• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 10
  • 10
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantum Monte Carlo studies of quantum criticality in low-dimensional spin systems

Tang, Ying 22 January 2016 (has links)
Strongly correlated low-dimensional quantum spin models provide a well-established frame- work to study magnetic properties of insulators, and are of great theoretical interest and experimental relevance in condensed-matter physics. In this thesis, I use quantum Monte Carlo methods to numerically study quantum critical behavior in low-dimensional quantum spin models and wavefunctions. First, I study spinons &ndash emergent spin-1/2 bosonic excitations &ndash at certain one- and two-dimensional quantum phase transitions (QPTs) in spin models, by characterizing their size and confinement length quantitatively. In particular, I focus on the QPT from an antiferromagnetic (AFM) phase into a valence-bond solid (VBS) phase, which is an example of a violation of the standard Landau-Ginzburg-Wilson paradigm for phase transitions. This transition in two dimensions (2D) is instead likely described by a novel theory called "deconfined quantum criticality" (DQC). According to the theory, spinons should be deconfined. The degree of deconfinement is quantified in my calculations. Second, I present a comprehensive study of so-called short-bond resonating-valence-bond (RVB) spin liquids in 2D, which have been suggested as a good starting point for understanding the spin physics of high-temperature cuprates. I find that these RVB states can also be classified as quantum-critical VBS states, which indicates that RVB is less disordered than expected. This work suggests a possible mapping from the quantum RVB states to classical dimer models via a classical continuum field theory--the height model. This map explicitly bridges well-established classical results to future quantum studies. Third, I consider 1D amplitude product (AP) states, which are generalized versions of RVB states, with different wavefunction weightings of bonds according to their lengths. AP states constitute a good ansatz for certain Hamiltonians and are of broad interest in quantum magnetism. I study phase transitions from AFM-VBS phases in AP states by tuning their amplitudes, and obtain continuously varying critical exponents. In addition, I classify the 1D AP states through entanglement entropy calculations of the central charge in (1+1)D conformal field theory. This new classification could serve as guide for AP states as trial wavefunctions to search for ground states of corresponding quantum spin models.
2

Magnetic quantum phase transitions: 1/d expansion, bond-operator theory, and coupled-dimer magnets

Joshi, Darshan Gajanan 02 March 2016 (has links) (PDF)
In the study of strongly interacting condensed-matter systems controlled microscopic theories hold a key position. Spin-wave theory, large-N expansion, and $epsilon$-expansion are some of the few successful cornerstones. In this doctoral thesis work, we have developed a novel large-$d$ expansion method, $d$ being the spatial dimension, to study model Hamiltonians hosting a quantum phase transition between a paramagnet and a magnetically ordered phase. A highlight of this technique is that it can consistently describe the entire phase diagram of the above mentioned models, including the quantum critical point. Note that most analytical techniques either efficiently describe only one of the phases or suffer from divergences near the critical point. The idea of large-$d$ formalism is that in this limit, non-local fluctuations become unimportant and that a suitable product state delivers exact expectation values for local observables, with corrections being suppressed in powers of $1/d$. It turns out that, due to momentum summation properties of the interaction structure factor, all diagrams are suppressed in powers of $1/d$ leading to an analytic expansion. We have demonstrated this method in two important systems namely, the coupled-dimer magnets and the transverse-field Ising model. Coupled-dimer magnets are Heisenberg spin systems with two spins, coupled by intra-dimer antiferromagnetic interaction, per crystallographic unit cell (dimer). In turn, spins from neighboring dimers interact via some inter-dimer interaction. A quantum paramagnet is realized for a dominant intra-dimer interaction, while a magnetically ordered phase exists for a dominant (or of the same order as intra-dimer interaction) inter-dimer interaction. These two phases are connected by a quantum phase transition, which is in the Heisenberg O(3) universality class. Microscopic analytical theories to study such systems have been restricted to either only one of the phases or involve uncontrolled approximations. Using a non-linear bond-operator theory for spins with S=$1/2$, we have calculated the $1/d$ expansion of static and dynamic observables for coupled dimers on a hypercubic lattice at zero temperature. Analyticity of the $1/d$ expansion, even at the critical point, is ensured by correctly identifying suitable observables using the mean-field critical exponents. This method yields gapless excitation modes in the continuous symmetry broken phase, as required by Goldstone\'s theorem. In appropriate limits, our results match with perturbation expansion in small ratio of inter-dimer and intra-dimer coupling, performed using continuous unitary transformations, as well as the spin-wave theory for spin-$1/2$ in arbitrary dimensions. We also discuss the Brueckner approach, which relies on small quasiparticle density, and derive the same $1/d$ expansion for the dispersion relation in the disordered phase. Another success of our work is in describing the amplitude (Higgs) mode in coupled-dimer magnets. Our novel method establishes the popular bond-operator theory as a controlled approach. In $d=2$, the results from our calculations are in qualitative agreement with the quantum Monte Carlo study of the square-lattice bilayer Heisenberg AF spin-$1/2$ model. In particular, our results are useful to identify the amplitude (Higgs) mode in the QMC data. The ideas of large-$d$ are also successfully applied to the transverse-field Ising model on a hypercubic lattice. Similar to bond operators, we have introduced auxiliary Bosonsic operators to set up our method in this case. We have also discussed briefly the bilayer Kitaev model, constructed by antiferromagnetically coupling two layers of the Kitaev model on a honeycomb lattice. In this case, we investigate the dimer quantum paramagnetic phase, realized in the strong inter-layer coupling limit. Using bond-operator theory, we calculate the mode dispersion in this phase, within the harmonic approximation. We also conjecture a zero-temperature phase diagram for this model.
3

