Spelling suggestions: "subject:"permite"" "subject:"hermite""
21 |
Affine Hermite-Lorentz manifolds / Variétés affines Hermite-LorentzBarucchieri, Bianca 26 September 2019 (has links)
Dans ce travail nous nous intéressons aux groupes cristallographiques, i.e. aux sous-groupes du groupe des transformations affines qui agissent proprement discontinûment et de façon cocompacte sur l’espace affine. Ce sont les groupes fondamentaux des variétés affines compactes et complètes. Nous classifions les groupes cristallographiques dont la partie linéaire préserve une forme hermitienne de signature (n,1). Grunewald et Margulis ont prouvé que ces groupes cristallographiques sont virtuellement résolubles (la conjecture d’Auslander affirme que c’est toujours le cas). Notre classification est effectuée pour n ≤ 3. Elle correspond à la classification, à revêtement fini près, des variétés Hermite-Lorentz plates, compactes et complètes en dimension complexe inférieure ou égale à4. Ce travail est inspiré par ceux menés par Bieberbach, puis Fried, et enfin Grunewald et Margulis sur les groupes cristallographiques dont la partie linéaire préserve une forme quadratique définie positive ou lorentzienne. En effectuant cette classification, nous avons été amené à étudier certains familles d’algèbres de Lie nilpotentes de dimension 8. Nous avons ensuite étendu cette classification à celle de toutes les algèbres de Lie 3-nilpotentes de dimension 8 ayant l’algèbre de Lie libre 3-nilpotente à 3générateurs pour quotient. Ce résultat peut être vu comme un pas dans la direction d’une classification des algèbres de Lie nilpotentes de dimension 8. Ensuite nous nous sommes demandé lesquelles de ces algèbres admettent une métrique pseudo-riemannienne plate et nous avons donné une réponse partielle. / In this work we deal with crystallographic groups, i.e. the subgroups of the group of affine transformations that act properly discontinuously and cocompactly on affine space. In otherwords they are the fundamental groups of compact and complete affine manifolds. In this thesis we classify such groups with the additional hypothesis that the linear part preserves a Hermitian form of signature (n,1). Grunewald and Margulis proved that such crystallographic groups are virtually solvable (the Auslander conjecture states that this is always true). Our classification is for n ≤ 3. It corresponds to a classification, up to finite covering, and for complex dimension at most 4, of flat compact complete Hermite-Lorentz manifolds. This is inspired by the works done by Bieberbach,then Fried, and finally Grunewald and Margulis who classified crystallographic groups whose line arpart preserves a positive definite or Lorentzian quadratic form. Making this classification we had to classify a family of 8-dimensional nilpotent Lie algebras. We then extended this classification toall the 8-dimensional 3-step nilpotent Lie algebras having the free 2-step nilpotent Lie algebra on 3generators as quotient. This result can be seen as a step in the direction of a general classification of nilpotent Lie algebras of dimension 8. We then wondered which of these Lie algebras admit flat pseudo-Riemannian metrics and gave a partial answer to this question.
|
22 |
Approximants de Hermite-Padé, déterminants d'interpolation et approximation diophantienneKhémira, Samy 20 June 2005 (has links) (PDF)
Cette thèse aborde des sujets d'approximation diophantienne et de transcendance liés aux fonctions exponentielles. Il est tout d'abord établit des liens entre les coefficients d'approximants de Hermite-Padé, ceux de polynômes d'interpolation de Hermite et certains cofacteurs d'un déterminant de Vandermonde généralisé. Nous utilisons ensuite la notion de hauteur d'une matrice (que nous majorons grâce aux liens précédemment fournis) afin de donner une nouvelle démonstration de la transcendance de $e$. Ces résultats nous permettent finalement d'obtenir de nouveaux énoncés d'approximation diophantienne tels que la minoration de la distance de l'exponentielle d'un nombre algébrique (de hauteur absolue logarithmique de Weil bornée) à un autre nombre algébrique (lui aussi de hauteur absolue logarithmique de Weil bornée) en fonction de ces mêmes bornes. Il est ensuite donné, pour différentes valeurs de nombres rationnels $a$, quelques estimations remarquables telles que le minimum, sur l'ensemble des entiers non nuls $b$ et $c$, de la distance $|e^(b)-a^(c)|$.
|
23 |
Estimation of Respiration Rate Using Ultra Wide-Band Detection and Ranging Employing a Novel Technique for Cross Correlation Using Discrete Hermite FunctionsSubramanian, Lalit January 2008 (has links)
No description available.
