• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 337
  • 189
  • 134
  • 56
  • 45
  • 44
  • 4
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 922
  • 922
  • 922
  • 404
  • 394
  • 351
  • 351
  • 329
  • 325
  • 320
  • 319
  • 316
  • 314
  • 313
  • 313
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
481

Routing on the Channel Dependency Graph:

Domke, Jens 20 June 2017 (has links) (PDF)
In the pursuit for ever-increasing compute power, and with Moore's law slowly coming to an end, high-performance computing started to scale-out to larger systems. Alongside the increasing system size, the interconnection network is growing to accommodate and connect tens of thousands of compute nodes. These networks have a large influence on total cost, application performance, energy consumption, and overall system efficiency of the supercomputer. Unfortunately, state-of-the-art routing algorithms, which define the packet paths through the network, do not utilize this important resource efficiently. Topology-aware routing algorithms become increasingly inapplicable, due to irregular topologies, which either are irregular by design, or most often a result of hardware failures. Exchanging faulty network components potentially requires whole system downtime further increasing the cost of the failure. This management approach becomes more and more impractical due to the scale of today's networks and the accompanying steady decrease of the mean time between failures. Alternative methods of operating and maintaining these high-performance interconnects, both in terms of hardware- and software-management, are necessary to mitigate negative effects experienced by scientific applications executed on the supercomputer. However, existing topology-agnostic routing algorithms either suffer from poor load balancing or are not bounded in the number of virtual channels needed to resolve deadlocks in the routing tables. Using the fail-in-place strategy, a well-established method for storage systems to repair only critical component failures, is a feasible solution for current and future HPC interconnects as well as other large-scale installations such as data center networks. Although, an appropriate combination of topology and routing algorithm is required to minimize the throughput degradation for the entire system. This thesis contributes a network simulation toolchain to facilitate the process of finding a suitable combination, either during system design or while it is in operation. On top of this foundation, a key contribution is a novel scheduling-aware routing, which reduces fault-induced throughput degradation while improving overall network utilization. The scheduling-aware routing performs frequent property preserving routing updates to optimize the path balancing for simultaneously running batch jobs. The increased deployment of lossless interconnection networks, in conjunction with fail-in-place modes of operation and topology-agnostic, scheduling-aware routing algorithms, necessitates new solutions to solve the routing-deadlock problem. Therefore, this thesis further advances the state-of-the-art by introducing a novel concept of routing on the channel dependency graph, which allows the design of an universally applicable destination-based routing capable of optimizing the path balancing without exceeding a given number of virtual channels, which are a common hardware limitation. This disruptive innovation enables implicit deadlock-avoidance during path calculation, instead of solving both problems separately as all previous solutions.
482

Mouvement de données et placement des tâches pour les communications haute performance sur machines hiérarchiques

Moreaud, Stéphanie 12 October 2011 (has links)
Les architectures des machines de calcul sont de plus en plus complexes et hiérarchiques, avec des processeurs multicœurs, des bancs mémoire distribués, et de multiples bus d'entrées-sorties. Dans le cadre du calcul haute performance, l'efficacité de l'exécution des applications parallèles dépend du coût de communication entre les tâches participantes qui est impacté par l'organisation des ressources, en particulier par les effets NUMA ou de cache.Les travaux de cette thèse visent à l'étude et à l'optimisation des communications haute performance sur les architectures hiérarchiques modernes. Ils consistent tout d'abord en l'évaluation de l'impact de la topologie matérielle sur les performances des mouvements de données, internes aux calculateurs ou au travers de réseaux rapides, et pour différentes stratégies de transfert, types de matériel et plateformes. Dans une optique d'amélioration et de portabilité des performances, nous proposons ensuite de prendre en compte les affinités entre les communications et le matériel au sein des bibliothèques de communication. Ces recherches s'articulent autour de l'adaptation du placement des tâches en fonction des schémas de transfert et de la topologie des calculateurs, ou au contraire autour de l'adaptation des stratégies de mouvement de données à une répartition définie des tâches. Ce travail, intégré aux principales bibliothèques MPI, permet de réduire de façon significative le coût des communications et d'améliorer ainsi les performances applicatives. Les résultats obtenus témoignent de la nécessité de prendre en compte les caractéristiques matérielles des machines modernes pour en exploiter la quintessence. / The emergence of multicore processors led to an increasing complexity inside the modern servers, with many cores, distributed memory banks and multiple Input/Output buses. The execution time of parallel applications depends on the efficiency of the communications between computing tasks. On recent architectures, the communication cost is largely impacted by hardware characteristics such as NUMA or cache effects. In this thesis, we propose to study and optimize high performance communication on hierarchical architectures. We first evaluate the impact of the hardware affinities on data movement, inside servers or across high-speed networks, and for multiple transfer strategies, technologies and platforms. We then propose to consider affinities between hardware and communicating tasks inside the communication libraries to improve performance and ensure their portability. To do so,we suggest to adapt the tasks binding according to the transfer method and thetopology, or to adjust the data transfer strategies to a defined task distribution. Our approaches have been integrated in some main MPI implementations. They significantly reduce the communication costs and improve the overall application performance. These results highlight the importance of considering hardware topology for nowadays servers.
483

