos inicialmente o caso não magnético. Obtemos neste limite as energias eletrônicas e as funções de Green necessárias ao cálculo numérico autoconsistente das ocupações e do parâmetro de Kondo. Os resultados encontrados estão em concordância qualitativa com trabalhos publicados em outras geometrias. A seguir analisamos o caso magnético, onde introduzimos uma aproximação suplementar, a qual é compatível com a de campo médio já considerada e, em princípio, existente apenas em sistemas com frustração geométrica. Realizamos cálculos autoconsistentes através de somas sobre as frequências de Matsubara. Os resultados mostram que não há coexistência entre ordem magnética e efeito Kondo, além de haver a supressão do antiferromagnetismo com o aumento de temperatura e variações no preenchimento de bandas. / In this work we study the Kondo Lattice model for the kagome lattice, in order to understand better the effects of geometrical frustration in heavy-fermion systems. In this context, we consider a mean field scheme valid for all the system’s phases. Firstly, we analyzed the nonmagnetic case. In this approximation the electron energies and spectral functions are reachable, then we use the density of states to calculate the occupations selfconsistently. Our results are qualitatively compared with previous works in other geometries. In the second part we introduce an approximation for magnestism, which takes into account the mean field scheme considered and the presence of geometrical frustration. Self-consistent calculations are done through the frequencies summation method. Our results show that the magnetism is supressed when the temperature is increased or the band filling deviates from half-filling. Besides, the coexistence of magnetic order and Kondo effect is not observable.
|
5 |
Topological properties of flat bands in generalized Kagome lattice materials / Topologiska egenskaper hos platta band i generaliserade Kagome gittermaterialPinto Dias, Daniela January 2021 (has links)
Topological insulators are electronic materials that behave like an ordinary insulator in their bulk but have robust conducting states on their edge. Besides, in some materials the band structure presents completely flat bands, a special feature leading to strong interactions effects. In this thesis we present a study of the edge states of three particular two-dimensional models presenting flat bands: the honeycomb-Kagome, the $\alpha$--graphyne and a ligand decorated honeycomb-Kagome lattice models. We extend earlier work done on these lattice models by focusing on the topological nature of the edge states involving flat bands. We start by giving a review of the band structure theory and the tight-binding approximation. We then present several main topics in two-dimensional topological insulators such as the notion of topological invariants, the Kane-Mele model and the bulk-edge correspondence. Using these theoretical concepts we study the band structure of these lattices firstly without taking into account the spin and spin-orbit interations. We finally add these interactions to get their bulk band structures as well as the edge states. We observe how these spin-orbit interactions relieve degeneracies and allow for the emergence of edge states of topological nature. Since the lattices studied have an arrangement based on the honeycomb-Kagome lattice, two-dimensional materials having the structures of these lattices can be designed assembling metal ions and organic ligands. Therefore the results obtained could be used as a first hint to create new two-dimensional materials presenting topological properties. / Topologiska isolatorer är elektroniska material som uppför sig som en vanlig isolator i sin bulk men har robusta ledande stater på kanten. Dessutom presenterar bandstrukturen i vissa material helt platta band, en speciell egenskap som leder till starka interaktionseffekter. I denna avhandling presenterar vi en studie av kanttillstånden för tre speciella tvådimensionella modeller som presenterar platta band: bikakan-Kagome, $\alpha$-grafynen och en liganddekorerad honungskaka-Kagome modeller. Vi utökar tidigare arbete med dessa gittermodeller genom att fokusera på den topologiska karaktären hos kanttillstånd som innefattar platta band. Vi börjar med att ge en genomgång av bandstruktursteorin och den tätt bindande approximationen. Vi presenterar sedan flera huvudämnen i tvådimensionella topologiska isolatorer såsom begreppet topologiska invarianter, Kane-Mele modellen och bulk-kant korrespondensen. Med hjälp av dessa teoretiska begrepp studerar vi bandstrukturen för dessa gitter först utan att ta hänsyn till spinnen och spinnsorbital interaktioner. Vi lägger sedan till dessa interaktioner för att få sina bulkbandstrukturer såväl som kanttillstånden. Vi observerar hur dessa spinnsorbital interaktioner lindrar degenerationer och möjliggör uppkomsten av kanttillstånd av topologisk naturen. Eftersom de undersökta gitterna har ett arrangemang baserat på honungskaka-Kagome gitteren, kan tvådimensionella material med strukturerna hos dessa gitter utformas genom att montera metalljoner och organiska ligander. Därför kan de erhållna resultaten användas som en första ledtråd för att skapa nya tvådimensionella material med topologiska egenskaper.