|
24 |
Asymptotics of beta-Hermite EnsemblesBerglund, Filip January 2020 (has links)
In this thesis we present results about some eigenvalue statistics of the beta-Hermite ensembles, both in the classical cases corresponding to beta = 1, 2, 4, that is the Gaussian orthogonal ensemble (consisting of real symmetric matrices), the Gaussian unitary ensemble (consisting of complex Hermitian matrices) and the Gaussian symplectic ensembles (consisting of quaternionic self-dual matrices) respectively. We also look at the less explored general beta-Hermite ensembles (consisting of real tridiagonal symmetric matrices). Specifically we look at the empirical distribution function and two different scalings of the largest eigenvalue. The results we present relating to these statistics are the convergence of the empirical distribution function to the semicircle law, the convergence of the scaled largest eigenvalue to the Tracy-Widom distributions, and with a different scaling, the convergence of the largest eigenvalue to 1. We also use simulations to illustrate these results. For the Gaussian unitary ensemble, we present an expression for its level density. To aid in understanding the Gaussian symplectic ensemble we present properties of the eigenvalues of quaternionic matrices. Finally, we prove a theorem about the symmetry of the order statistic of the eigenvalues of the beta-Hermite ensembles. / I denna kandidatuppsats presenterar vi resultat om några olika egenvärdens-statistikor från beta-Hermite ensemblerna, först i de klassiska fallen då beta = 1, 2, 4, det vill säga den gaussiska ortogonala ensemblen (bestående av reella symmetriska matriser), den gaussiska unitära ensemblen (bestående av komplexa hermitiska matriser) och den gaussiska symplektiska ensemblen (bestående av kvaternioniska själv-duala matriser). Vi tittar även på de mindre undersökta generella beta-Hermite ensemblerna (bestående av reella symmetriska tridiagonala matriser). Specifikt tittar vi på den empiriska fördelningsfunktionen och två olika normeringar av det största egenvärdet. De resultat vi presenterar för dessa statistikor är den empiriska fördelningsfunktionens konvergens mot halvcirkel-fördelningen, det normerade största egenvärdets konvergens mot Tracy-Widom fördelningen, och, med en annan normering, största egenvärdets konvergens mot 1. Vi illustrerar även dessa resultat med hjälp av simuleringar. För den gaussiska unitära ensemblen presenterar vi ett uttryck för dess nivåtäthet. För att underlätta förståelsen av den gaussiska symplektiska ensemblen presenterar vi egenskaper hos egenvärdena av kvaternioniska matriser. Slutligen bevisar vi en sats om symmetrin hos ordningsstatistikan av egenvärdena av beta-Hermite ensemblerna.
|
25 |
Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais / Beta regression models with normal and not normal random effects for longitudinal dataUsuga Manco, Olga Cecilia 01 March 2013 (has links)
A classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1). / The class of beta regression models has been studied extensively. However, there are few studies on the inclusion of random effects and models with flexible random effects distributions besides prediction and diagnostic methods. In this work we proposed a beta regression models with normal and not normal random effects for longitudinal data. The maximum likelihood method and the empirical Bayes approach are used to obtain the estimates and the best prediction. Also, the Gauss-Hermite quadrature is used to approximate the likelihood function. Model selection methods and residual analysis were also proposed.We implemented a BLMM package in R to perform all procedures. The estimation procedure and the empirical distribution of residuals were analyzed through simulation studies considering differents random effects distributions, values for the number of individuals, number of observations per individual and covariance structures for the random effects. The results of simulation studies showed that the estimation procedure obtain better results when the number of individuals and the number of observations per individual increase. These studies also showed that the empirical distribution of the quantile randomized residual follows a normal distribution. The methodolgy presented is a tool for analyzing longitudinal data restricted to a interval (0; 1).