An investigation into parallel job scheduling using service level agreements

Ali, Syed Zeeshan January 2014 (has links)
A scheduler, as a central components of a computing site, aggregates computing resources and is responsible to distribute the incoming load (jobs) between the resources. Under such an environment, the optimum performance of the system against the service level agreement (SLA) based workloads, can be achieved by calculating the priority of SLA bound jobs using integrated heuristic. The SLA defines the service obligations and expectations to use the computational resources. The integrated heuristic is the combination of different SLA terms. It combines the SLA terms with a specific weight for each term. Theweights are computed by applying parameter sweep technique in order to obtain the best schedule for the optimum performance of the system under the workload. The sweepingof parameters on the integrated heuristic observed to be computationally expensive. The integrated heuristic becomes more expensive if no value of the computed weights result in improvement in performance with the resulting schedule. Hence, instead of obtaining optimum performance it incurs computation cost in such situations. Therefore, there is a need of detection of situations where the integrated heuristic can be exploited beneficially. For that reason, in this thesis we propose a metric based on the concept of utilization, to evaluate the SLA based parallel workloads of independent jobs to detect any impact of integrated heuristic on the workload.
484

High-Performance Analytics (HPA) / High-Performance Analytics (HPA)

Soukup, Petr January 2012 (has links)
The aim of the thesis on the topic of High-Performance Analytics is to gain a structured overview of solutions of high performance methods for data analysis. The thesis introduction concerns with definitions of primary and secondary data analysis, and with the primary systems which are not appropriate for analytical data analysis. The usage of mobile devices, modern information technologies and other factors caused a rapid change of the character of data. The major part of this thesis is devoted particularly to the historical turn in the new approaches towards analytical data analysis, which was caused by Big Data, a very frequent term these days. Towards the end of the thesis there are discussed the system sources which greatly participate in the new approaches to the analytical data analysis as well as in the technological solutions of High Performance Analytics themselves. The second, practical part of the thesis is aimed at a comparison of the performance in conventional methods for data analysis and in one of the high performance methods of High Performance Analytics (more precisely, with In-Memory Analytics). Comparison of individual solutions is performed in identical environment of High Performance Analytics server. The methods are applied to a certain sample whose volume is increased after every round of executed measurement. The conclusion evaluates the tests results and discusses the possibility of usage of the individual High Performance Analytics methods.
485

Opérateurs arithmétiques parallèles pour la cryptographie asymétrique / Parallel arithmetical operators for asymmetric cryptography