Magnetic quantum phase transitions: 1/d expansion, bond-operator theory, and coupled-dimer magnets

Joshi, Darshan Gajanan 19 February 2016 (has links)
In the study of strongly interacting condensed-matter systems controlled microscopic theories hold a key position. Spin-wave theory, large-N expansion, and $epsilon$-expansion are some of the few successful cornerstones. In this doctoral thesis work, we have developed a novel large-$d$ expansion method, $d$ being the spatial dimension, to study model Hamiltonians hosting a quantum phase transition between a paramagnet and a magnetically ordered phase. A highlight of this technique is that it can consistently describe the entire phase diagram of the above mentioned models, including the quantum critical point. Note that most analytical techniques either efficiently describe only one of the phases or suffer from divergences near the critical point. The idea of large-$d$ formalism is that in this limit, non-local fluctuations become unimportant and that a suitable product state delivers exact expectation values for local observables, with corrections being suppressed in powers of $1/d$. It turns out that, due to momentum summation properties of the interaction structure factor, all diagrams are suppressed in powers of $1/d$ leading to an analytic expansion. We have demonstrated this method in two important systems namely, the coupled-dimer magnets and the transverse-field Ising model. Coupled-dimer magnets are Heisenberg spin systems with two spins, coupled by intra-dimer antiferromagnetic interaction, per crystallographic unit cell (dimer). In turn, spins from neighboring dimers interact via some inter-dimer interaction. A quantum paramagnet is realized for a dominant intra-dimer interaction, while a magnetically ordered phase exists for a dominant (or of the same order as intra-dimer interaction) inter-dimer interaction. These two phases are connected by a quantum phase transition, which is in the Heisenberg O(3) universality class. Microscopic analytical theories to study such systems have been restricted to either only one of the phases or involve uncontrolled approximations. Using a non-linear bond-operator theory for spins with S=$1/2$, we have calculated the $1/d$ expansion of static and dynamic observables for coupled dimers on a hypercubic lattice at zero temperature. Analyticity of the $1/d$ expansion, even at the critical point, is ensured by correctly identifying suitable observables using the mean-field critical exponents. This method yields gapless excitation modes in the continuous symmetry broken phase, as required by Goldstone\'s theorem. In appropriate limits, our results match with perturbation expansion in small ratio of inter-dimer and intra-dimer coupling, performed using continuous unitary transformations, as well as the spin-wave theory for spin-$1/2$ in arbitrary dimensions. We also discuss the Brueckner approach, which relies on small quasiparticle density, and derive the same $1/d$ expansion for the dispersion relation in the disordered phase. Another success of our work is in describing the amplitude (Higgs) mode in coupled-dimer magnets. Our novel method establishes the popular bond-operator theory as a controlled approach. In $d=2$, the results from our calculations are in qualitative agreement with the quantum Monte Carlo study of the square-lattice bilayer Heisenberg AF spin-$1/2$ model. In particular, our results are useful to identify the amplitude (Higgs) mode in the QMC data. The ideas of large-$d$ are also successfully applied to the transverse-field Ising model on a hypercubic lattice. Similar to bond operators, we have introduced auxiliary Bosonsic operators to set up our method in this case. We have also discussed briefly the bilayer Kitaev model, constructed by antiferromagnetically coupling two layers of the Kitaev model on a honeycomb lattice. In this case, we investigate the dimer quantum paramagnetic phase, realized in the strong inter-layer coupling limit. Using bond-operator theory, we calculate the mode dispersion in this phase, within the harmonic approximation. We also conjecture a zero-temperature phase diagram for this model.
4