|
26 |
Modelos log-Birnbaum-Saunders mistos / Log-Birnbaum-Saunders mixed modelsLobos, Cristian Marcelo Villegas 06 October 2010 (has links)
O objetivo principal deste trabalho é introduzir os modelos log-Birnbaum-Saunders mistos (log-BS mistos) e estender os resultados para os modelos log-Birnbaum-Saunders t-Student mistos (log-BS-t mistos). Os modelos log-BS são bastante conhecidos desde o trabalho de Rieck e Nedelman (1991) e particularmente receberam uma grande atenção nos últimos 10 anos com vários trabalhos publicados em periódicos internacionais. Contudo, o enfoque desses trabalhos tem sido em modelos log-BS ou log-BS generalizados com efeitos fixos, não havendo muita atenção para modelos com efeitos aleatórios. Inicialmente, apresentamos no trabalho uma revisão das distribuições Birnbaum-Saunders e Birnbaum-Saunders generalizada (BSG) e em seguida discutimos os modelos log-BS e log-BS-t com efeitos fixos, para os quais revisamos alguns resultados de estimação e diagnóstico. Os modelos log-BS mistos são então apresentados precedidos de uma revisão dos métodos de quadratura de Gauss Hermite (QGH). Embora a estimação dos parâmetros nos modelos log-BS mistos seja efetuada através do procedimento Proc NLMIXED do SAS (Littell et al, 1996), aplicamos o método de quadratura não adaptativa a fim de obtermos aproximações para o logaritmo da função de verossimilhança do modelo log-BS de intercepto aleatório. Com essas aproximações derivamos as funções escore e a matriz hessiana, além das curvaturas normais de influência local (Cook, 1986) para alguns esquemas de perturbação usuais. Os mesmos procedimentos são aplicados para os modelos log-BS-t de intercepto aleatório. Discussões sobre a predição dos efeitos aleatórios, teste para o componente de variância dos modelos com intercepto aleatório e análises de resíduos são também apresentados. Finalmente, comparamos os ajustes de modelos log-BS e log-BS mistos a um conjunto de dados reais. Métodos de diagnóstico são utilizados na comparação dos modelos ajustados. / The aim of this work is to introduce the log-Birnbaum-Saunders mixed models (log-BS mixed models) and to extend the results to log-Birnbaum-Saunders Student-t mixed models (log-BS-t mixed models). The log-BS models are well-known since the work by Rieck and Nedelman (1991) and particularly have received great attention in the last 10 years with various published papers in international journals. However, the emphasis given in such works has been in fixed-effects models with few attention given to random-effects models. Firstly, we present in this work a review on Birnbaum-Saunders and generalized Birnbaum-Saunders distributions and so we discuss log-BS and log-BS-t fixed-effects models for which some results on estimation and diagnostic are presented. Then, we introduce the log-BS mixed models preceded by a review on Gauss-Hermite quadrature. Although the parameter estimation of the marginal log-BS and log-BS-t mixed models are performed in the procedure NLMIXED of SAS (Littell et al., 1996), we apply the quadrature methods in order to obtain approximations for the likelihood function of the log-BS and log-BS-t random intercept models. These approximations are used to derive the respective score functions, observed information matrices as well as the normal curvature of local influence (Cook, 1986) under some usual perturbation schemes. Discussions on the prediction of the random effects, variance component tests and residual analysis are also given. Finally, we compare the fits of log-BS and log-BS-t mixed models to a real data set. Diagnostic methods are used in the comparisons.
|
27 |
Modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais / Beta regression models with normal and not normal random effects for longitudinal dataOlga Cecilia Usuga Manco 01 March 2013 (has links)
A classe de modelos de regressão beta tem sido estudada amplamente. Porém, para esta classe de modelos existem poucos trabalhos sobre a inclusão de efeitos aleatórios e a flexibilização da distribuição dos efeitos aleatórios, além de métodos de predição e de diagnóstico no ponto de vista dos efeitos aleatórios. Neste trabalho são propostos modelos de regressão beta com efeitos aleatórios normais e não normais para dados longitudinais. Os métodos de estimação de parâmetros e de predição dos efeitos aleatórios usados no trabalho são o método de máxima verossimilhança e o método do melhor preditor de Bayes empírico. Para aproximar a função de verossimilhança foi utilizada a quadratura de Gauss-Hermite. Métodos de seleção de modelos e análise de resíduos também foram propostos. Foi implementado o pacote BLMM no R para a realização de todos os procedimentos. O processo de estimação os parâmetros dos modelos e a distribuição empírica dos resíduos propostos foram analisados por meio de estudos de simulação. Foram consideradas várias distribuições para os efeitos aleatórios, valores para o número de indivíduos, número de observações por indivíduo e estruturas de variância-covariância para os efeitos aleatórios. Os resultados dos estudos de simulação mostraram que o processo de estimação obtém melhores resultados quando o número de indivíduos e o número de observações por indivíduo aumenta. Estes estudos também mostraram que o resíduo quantil aleatorizado segue uma distribuição aproximadamente normal. A metodologia apresentada é uma ferramenta completa para analisar dados longitudinais contínuos que estão restritos ao intervalo limitado (0; 1). / The class of beta regression models has been studied extensively. However, there are few studies on the inclusion of random effects and models with flexible random effects distributions besides prediction and diagnostic methods. In this work we proposed a beta regression models with normal and not normal random effects for longitudinal data. The maximum likelihood method and the empirical Bayes approach are used to obtain the estimates and the best prediction. Also, the Gauss-Hermite quadrature is used to approximate the likelihood function. Model selection methods and residual analysis were also proposed.We implemented a BLMM package in R to perform all procedures. The estimation procedure and the empirical distribution of residuals were analyzed through simulation studies considering differents random effects distributions, values for the number of individuals, number of observations per individual and covariance structures for the random effects. The results of simulation studies showed that the estimation procedure obtain better results when the number of individuals and the number of observations per individual increase. These studies also showed that the empirical distribution of the quantile randomized residual follows a normal distribution. The methodolgy presented is a tool for analyzing longitudinal data restricted to a interval (0; 1).