Izard, Thomas 19 December 2011 (has links)
Les protocoles de cryptographie asymétrique nécessitent des calculs arithmétiques dans différentes structures mathématiques de grandes tailles. Pour garantir une sécurité suffisante, ces tailles varient de plusieurs centaines à plusieurs milliers de bits et rendent les opérations arithmétiques coûteuses en temps de calcul. D'autre part, les architectures grand public actuelles embarquent plusieurs unités de calcul, réparties sur les processeurs et éventuellement sur les cartes graphiques. Ces ressources sont aujourd'hui facilement exploitables grâce à des interfaces de programmation parallèle comme OpenMP ou CUDA. Dans cette thèse, nous étudions la parallélisation d'opérateurs à différents niveaux arithmétique. Nous nous intéressons plus particulièrement à la multiplication entre entiers multiprécision ; à la multiplication modulaire ; et enfin à la multiplication scalaire sur les courbes elliptiques.Dans chacun des cas, nous étudions différents ordonnancements des calculs permettant d'obtenir les meilleures performances. Nous proposons également une bibliothèque permettant la parallélisation sur processeur graphique d'instances d'opérations modulaires et d'opérations sur les courbes elliptiques. Enfin, nous proposons une méthode d'optimisation automatique de la multiplication scalaire sur les courbes elliptiques pour de petits scalaires permettant l'élimination des sous-expressions communes apparaissant dans la formule et l'application systématique de transformations arithmétiques. / Asymmetric cryptography requires some computations in large size finite mathematical structures. To insure the required security, these sizes range from several hundred to several thousand of bits. Mathematical operations are thus expansive in terms of computation time. Otherwise, current architectures have several computing units, which are distribued over the processors and GPU and easily implementable using dedicated languages as OpenMP or CUDA. In this dissertation, we investigate the parallelization of some operators for different arithmetical levels.In particular, our research focuse on parallel multiprecision and modular multiplications, and the parallelization of scalar multiplication over elliptic curves. We also propose a library to parallelize modular operations and elliptic curves operations. Finally, we present a method which allow to optimize scalar elliptic curve multiplication for small scalars.
486

Calcul hautes performances pour les formulations intégrales en électromagnétisme basses fréquences. Intégration, compression matricielle par ondelettes et résolution sur architecture GPGPU / High performance computing for integral formulations in low frequencies electromagnetism – Integration, wavelets matrix compression and solving on GPGPU architecture

Rubeck, Christophe 18 December 2012 (has links)
Les méthodes intégrales sont des méthodes particulièrement bien adaptées à la modélisation des systèmes électromagnétiques car contrairement aux méthodes par éléments finis elles ne nécessitent pas le maillage des matériaux inactifs tel que l'air. Ces modèles sont donc légers en terme du nombre de degrés de liberté. Cependant ceux sont des méthodes à interactions totales qui génèrent des matrices de systèmes d'équations pleines. Ces matrices sont longues à calculer en temps processeur et coûteuses à stocker dans la mémoire vive de l'ordinateur. Nous réduisons dans ces travaux les temps de calcul grâce au parallélisme, c'est-à-dire l'utilisation de plusieurs processeurs, notamment sur cartes graphiques (GPGPU). Nous réduisons également le coût du stockage mémoire via de la compression matricielle par ondelettes (il s'agit d'un algorithme proche de la compression d'images). C'est une compression par pertes, nous avons ainsi développé un critère pour contrôler l'erreur introduite par la compression. Les méthodes développées sont appliquées sur une formulation électrostatique de calcul de capacités, mais elles sont à priori également applicables à d'autres formulations. / Integral equation methods are widely used in electromagnetism modeling because, in opposition to finite element methods, they do not require the meshing of non-active materials like air. Therefore they lead to formulations with small degrees of freedom. However, they also lead to fully dense systems of equations. Computation times are expensive and the storage of the matrix is very expensive. This work presents different parallel computation strategies in order to speed up the computation time, in particular the use of graphical processing units (GPGPU) is focused. The next point is to reduce the memory requirements thanks to wavelets compression (it is an algorithm similar to image compression). The compression technique introduces errors, therefore a control criterion is proposed. The methodology is applied to an electrostatic formulation but it is general and it could also be used with others integral formulations.
487

A simulation workflow to evaluate the performance of dynamic load balancing with over decomposition for iterative parallel applications