Phase diagrams of two-dimensional frustrated spin systems / Phasendiagramme für zweidimensionale frustrierte Spinsysteme

Kalz, Ansgar 22 March 2012 (has links)
No description available.
5

Estudos sobre o modelo O(N) na rede quadrada e dinâmica de bolhas na célula de Hele-Shaw

SILVA, Antônio Márcio Pereira 26 August 2013 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-06-29T13:52:59Z No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese_final.pdf: 5635071 bytes, checksum: b300efb627e9ece412ad5936ab67e8e2 (MD5) / Made available in DSpace on 2016-06-29T13:52:59Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese_final.pdf: 5635071 bytes, checksum: b300efb627e9ece412ad5936ab67e8e2 (MD5) Previous issue date: 2013-08-26 / CNPq / No presente trabalho duas classes de problemas são abordadas. Primeiramente, são apresentados estudos computacionais sobre o modelo O(n) de spins na rede quadrada, e em seguida apresentamos novas soluções exatas para a dinâmica de bolhas na célula de Hele-Shaw. O estudo do modelo O(n) é feito utilizando sua representação em laços (cadeias fechadas), a qual é obtida a partir de uma expansão para altas temperaturas. Nesse representação, a função de partição do modelo possui uma expansão diagramática em que cada termo depende do número e comprimento total de laços e do número de (auto)interseções entre esses laços. Propriedades críticas do modelo de laços O(n) são obtidas através de conceitos oriundos da teoria de percolação. Para executar as simulações Monte Carlo, usamos o eficiente algoritmo WORM, o qual realiza atualizações locais através do movimento da extremidade de uma cadeia aberta denominada de verme e não sofre com o problema de "critical slowing down". Para implementar esse algoritmo de forma eficiente para o modelo O(n) na rede quadrada, fazemos uso de um nova estrutura de dados conhecida como listas satélites. Apresentamos estimativas para o ponto crítico do modelo para vários valores de n no intervalo de 0 < n ≤ 2. Usamos as estatísticas de laços e vermes para extrair, respectivamente, os expoentes críticos térmicos e magnéticos do modelo. No estudo de dinâmica de interfaces, apresentamos uma solução exata bastante geral para um arranjo periódico de bolhas movendo-se com velocidade constante ao longo de uma célula de Hele-Shaw. Usando a periodicidade da solução, o domínio relevante do problema pode ser reduzido a uma célula unitária que contém uma única bolha. Nenhuma imposição de simetria sobre forma da bolha é feita, de modo que a solução é capaz de produzir bolhas completamente assimétricas. Nossa solução é obtida por métodos de transformações conformes entre domínios duplamente conexos, onde utilizamos a transformação de Schwarz-Christoffel generalizada para essa classe de domínios. / In this thesis two classes of problems are discussed. First, we present computational studies of the O(n) spin model on the square lattice and determine its critical properties, whereas in the second part of the thesis we present new exact solutions for bubble dynamics in a Hele-Shaw cell. The O(n) model is investigated by using its loop representation which is obtained from a high-temperature expansion of the original model. In this representation, the partition function admits an diagrammatic expansion in which each term depends on the number and total length of loops (closed graphs) as well as on the number of intersections between these loops. Critical properties of the O(n) model are obtained by employing concepts from percolation theory. To perform Monte Carlo simulations of the model, we use the WORM algorithm, which is an efficient algorithm that performs local updates through the motion of one of the ends (called head) of an open chain (called worm) and hence does not suffer from “critical slowing down”. To implement this algorithm efficiently for the O(n) model on the square lattice, we make use of a new data structure known as a satellite list. We present estimates for the critical point of the model for various values of n in the range 0 < n ≤ 2. We use the statistics about the loops and the worm to extract the thermal and magnetic critical exponents of the model, respectively. In our study about interface dynamics, we present a rather general exact solution for a periodic array of bubbles moving with constant velocity in a Hele-Shaw cell. Using the periodicity of the solution, the relevant domain of the problem can be reduced to a unit cell containing a single bubble. No symmetry requirement is imposed on the bubble shape, so that the solution is capable of generating completely asymmetrical bubbles. Our solution is obtained by using conformal mappings between doubly-connected domains and employing the generalized Schwarz-Christoffel formula for this class of domains.
6