|
28 |
Uma formulação alternativa e enriquecida para elementos do tipo hermitiano 2-simplex / An alternative and enriched formulation for elements type hermitian 2-simplexDias, Nestor Juvenal Gianotti Terra 17 July 2014 (has links)
Made available in DSpace on 2016-12-12T20:25:11Z (GMT). No. of bitstreams: 1
Nestor Juvenal G Terra Dias.pdf: 2791426 bytes, checksum: ca6d2cf5b36479b660a86c2196aa3b25 (MD5)
Previous issue date: 2014-07-17 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The main objective of this work was to obtain an alternative formulation for the so-called Hermitian 2-simplex type-(3) elements and enrich this formulation by adding functions with null value on all the nodes of the element, however with unitary partial derivatives one node. The conventional Hermitian element is an old element with degree p=3 and the degrees of freedom are the displacements and the partial derivatives in each node of the element. The element formulated in this work and their enriched versions have C0 continuity (C1 continuity is assured only at the element nodes). The formulation of the elements is based on the Principle of Minimum Potential Energy and because it is a displacement formulation, the prescribed Neumann (partial derivatives) or the Cauchy-Robin (mixed) boundary conditions are satisfied without any difficulty at the boundary nodes. Stresses and/or fluxes are obtained without any additional post-processing of finite element solution and with precision similar to the precision obtained for displacements. In this work these elements were applied to the solution of various problems of plane elasticity, axial-symmetric elasticity, free vibration of membranes and potential problems. The main emphasis in these analyzes was to study the rates of convergence obtained with homogeneous meshes and distorted meshes. Another aspect studied was the convergence for material locking problems (EPD) and special attention was given to the analysis of error in stress (or fluxes). After several comparisons made throughout this work it was concluded that the results obtained with this type of element is better than a large majority of triangular elements available in the literature. / Objetivo principal deste trabalho foi obter uma formulação alternativa para os chamados elementos Hermitianos 2-simplex do tipo (3) e enriquecer esta formulação adicionando funções com valor nulo em todos os nós do elemento, porém com derivadas parciais unitárias em apenas um destes nós. O elemento Hermitiano convencional é um elemento antigo na literatura, possui grau p=3 e os graus de liberdade do elemento são os deslocamentos e suas derivadas parciais em cada nó. O elemento formulado neste trabalho e sua versão enriquecida possuem continuidade C0 (a continuidade C1 só é assegurada nos nós do elemento). A formulação dos elementos é baseada no Princípio da Mínima Energia Potencial e por se tratar de uma formulação de deslocamento as condições de contorno de derivadas (Neumann) ou mistas (Cauchy-Robin) que são prescritas no contorno são satisfeitas sem nenhuma dificuldade. As tensões e/ou fluxos são obtidos sem nenhum pós-processamento adicional e com precisão semelhante à dos deslocamentos. Neste trabalho estes elementos foram aplicados para a solução de diversos problemas da elasticidade plana e axi-simétrica, problemas de vibração livre de membranas e problemas de potencial. A ênfase principal nestas análises foi o estudo das taxas de convergência com malhas homogêneas e com malhas distorcidas. Outro aspecto estudado foi a convergência para os problemas de locking de Poisson e especial atenção foi dada para as análises de erro em tensões (ou fluxos) pontuais que é o ponto forte deste tipo de elemento. Após diversas comparações realizadas ao longo deste trabalho concluiu-se que os resultados obtidos com este tipo de elemento são melhores do que a grande maioria de elementos triangulares disponíveis na literatura.