Tesser, Rafael Keller January 2018 (has links)
Nesta tese é apresentado um novo workflow de simulação para avaliar o desempenho do balanceamento de carga dinâmico baseado em sobre-decomposição aplicado a aplicações paralelas iterativas. Seus objetivos são realizar essa avaliação com modificações mínimas da aplicação e a baixo custo em termos de tempo e de sua necessidade de recursos computacionais. Muitas aplicações paralelas sofrem com desbalanceamento de carga dinâmico (temporal) que não pode ser tratado a nível de aplicação. Este pode ser causado por características intrínsecas da aplicação ou por fatores externos de hardware ou software. Como demonstrado nesta tese, tal desbalanceamento é encontrado mesmo em aplicações cujo código não aparenta qualquer dinamismo. Portanto, faz-se necessário utilizar mecanismo de balanceamento de carga dinâmico a nível de runtime. Este trabalho foca no balanceamento de carga dinâmico baseado em sobre-decomposição. No entanto, avaliar e ajustar o desempenho de tal técnica pode ser custoso. Isso geralmente requer modificações na aplicação e uma grande quantidade de execuções para obter resultados estatisticamente significativos com diferentes combinações de parâmetros de balanceamento de carga Além disso, para que essas medidas sejam úteis, são usualmente necessárias grandes alocações de recursos em um sistema de produção. Simulated Adaptive MPI (SAMPI), nosso workflow de simulação, emprega uma combinação de emulação sequencial e replay de rastros para reduzir os custos dessa avaliação. Tanto emulação sequencial como replay de rastros requerem um único nó computacional. Além disso, o replay demora apenas uma pequena fração do tempo de uma execução paralela real da aplicação. Adicionalmente à simulação de balanceamento de carga, foram desenvolvidas técnicas de agregação espacial e rescaling a nível de aplicação, as quais aceleram o processo de emulação. Para demonstrar os potenciais benefícios do balanceamento de carga dinâmico com sobre-decomposição, foram avaliados os ganhos de desempenho empregando essa técnica a uma aplicação iterativa paralela da área de geofísica (Ondes3D). Adaptive MPI (AMPI) foi utilizado para prover o suporte a balanceamento de carga dinâmico, resultando em ganhos de desempenho de até 36.58% em 288 cores de um cluster Essa avaliação também é usada pra ilustrar as dificuldades encontradas nesse processo, assim justificando o uso de simulação para facilitá-la. Para implementar o workflow SAMPI, foi utilizada a interface SMPI do simulador SimGrid, tanto no modo de emulação, como no de replay de rastros. Para validar esse simulador, foram comparadas execuções simuladas (SAMPI) e reais (AMPI) da aplicação Ondes3D. As simulações apresentaram uma evolução do balanceamento de carga bastante similar às execuções reais. Adicionalmente, SAMPI estimou com sucesso a melhor heurística de balanceamento de carga para os cenários testados. Além dessa validação, nesta tese é demonstrado o uso de SAMPI para exploração de parâmetros de balanceamento de carga e para planejamento de capacidade computacional. Quanto ao desempenho da simulação, estimamos que o workflow completo é capaz de simular a execução do Ondes3D com 24 combinações de parâmetros de balanceamento de carga em 5 horas para o nosso cenário de terremoto mais pesado e 3 horas para o mais leve. / In this thesis we present a novel simulation workflow to evaluate the performance of dynamic load balancing with over-decomposition applied to iterative parallel applications at low-cost. Its goals are to perform such evaluation with minimal application modification and at a low cost in terms of time and of resource requirements. Many parallel applications suffer from dynamic (temporal) load imbalance that can not be treated at the application level. It may be caused by intrinsic characteristics of the application or by external software and hardware factors. As demonstrated in this thesis, such dynamic imbalance can be found even in applications whose codes do not hint at any dynamism. Therefore, we need to rely on runtime dynamic load balancing mechanisms, such as dynamic load balancing based on over-decomposition. The problem is that evaluating and tuning the performance of such technique can be costly. This usually entails modifications to the application and a large number of executions to get statistically sound performance measurements with different load balancing parameter combinations. Moreover, useful and accurate measurements often require big resource allocations on a production cluster. Our simulation workflow, dubbed Simulated Adaptive MPI (SAMPI), employs a combined sequential emulation and trace-replay simulation approach to reduce the cost of such an evaluation Both sequential emulation and trace-replay require a single computer node. Additionally, the trace-replay simulation lasts a small fraction of the real-life parallel execution time of the application. Besides the basic SAMPI simulation, we developed spatial aggregation and applicationlevel rescaling techniques to speed-up the emulation process. To demonstrate the real-life performance benefits of dynamic load balance with over-decomposition, we evaluated the performance gains obtained by employing this technique on a iterative parallel geophysics application, called Ondes3D. Dynamic load balancing support was provided by Adaptive MPI (AMPI). This resulted in up to 36.58% performance improvement, on 288 cores of a cluster. This real-life evaluation also illustrates the difficulties found in this process, thus justifying the use of simulation. To implement the SAMPI workflow, we relied on SimGrid’s Simulated MPI (SMPI) interface in both emulation and trace-replay modes.To validate our simulator, we compared simulated (SAMPI) and real-life (AMPI) executions of Ondes3D. The simulations presented a load balance evolution very similar to real-life and were also successful in choosing the best load balancing heuristic for each scenario. Besides the validation, we demonstrate the use of SAMPI for load balancing parameter exploration and for computational capacity planning. As for the performance of the simulation itself, we roughly estimate that our full workflow can simulate the execution of Ondes3D with 24 different load balancing parameter combinations in 5 hours for our heavier earthquake scenario and in 3 hours for the lighter one.
488