Sistemas de partículas interagentes dependentes de tipo e aplicações ao estudo de redes de sinalização biológica / Type-dependent interacting particle systems and their applications in the study of signaling biological networks

Navarrete, Manuel Alejandro Gonzalez 06 May 2011 (has links)
Neste trabalho estudamos os type-dependent stochastic spin models propostos por Fernández et al., os que chamaremos de modelos de spins estocástico dependentes de tipo, e que foram usados para modelar redes de sinalização biológica. A modelagem original descreve a evolução macroscópica de um modelo de spin-flip de tamanho finito com k tipos de spins, possuindo um número arbitrário de estados internos, que interagem através de uma dinâmica estocástica não reversível. No limite termodinânico foi provado que, em um intervalo de tempo finito as trajetórias convergem quase certamente para uma trajetória determinística, dada por uma equação diferencial de primeira ordem. Os comportamentos destes sistemas dinâmicos podem incluir bifurcações, relacionadas às transições de fase do modelo. O nosso objetivo principal foi de estender os modelos de spins com dinâmica de Glauber utiliza- dos pelos autores, permitindo trocas múltiplas dos spins. No contexto biológico tentamos incluir situações nas quais moléculas de tipos diferentes trocam simultaneamente os seus estados internos. Utilizando diversas técnicas, como as de grandes desvíos e acoplamento, tem sido possível demonstrar a convergência para o sistema dinâmico associado. / We study type-dependent stochastic spin models proposed by Fernández et al., which were used to model biological signaling networks. The original modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. In the thermodynamic limit it was proved that, within arbitrary finite time-intervals, the path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation. The behavior of the associated dynamical system may include bifurcations, associated to phase transitions in the statistical mechanical setting. Our aim is to extend the spin model with Glauber dynamics, to allow multiple spin-flips. In the biological context we included situations in which molecules of different types simultaneously change their internal states. Using several methods, such as large deviations and coupling, we prove the convergence theorem.
7

Sistemas de partículas interagentes dependentes de tipo e aplicações ao estudo de redes de sinalização biológica / Type-dependent interacting particle systems and their applications in the study of signaling biological networks

Manuel Alejandro Gonzalez Navarrete 06 May 2011 (has links)
Neste trabalho estudamos os type-dependent stochastic spin models propostos por Fernández et al., os que chamaremos de modelos de spins estocástico dependentes de tipo, e que foram usados para modelar redes de sinalização biológica. A modelagem original descreve a evolução macroscópica de um modelo de spin-flip de tamanho finito com k tipos de spins, possuindo um número arbitrário de estados internos, que interagem através de uma dinâmica estocástica não reversível. No limite termodinânico foi provado que, em um intervalo de tempo finito as trajetórias convergem quase certamente para uma trajetória determinística, dada por uma equação diferencial de primeira ordem. Os comportamentos destes sistemas dinâmicos podem incluir bifurcações, relacionadas às transições de fase do modelo. O nosso objetivo principal foi de estender os modelos de spins com dinâmica de Glauber utiliza- dos pelos autores, permitindo trocas múltiplas dos spins. No contexto biológico tentamos incluir situações nas quais moléculas de tipos diferentes trocam simultaneamente os seus estados internos. Utilizando diversas técnicas, como as de grandes desvíos e acoplamento, tem sido possível demonstrar a convergência para o sistema dinâmico associado. / We study type-dependent stochastic spin models proposed by Fernández et al., which were used to model biological signaling networks. The original modeling setup describes the macroscopic evolution of a finite-size spin-flip model with k types of spins with arbitrary number of internal states interacting through a non-reversible stochastic dynamics. In the thermodynamic limit it was proved that, within arbitrary finite time-intervals, the path converges almost surely to a deterministic trajectory determined by a first-order (non-linear) differential equation. The behavior of the associated dynamical system may include bifurcations, associated to phase transitions in the statistical mechanical setting. Our aim is to extend the spin model with Glauber dynamics, to allow multiple spin-flips. In the biological context we included situations in which molecules of different types simultaneously change their internal states. Using several methods, such as large deviations and coupling, we prove the convergence theorem.
8