|
29 |
Modelos log-Birnbaum-Saunders mistos / Log-Birnbaum-Saunders mixed modelsCristian Marcelo Villegas Lobos 06 October 2010 (has links)
O objetivo principal deste trabalho é introduzir os modelos log-Birnbaum-Saunders mistos (log-BS mistos) e estender os resultados para os modelos log-Birnbaum-Saunders t-Student mistos (log-BS-t mistos). Os modelos log-BS são bastante conhecidos desde o trabalho de Rieck e Nedelman (1991) e particularmente receberam uma grande atenção nos últimos 10 anos com vários trabalhos publicados em periódicos internacionais. Contudo, o enfoque desses trabalhos tem sido em modelos log-BS ou log-BS generalizados com efeitos fixos, não havendo muita atenção para modelos com efeitos aleatórios. Inicialmente, apresentamos no trabalho uma revisão das distribuições Birnbaum-Saunders e Birnbaum-Saunders generalizada (BSG) e em seguida discutimos os modelos log-BS e log-BS-t com efeitos fixos, para os quais revisamos alguns resultados de estimação e diagnóstico. Os modelos log-BS mistos são então apresentados precedidos de uma revisão dos métodos de quadratura de Gauss Hermite (QGH). Embora a estimação dos parâmetros nos modelos log-BS mistos seja efetuada através do procedimento Proc NLMIXED do SAS (Littell et al, 1996), aplicamos o método de quadratura não adaptativa a fim de obtermos aproximações para o logaritmo da função de verossimilhança do modelo log-BS de intercepto aleatório. Com essas aproximações derivamos as funções escore e a matriz hessiana, além das curvaturas normais de influência local (Cook, 1986) para alguns esquemas de perturbação usuais. Os mesmos procedimentos são aplicados para os modelos log-BS-t de intercepto aleatório. Discussões sobre a predição dos efeitos aleatórios, teste para o componente de variância dos modelos com intercepto aleatório e análises de resíduos são também apresentados. Finalmente, comparamos os ajustes de modelos log-BS e log-BS mistos a um conjunto de dados reais. Métodos de diagnóstico são utilizados na comparação dos modelos ajustados. / The aim of this work is to introduce the log-Birnbaum-Saunders mixed models (log-BS mixed models) and to extend the results to log-Birnbaum-Saunders Student-t mixed models (log-BS-t mixed models). The log-BS models are well-known since the work by Rieck and Nedelman (1991) and particularly have received great attention in the last 10 years with various published papers in international journals. However, the emphasis given in such works has been in fixed-effects models with few attention given to random-effects models. Firstly, we present in this work a review on Birnbaum-Saunders and generalized Birnbaum-Saunders distributions and so we discuss log-BS and log-BS-t fixed-effects models for which some results on estimation and diagnostic are presented. Then, we introduce the log-BS mixed models preceded by a review on Gauss-Hermite quadrature. Although the parameter estimation of the marginal log-BS and log-BS-t mixed models are performed in the procedure NLMIXED of SAS (Littell et al., 1996), we apply the quadrature methods in order to obtain approximations for the likelihood function of the log-BS and log-BS-t random intercept models. These approximations are used to derive the respective score functions, observed information matrices as well as the normal curvature of local influence (Cook, 1986) under some usual perturbation schemes. Discussions on the prediction of the random effects, variance component tests and residual analysis are also given. Finally, we compare the fits of log-BS and log-BS-t mixed models to a real data set. Diagnostic methods are used in the comparisons.
|
30 |
Rank matrix cascade algorithm, hermite interpolationDongmo, Guy Blaise 12 1900 (has links)
Thesis (DSc (Mathematical Sciences))--University of Stellenbosch, 2007. / ENGLISH ABSTRACT: (Math symbols have changed) Wavelet and subdivision techniques have developed, over the last two decades, into
powerful mathematical tools, for example in signal analysis and geometric modelling.
Both wavelet and subdivision analysis are based on the concept of a matrix–refinable
function, i.e. a finitely supported matrix function which is self-replicating in the sense
that it can be expressed as a linear combination of the integer shifts of its own dilation
with factor 2:
F = TAF = å
k∈Z
F(2 ・ −k)Ak.