Improving Network-on-Chip Performance in Multi-Core Systems

Gorgues Alonso, Miguel 10 September 2018 (has links)
La red en el chip (NoC) se han convertido en el elemento clave para la comunicación eficiente entre los núcleos dentro de los chip multiprocesador (CMP). Tanto el uso de aplicaciones paralelas en los CMPs como el incremento de la cantidad de memoria necesitada por las aplicaciones, ha impulsado que la red de comunicación gane una mayor importancia. La NoC es la encargada de transportar toda la información requerida por los núcleos. Además, el incremento en el número de núcleos en los CMPs impulsa las NoC a ser diseñadas de forma escalable, pero al mismo tiempo sin que esto afecte a las prestaciones de la red (latencia y productividad). Por tanto, el diseño de la red en el chip se convierte en crítico. Esta tesis presenta diferentes propuestas que atacan el problema de la mejora de las prestaciones de la red en tres escenarios distintos. Los tres escenarios en los que se centran nuestras propuestas son: 1) NoCs que implementan un algoritmo de encaminamiento adaptativo, 2) escenarios con necesidad de tiempos de acceso a memoria bajos y 3) sistemas con previsión de seguridad a nivel de aplicación. Las primeras propuestas se centran en el aumento de la productividad en la red utilizando algoritmos de encaminamiento adaptativos mediante un mejor uso de los recursos de la red, primera propuesta SUR, y evitando que se ramifique la congestión cuando existe tráfico intenso hacia un único destinatario, segunda propuesta EPC. La tercera y principal contribución de esta tesis se centra la problemática de reducir el tiempo de acceso a memoria. PROSA, mediante un diseño híbrido de conmutación de paquete y conmuntación de circuito, permite reducir la latencia de la red aprovechando la latencia de acceso a memoria para establecer circuitos. De esta forma cuando la información llega a la NoC, esta es servida sin retardos. Por último, la propuesta Token Based TDM se centra en el escenario con redes de interconexión seguras. En este tipo de NoC las aplicaciones esta divididas en dominios y la red debe garantizar que no existen interferencias entre los diferentes dominios para evitar de este modo la intrusión de posibles aplicaciones maliciosas. Token-based TDM permite el aislamiento de los dominios sin tener impacto en el diseño de los conmutados de la NoC. Los resultados obtenidos demuestran como estas propuestas han servido para mejorar las prestaciones de la red en los diferentes escenarios. La implementación y la simulación de las propuestas muestra como mediante el balanceado de la utilización de los recursos de la red, los CMPs con algoritmos de encaminamiento adaptativos son capaces de aumentar el tráfico soportado por la red. Además, el uso de un filtro para limitar el encaminamiento adaptativo en situaciones de congestión previene a los mensajes de la ramificación de la congestión a lo largo de la red. Por otra parte, los resultados demuestran que el uso combinado de la conmutación de paquete y conmutación de circuito reduce muy significativa de la latencia de red acceso a memoria, contribuyendo a una reducción significativa del tiempo de ejecución de la aplicación. Por último, Token-Based TDM incrementa las prestaciones de las redes TDM debido a su alta flexibilidad dado que no requiere ninguna modificación en la red para soportar una cantidad diferente de dominios mientras mejora la latencia de la red y mantiene un aislamiento perfecto entre los tráficos de las aplicaciones. / The Network on Chip (NoC) has become the key element for an efficient communication between cores within the multiprocessor chip (CMP). The use