Contraintes Topologiques et Ordre dans les Systèmes Modèle pour le Magnétisme Frustré / Topological Constraints and Ordering in Model Frustrated Magnets

Harman-Clarke, Adam 11 November 2011 (has links)
Dans cette thèse, l’étude de plusieurs modèles de systèmes magnétiques frustrés a été couverte. Leur racine commune est le modèle de la glace de spin, qui se transforme en modèle de la glace sur réseau kagome (kagome ice) et réseau en damier (square ice) à deux dimensions, et la chaîne d’Ising à une dimension. Ces modèles ont été particulièrement étudiés dans le contexte de transitions de phases avec un ordre magnétique induit par les contraintes du système : en effet, selon la perturbation envisagée, les contraintes topologiques sous-jacentes peuvent provoquer une transition de Kasteleyn dans le kagome ice, ou une transition de type vitreuse dans la square ice, due à l’émergence d’un ordre ferromagnétique dans une chaîne d’Ising induit seulement par des effets de taille fini. Dans tous les cas, une étude détaillée par simulations numériques de type Monte Carlo ont été comparées à des résultats théoriques pour déterminer les propriétés de ces transitions. Les contraintes topologiques du kagome ice ont requis le développement d’un algorithme de vers permettant aux simulations de ne pas quitter l’ensemble des états fondamentaux. Une revue poussée de la thermodynamique et de la réponse de la diffraction de neutrons sur kagome ice sous un champ magnétique planaire arbitraire, nous ont amené à une compréhension plus profonde de la transition de Kasteleyn, et à un modèle numérique capable de prédire les figures de diffraction de neutrons de matériau de kagome ice dans n’importe quelles conditions expérimentales. Sous certaines conditions, ce modèle a révélé des propriétés thermodynamiques quantifiées et devrait fournir un terreau fertile pour de futurs travaux sur les conséquences des contraintes et transitions de phases topologiques. Une étude combinée du square ice et de la chaîne d’Ising a mise en lumière l’apparition d’un ordre sur réseau potentiellement découplé de l’ordre ferromagnétique sous-jacent, et particulièrement pertinent pour les réseaux magnétiques artificiels obtenus par lithographie. / In this thesis a series of model frustrated magnets have been investigated. Their common parent is the spin ice model, which is transformed into the kagome ice and square ice models in two-dimensions, and an Ising spin chain model in one-dimension. These models have been examined with particular interest in the spin ordering transitions induced by constraints on the system: a topological constraint leads, under appropriate conditions, to the Kasteleyn transition in kagome ice and a lattice freezing transition is observed in square ice which is due to a ferromagnetic ordering transition in an Ising chain induced solely by finite size effects. In all cases detailed Monte Carlo computational simulations have been carried out and compared with theoretical expressions to determine the characteristics of these transitions. In order to correctly simulate the kagome ice model a loop update algorithm has been developed which is compatible with the topological constraints in the system and permits the simulation to remain strictly on the groundstate manifold within the appropriate topological sector of the phase space. A thorough survey of the thermodynamic and neutron scattering response of the kagome ice model influenced by an arbitrary in-plane field has led to a deeper understanding of the Kasteleyn transition, and a computational model that can predict neutron scattering patterns for kagome ice materials under any experimental conditions. This model has also been shown to exhibit quantised thermodynamic properties under appropriate conditions and should provide a fertile testing ground for future work on the consequences of topological constraints and topological phase transitions. A combined investigation into the square ice and Ising chain models has revealed ordering behaviour within the lattice that may be decoupled from underlying ferro- magnetic ordering and is particularly relevant to magnetic nanoarrays.
9