The coefficients Ak, k ∈ Z of d × d matrices, of this linear combination constitute the
so-called matrix- mask sequence. Wavelets are in fact constructed as a specific linear
combination of the integer shifts of the 2-dilation of a matrix- refinable function cf. [2;
9], whereas the convergence of the associated matrix- subdivision scheme
c0 = c, cr+1 = SAcr, r ∈ Z+,
SA : c = (ck : k ∈ Z) 7→ SAc =
å
ℓ∈Z
Ak−2ℓ cℓ : k ∈ Z
!
,
subject to the necessary condition that
rank := dim
\
ǫ∈{0,1}
n
y ∈ Rd : Qǫy = y
o
> 0, Qǫ := å
j∈Z
Aǫ+2j, ǫ ∈ {0, 1},
( cf. [26]) , implies the existence of a finitely supported matrix- function which is refinable
with respect to the mask coefficients defining the refinement equation and the
subdivision scheme.
Throughout this thesis, we investigate in time–domain for a given matrix mask sequence,
the related issues of the existence of a matrix–refinable function and the convergence
of the corresponding matrix– cascade algorithm, and finally we apply some
results to the particular research area of Hermite interpolatory subdivision schemes.
The dissertation is organized as follows:
In order to provide a certain flexibility or freedom over the project, we established
in Chapter 1 the equivalence relation between the matrix cascade algorithm and the
matrix subdivision scheme, subject to a well defined class of initial iterates.
Despite the general noncommutativity of matrices, we make use in the full rank case
Qǫ = I, ǫ ∈ {0, 1}, of a symbol factorization, to develop in Chapter 2 some useful
tools, yielding a convergence result which comes as close to the scalar case as possible:
we obtained a concrete sufficient condition on the mask sequence based on the matrix
version of the generating function introduced in [3, page 22] for existence and convergence.
Whilst the conjecture on nonnegative masks was confirmed in 2005 by Zhou [29],
our result on scalar case provided a progress for general mask sequences. We then
applied to obtain a new one-parameter family of refinable functions which includes
the cardinal splines as a special case, as well as corresponding convergent subdivision
schemes.
With the view to broaden the class of convergent matrix-masks, we replaced in chapter
3 the full rank condition by the rank one condition Qǫu = u, ǫ ∈ {0, 1}, u :=
(1, . . . , 1)T, then improved the paper by Dubuc and Merrien [13] by using the theory
of rank subdivision schemes by Micchelli and Sauer [25; 26], and end up this improvement
with a generalization of [13, Theorem 13, p.8] in to the context of rank subdivision
schemes.
In Chapter 4, we translated the concrete convergence criteria of the general theory from
Theorem 3.2, based on the r-norming factor introduced in [13, Definition 6, p.6], into
the context of rank, factorization and spectral radius (cf. [26]), and presented a careful
analysis of the relationship between the two concepts. We then proceed with generalizations
and improvements: we classified the matrix cascade algorithms in term of
rank = 1, 2, . . . , d, and provided a complete characterization of each class with the use
of a more general r−norming factor namely τ(r)-norming factor. On the other hand,
we presented numerical methods to determine, if possible, the convergence of each
class of matrix cascade algorithms.
In both the scalar and matrix cases above, we also obtained explicitly the geometric
constant appearing in the estimate for the geometric convergence of thematrix-cascade
algorithm iterates to the matrix- refinable function. This same geometric convergence
rate therefore also holds true for the corresponding matrix–cascade algorithm.
Finally, in Chapter 5, we apply the theory and algorithms developed in Chapter 4 to
the particular research area of Hermite interpolatory subdivision schemes: we provided
a new convergence criterium, and end up with new convergence ranges of the
parameters’ values of the famous Hermite interpolatory subdivision scheme with two
parameters, due to Merrien [23]. / AFRIKAANSE OPSOMMING :(Wiskundige simbole het verander) Golfie en subdivisietegnieke het oor die afgelope twee dekades ontwikkel in kragtige wiskundige gereedskap, byvoorbeeld in seinanalise en geometriesemodellering. Beide
golfie en subdivisie analise is gebaseer op die konsep van ’n matriks-verfynbare funksie;
oftewel ’n eindig-ondersteunde matriksfunksie F wat selfreproduserend is in die sin
dat dit uitgedruk kan word as ’n lineêre kombinasie van die heelgetalskuiwe van F se
eie dilasie met faktor 2:
F = Σ F(2 · −α)A(α), met A(α), α ∈ Z, wat aandui die sogenaamde matriks-masker ry. Golfies kan dan gekonstrueer word as ’n spesifieke lineêre kombinasie van die
funksie ry {F(2 · −α) : α ∈ Z} (sien [2; 9]), terwyl die konvergensie van die ooreenstemmende
matriks-subdivisie skema
cº = c, cr+1 =(Σ
β∈Z A(α − 2β) cr(β) : α ∈ Z
!