|
6 |
Liquides de spin dans les modèles antiferromagnétiques quantiques sur réseaux bi-dimensionnels frustrésIqbal, Yasir 24 September 2012 (has links) (PDF)
La recherche de phases magnétiques exotiques de la matière qui fondent même à T=0 uniquement sous l'action des fluctuations quantiques a été long et ardu, à la fois théoriquement et expérimentalement. La percée est venue récemment avec la découverte de l'Herbertsmithite, un composé formant un réseau kagome parfait avec des moments magnétiques de spin-1/2. Des expériences pionnières, mêlant des mesures de NMR, µSR et de diffusion de neutrons, ont montré une absence totale de gel ou d'ordre des moments magnétiques de spin, fournissant ainsi une forte signature d'une phase paramgnétique quantique. Théoriquement, l'Herbertsmithite est extrêmement bien modélisé par le modèle de Heisenberg quantique antiferromagnétique pour des spins-1/2 sur le réseau kagome, problème qui n'a pas été résolu jusqu'à présent. Plusieurs méthodes approximatives numériques et analytiques ont donné différents états fondamentaux, allant des liquides de spins Z2 gappés et un liquide de spins exotique algébrique U(1) de Dirac aux liquides de spins chiraux et les cristaux à liaisons de valence. Dans cette thèse, le problème est traité dans le cadre d'une approche particule-esclave fermionique, à savoir le formalisme des fermions de Schwinger SU(2). Il est conclu qu'un liquide de spins sans gap algébrique de Dirac a l'énergie variationnelle la plus basse et peut en fait constituer un vrai état fondamental physique de liquide de spins. Une implémentation sophistiquée de méthodes numériques de pointes comme le Monte-Carlo variationnel, le Monte-Carlo fonctions de Green et l'application de pas Lanczos dans un schéma variationnel ont été utilisés. Il est montré que contrairement à la croyance habituelle, le liquide de spins de Dirac U(1) projeté en "2+1" dimensions est remarquablement robuste par rapport à une large classe de perturbations, incluant les liquides de spins topologiques Z2 et les cristaux à liaisons de valence. De plus, l'application de deux pas Lanczos sur la fonction d'onde du liquide de spins de Dirac U(1) montre que son énergie est compétitive avec celles proposées pour les liquides de spins topologiques Z2. Ce résultat, combiné avec les indications expérimentales qui pointent vers un liquide de spins sans gap pour l'Herbertsmithite, appuie l'affirmation que le vrai état fondamental de ce modèle est en fait un liquide de spins algébrique de Dirac.
|
7 |
Magnetické stavy spinového ledu v umělých magneticky frustrovaných systémech / Magnetic spin ice states in artificial magnetic frustrated systemsSchánilec, Vojtěch January 2018 (has links)
Uměle vytvořené systémy spinového ledu jsou vhodným nástrojem pro zkoumání neobvyklých jevů, které se v přírodě dají jen těžko pozorovat. Speciálním případem umělého spinového ledu je kagome mřížka, která umožňuje zkoumat kolektivní chování spinů v látce. Tento systém má řadu předpovězených exotických magnetických fází, které zatím nebyly změřeny a prozkoumány v reálném prostoru. V rámci této práce se zabýváme úpravou kagome mřížky tak, aby mohla být využita ke zkoumání exotických stavů v reálném prostoru. Experimenty provedené na naší upravené mřížce ukazují, že jsme schopni detekovat nízko i vysoko energiové stavy, a tedy, že námi navržená úprava kagome mřížky je vhodná pro zkoumání exotických stavů v reálném prostoru.