DFT-based microscopic magnetic modeling for low-dimensional spin systems

Janson, Oleg 26 September 2012 (has links) (PDF)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined. Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%). Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations. Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration. To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data. The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized. Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization. Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales. Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems. The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound. Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models. The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.
10

DFT-based microscopic magnetic modeling for low-dimensional spin systems

Janson, Oleg 29 June 2012 (has links)
In the vast realm of inorganic materials, the Cu2+-containing cuprates form one of the richest classes. Due to the combined effect of crystal-field, covalency and strong correlations, all undoped cuprates are magnetic insulators with well-localized spins S=1/2, whereas the charge and orbital degrees of freedom are frozen out. The combination of the spin-only nature of their magnetism with the unique structural diversity renders cuprates as excellent model systems. The experimental studies, boosted by the discovery of high-temperature superconductivity in doped La2CuO4, revealed a fascinating variety of magnetic behaviors observed in cuprates. A digest of prominent examples should include the spin-Peierls transition in CuGeO3, the Bose-Einstein condensation of magnons in BaCuSi2O6, and the quantum critical behavior of Li2ZrCuO4. The magnetism of cuprates originates from short-range (typically, well below 1 nm) exchange interactions between pairs of spins Si and Sj, localized on Cu atoms i and j. Especially in low-dimensional compounds, these interactions are strongly anisotropic: even for similar interatomic distances |Rij|, the respective magnetic couplings Jij can vary by several orders of magnitude. On the other hand, there is an empirical evidence for the isotropic nature of this interaction in the spin space: different components of Si are coupled equally strong. Thus, the magnetism of cuprates is mostly described by a Heisenberg model, comprised of Jij(Si*Sj) terms. Although the applicability of this approach to cuprates is settled, the model parameters Jij are specific to a certain material, or more precisely, to a particular arrangement of the constituent atoms, i.e. the crystal structure. Typically, among the infinite number of Jij terms, only several are physically relevant. These leading exchange couplings constitute the (minimal) microscopic magnetic model. Already at the early stages of real material studies, it became gradually evident that the assignment of model parameters is a highly nontrivial task. In general, the problem can be solved experimentally, using elaborate measurements, such as inelastic neutron scattering on large single crystals, yielding the magnetic excitation spectrum. The measured dispersion is fitted using theoretical models, and in this way, the model parameters are refined. Despite excellent accuracy of this method, the measurements require high-quality samples and can be carried out only at special large-scale facilities. Therefore, less demanding (especially, regarding the sample requirements), yet reliable and accurate procedures are desirable. An alternative way to conjecture a magnetic model is the empirical approach, which typically relies on the Goodenough-Kanamori rules. This approach links the magnetic exchange couplings to the relevant structural parameters, such as bond angles. Despite the unbeatable performance of this approach, it is not universally applicable. Moreover, in certain cases the resulting tentative models are erroneous. The recent developments of computational facilities and techniques, especially for strongly correlated systems, turned density-functional theory (DFT) band structure calculations into an appealing alternative, complementary to the experiment. At present, the state-of-the-art computational methods yield accurate numerical estimates for the leading microscopic exchange couplings Jij (error bars typically do not exceed 10-15%). Although this computational approach is often regarded as ab initio, the actual procedure is not parameter-free. Moreover, the numerical results are dependent on the parameterization of the exchange and correlation potential, the type of the double-counting correction, the Hubbard repulsion U etc., thus an accurate choice of these crucial parameters is a prerequisite. In this work, the optimal parameters for cuprates are carefully evaluated based on extensive band structure calculations and subsequent model simulations. Considering the diversity of crystal structures, and consequently, magnetic behaviors, the evaluation of a microscopic model should be carried out in a systematic way. To this end, a multi-step computational approach is developed. The starting point of this procedure is a consideration of the experimental structural data, used as an input