, r ∈ Z+,
onderhewig aan die nodige voorwaarde dat rank := dim
\
ǫ∈{0,1}
n
y ∈ Rd : Qǫy = y
o
> 0, Qǫ := å
α∈Z
A(ǫ + 2α), ǫ ∈ {0, 1},
(sien [27]) die bestaan impliseer van ’n eindig-ondersteunde matriksfunksie F wat
verfynbaar ismet betrekking tot diemaskerko¨effisi¨entewat die subdivisieskema definieer,
en in terme waarvan die limietfunksie F van die subdivisieskema uitgedruk kan word
as F = å
α∈Z
F(· − α)c(α).
Ons hoofdoel hier is om , in die tydgebied, en vir ’n gegewematriks-masker ry, die verwante
kwessies van die bestaan van ’nmatriks-verfynbare funksie en die konvergensie
van die ooreenstemmende matriks-kaskade algoritme, en matriks-subdivisieskema, te
ondersoek, en om uiteindelik sommige van ons resultate toe te pas op die spesifieke
kwessie van die konvergensie van Hermite interpolerende subdivisieskemas.
Summary v
Eerstens, in Hoofstuk 1, ondersoek ons die verwantskap tussen matriks-kaskade algoritmes
en matriks-subdivisie skemas, met verwysing na ’n goedgedefinieerde klas van
begin-iterate.
Vervolgens beskou ons die volle rang geval Qǫ = I, ǫ ∈ {0, 1}, om, in Hoofstuk 2,
nuttige gereedskap te ontwikkel, en wat daarby ’n konvergensie resultaat met ’n sterk
konneksie ten opsigte van die skalaar-geval oplewer.
Met die doelstelling om ons klas van konvergente matriks-maskers te verbreed, vervang
ons, in Hoofstuk 3, die volle rang voorwaarde met die rang een voorwaarde Qǫu =
u, ǫ ∈ {0, 1}, u := (1, . . . , 1)T, en verkry ons dan ’n verbetering op ’n konvergensieresultaat
in die artikel [14] deur Dubuc en Merrien, deur gebruik te maak van die
teorie van rang subdivisieskemas van Micchelli en Sauer [26; 27], waarna ons die resultaat
[14, Stelling 13, page 8] na die konteks van rang subdivisieskemas veralgemeen.
InHoofstuk 4 herlei ons die konkrete konvergensie kriteria van Stelling 3.2, soos gebaseer
op die r-normerende faktor gedefinieer in [14, Definisie 6, page 6] , na die konteks
van rang, faktorisering en spektraalradius (sien [27]), en gee ons ’n streng analise
van die verwantskap tussen die twee konsepte. Verder stel ons dan bekend ’n nuwe
klassifikasie van matriks-kaskade algoritmes ten opsigte van rang, en verskaf ons ’n
volledige karakterisering van elke klasmet behulp van ’nmeer algemene r-normerende
faktor, nl. die τ(r)-normerende faktor. Daarby gee ons doeltreffende numeriesemetodes
vir die implementering van ons teoretiese resultate.
Ons verkry ook eksplisiet die geometriese konstante wat voorkom in die afskatting
van die geometriese konvergensie van die matriks-kaskade algoritme iterate na die
matriks-verfynbare funksie.
Ten slotte, in Hoofstuk 5, pas ons die teorie en algoritmes ontwikkel in Hoofstuk 4 toe
om die konvergensie van Hermite-interpolerende subdivisieskemas te analiseer. Spesifiek
lei ons ’n nuwe konvergensie kriterium af, wat ons dan toepas om nuwe konvergensie
gebiede vir die parameter waardes te verkry vir die beroemde Hermite interpolerende
subdivisieskema met twee parameters, soos toegeskryf aan Merrien [24].
|
Page generated in 0.0376 seconds