|
8 |
Nouveaux états quantiques de spin induits par frustration magnétique sur le réseau kagome / New quantum spin states induced by magnetic frustration on the kagome latticeKermarrec, Edwin 05 December 2012 (has links)
La déstabilisation de l’ordre antiferromagnétique de Néel au profit de nouvelles phases quantiques à température nulle à deux dimensions est envisageable grâce au phénomène de frustration magnétique. Le modèle théorique de spins Heisenberg S=1/2 répartis sur le réseau bidimensionnel frustré kagome, constitué de triangles joints uniquement par leurs sommets, est susceptible de stabiliser des phases quantiques originales de liquides de spin, qui ne présentent aucune brisure de symétrie à T = 0. Cette thèse a été consacrée à l’étude expérimentale de deux types de composés de spins S=1/2 (Cu2+) à géométrie kagome à l’aide de techniques spectroscopiques locales, la RMN et la μSR, ainsi que de mesures thermodynamiques (susceptibilité magnétique, chaleur spécifique). Dans Mg-herbertsmithite, la frustration est générée par une interaction d’échange premiers voisins antiferromagnétique J et est responsable d’un comportement liquide de spin jusqu’à des températures de l’ordre de J/10000. Par rapport au composé isostructural antérieur, Zn-herbertsmithite, nous avons montré qu’il possédait des propriétés physiques similaires tout en permettant une caractérisation fine du taux de défauts de substitutions Cu/Mg. Nos expériences réalisées à partir d’échantillons contrôlés permettent d’étudier finement l’origine des plateaux de relaxation observés en μSR à basse température en lien avec l’existence des défauts de spins interplans. La kapellasite et l’haydéite possèdent des interactions ferromagnétiques (J1) et antiferromagnétiques (Jd), offrant la possibilité d’explorer le diagramme de phases générées par la compétition de ces interactions sur le réseau kagome. Pour la kapellasite, nos mesures de μSR démontrent le caractère liquide de spin jusqu’à T ≈ J1/1000. La dépendance en température de la susceptibilité magnétique sondée par RMN du 35Cl ainsi que de la chaleur spécifique permettent d’évaluer le rapport Jd/J1 = 0.85, qui localise classiquement son fondamental au sein d’une phase originale de spins non coplanaires à 12 sous-réseaux appelée cuboc2. Les interactions présentes dans l’haydéite localisent son fondamental au sein de la phase ferromagnétique, en bon accord avec nos mesures qui indiquent une transition partielle à caractère ferromagnétique à T = 4 K. Cette étude confirme la pertinence du réseau kagome frustré pour la stabilisation de phases quantiques originales et démontre l’existence d’une nouvelle phase liquide de spin sur ce réseau, distincte de celle attendue pour des spins couplés antiferromagnétiquement. / Magnetic frustration helps destabilizing conventional Néel order at T = 0 in dimensions 2, and therefore allows the emergence of new original quantum phases. The S=1/2 Heisenberg Hamiltonian on the highly frustrated kagome lattice, which is made of corner-sharing triangles, is expected to stabilize such quantum states, including the spin liquid ones which do not break any symmetry even at T = 0. This thesis work focuses on the experimental study of two kinds of S=1/2 (Cu2+) kagome compounds using NMR and μSR local probes as well as thermodynamic measurements (magnetic susceptibility, specific heat).In Mg-herbertsmithite magnetic frustration occurs thanks to a first nearest-neighbor antiferromagnetic interaction J and is responsible for the spin liquid behavior observed down to T = J/10000. In comparison with the formerly known isostructural counterpart Zn-herbertsmithite, we showed that it shares similar physical magnetic properties while allowing sensitive structural refinements and therefore a control of the level of Cu/Mg substitutions defects. Our experiments performed on such well controlled materials allow us to investigate the origin of the dynamical relaxation in these compounds in relation with the existence of interplane spins defects. Kapellasite and haydeite possess both ferromagnetic (J1) and antiferromagnetic (Jd) interactions. They offer the possibility to explore the phase diagram generated by such competing interactions on the kagome lattice. For kapellasite, our μSR experiments evidenced a spin liquid character down to T ≈ J1/1000. We tracked the temperature dependence of the magnetic susceptibility probed by 35Cl-NMR as well as of the specific heat, from which the ratio Jd/J1 = 0.85 can be evaluated. This ratio locates the ground-state of kapellasite to be within an original non-coplanar spin phase described by 12 magnetic sublattices and called cuboc2. Magnetic exchanges in haydeite locate its ground-state within the ferromagnetic phase. Both our local and thermodynamic measurements point to a partial ferromagnetic transition at T = 4 K. This study confirms the relevance of the frustrated quantum kagome lattice to stabilize original quantum phases and suggests the existence of a new spin liquid phase, distinct from the one expected for antiferromagnetically coupled spins.
|
9 |
DFT-based microscopic magnetic modeling for low-dimensional spin systemsJanson, Oleg 26 September 2012 (has links) (PDF)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined.
Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%).
Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations.
Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration.
To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data.
The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized.
Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization.
Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales.
Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems.
The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound.
Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models.
The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.
|
10 |
DFT-based microscopic magnetic modeling for low-dimensional spin systemsJanson, Oleg 29 June 2012 (has links)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined.
Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%).
Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations.
Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration.
To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data.
The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized.
Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization.
Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales.
Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems.
The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound.
Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models.
The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.:List of Figures
List of Tables
List of Abbreviations
1. Introduction
2. Magnetism of cuprates
3. Experimental methods
4. DFT-based microscopic modeling
5. Simulations of a magnetic model
6. Model spin systems: challenging the computational approach
7. Kagome lattice compounds
8. Summary and outlook
Appendix
Bibliography
List of publications
Acknowledgments
|
Page generated in 0.0602 seconds