for DFT calculations. Next, a minimal DFT-based microscopic magnetic model is evaluated. This part of the study comprises band structure calculations, the analysis of the relevant bands, supercell calculations, and finally, the evaluation of a microscopic magnetic model. The ground state and the magnetic excitation spectrum of the evaluated model are analyzed using various simulation techniques, such as quantum Monte Carlo, exact diagonalization and density-matrix renormalization groups, while the choice of a particular technique is governed by the dimensionality of the model, and the presence or absence of magnetic frustration. To illustrate the performance of the approach and tune the free parameters, the computational scheme is applied to cuprates featuring rather simple, yet diverse magnetic behaviors: spin chains in CuSe2O5, [NO]Cu(NO3)3, and CaCu2(SeO3)2Cl2; quasi-two-dimensional lattices with dimer-like couplings in alpha-Cu2P2O7 and CdCu2(BO3)2, as well as the 3D magnetic model with pronounced 1D correlations in Cu6Si6O18*6H2O. Finally, the approach is applied to spin liquid candidates --- intricate materials featuring kagome-lattice arrangement of the constituent spins. Based on the DFT calculations, microscopic magnetic models are evaluated for herbertsmithite Cu3(Zn0.85Cu0.15)(OH)6Cl2, kapellasite Cu3Zn(OH)6Cl2 and haydeeite Cu3Mg(OH)6Cl2, as well as for volborthite Cu3[V2O7](OH)2*2H2O. The results of the DFT calculations and model simulations are compared to and challenged with the available experimental data. The advantages of the developed approach should be briefly discussed. First, it allows to distinguish between different microscopic models that yield similar macroscopic behavior. One of the most remarkable example is volborthite Cu3[V2O7](OH)2*2H2O, initially described as an anisotropic kagome lattice. The DFT calculations reveal that this compound features strongly coupled frustrated spin chains, thus a completely different type of magnetic frustration is realized. Second, the developed approach is capable of providing accurate estimates for the leading magnetic couplings, and consequently, reliably parameterize the microscopic Hamiltonian. Dioptase Cu6Si6O18*6H2O is an instructive example showing that the microscopic theoretical approach eliminates possible ambiguity and reliably yields the correct parameterization. Third, DFT calculations yield even better accuracy for the ratios of magnetic exchange couplings. This holds also for small interchain or interplane couplings that can be substantially smaller than the leading exchange. Hence, band structure calculations provide a unique possibility to address the interchain or interplane coupling regime, essential for the magnetic ground state, but hardly perceptible in the experiment due to the different energy scales. Finally, an important advantage specific to magnetically frustrated systems should be mentioned. Numerous theoretical and numerical studies evidence that low-dimensionality and frustration effects are typically entwined, and their disentanglement in the experiment is at best challenging. In contrast, the computational procedure allows to distinguish between these two effects, as demonstrated by studying the long-range magnetic ordering transition in quasi-1D spin chain systems. The computational approach presented in the thesis is a powerful tool that can be directly applied to numerous S=1/2 Heisenberg materials. Moreover, with minor modifications, it can be largely extended to other metallates with higher value of spin. Besides the excellent performance of the computational approach, its relevance should be underscored: for all the systems investigated in this work, the DFT-based studies not only reproduced the experimental data, but instead delivered new valuable information on the magnetic properties for each particular compound. Beyond any doubt, further computational studies will yield new surprising results for known as well as for new, yet unexplored compounds. Such "surprising" outcomes can involve the ferromagnetic nature of the couplings that were previously considered antiferromagnetic, unexpected long-range couplings, or the subtle balance of antiferromagnetic and ferromagnetic contributions that "switches off" the respective magnetic exchange. In this way, dozens of potentially interesting systems can acquire quantitative microscopic magnetic models. The results of this work evidence that elaborate experimental methods and the DFT-based modeling are of comparable reliability and complement each other. In this way, the advantageous combination of theory and experiment can largely advance the research in the field of low-dimensional quantum magnetism. For practical applications, the excellent predictive power of the computational approach can largely alleviate designing materials with specific properties.:List of Figures List of Tables List of Abbreviations 1. Introduction 2. Magnetism of cuprates 3. Experimental methods 4. DFT-based microscopic modeling 5. Simulations of a magnetic model 6. Model spin systems: challenging the computational approach 7. Kagome lattice compounds 8. Summary and outlook Appendix Bibliography List of publications Acknowledgments

Page generated in 0.0869 seconds