of parallel applications in CMPs and the increase in the amount of memory needed by applications have pushed the network communication to gain importance. The NoC is in charge of transporting all the data needed by the processors cores. Moreover, the increase in the number of cores pushes the NoCs to be designed in a scalable way, but at the same time, without affecting network performance (latency and productivity). Thus, network-on-chip design becomes critical. This thesis presents different proposals that attack the problem of improving the network performance in three different scenarios. The three scenarios in which our proposals are focused are: 1) NoCs with an adaptive routing algorithm, 2) scenarios with low memory access time needs, and 3) high-assurance NoCs. The first proposals focus on increasing network throughput with adaptive routing algorithms via the improvement of the network resources utilization, the first proposal SUR, and avoiding congestion spreading when an intense traffic to a single destination occurs, second proposal ECP. The third one and main contribution of this thesis focuses on the problem of reducing memory access latency. PROSA, through a hybrid circuit-packet switching architecture design, reduces the network latency by getting benefit of the memory access latency slack and to establishing circuits during that delay. In this way the information when arrives to the NoC is served without any delay. Finally, the proposal Token-Based TDM focuses on the scenario with high assurance networks on chips. In this type of NoCs the applications are divided into domains and the network must guarantee that there are no interferences between the different domains avoiding this way intrusion of possible malicious applications. Token-based TDM allows domain isolation with no design impact on NoC routers. The results show how these proposals improve the performance of the network in each different scenario. The implementation and simulations of the proposals show the efficient use of network resources in CMPs with adaptive routing algorithms which leads to an increasement of the injected traffic supported by the network. In addition, using a filter to limit the adaptivity of the routing algorithm under congested situations prevents messages from spreading the congestion along the network. On the other hand, the results show that the combined use of circuit and packet switching reduces the memory access latency significantly, contributing to a significant reduction in application execution time. Finally, Token-Based TDM increases network performance of TDM networks due to its high flexibility and efficient arbitration. Moreover, Token-Based TDM does not require any modification in the network to support a different number of domains while improving latency and keeping a strong traffic isolation from different domains. / La xarxa en el xip (NoC) s'ha convertit en un element clau per a una comunicació eficient entre els diferents nuclis dins d'un xip multiprocessador (CMP). Tant la utilització d'aplicacions paral·leles en el CMP com l'increment de la quantitat de memòria necessitada per les aplicacions, hi ha produït que la xarxa de comunicació tinga una major importància. La NoC és l'encarregada de transportar tota la informació necessària pels nuclis. A més, l'increment del nombre de nuclis dins del CMP fa que la NoC haja de ser dissenyada d'una forma escalable, sense que afecte les prestacions de la xarxa (latència i productivitat). Per tant, el disseny de la xarxa en el xip es converteix crític. Aquesta tesi presenta diferents propostes que ataquen el problema de la millora de les prestacions de la xarxa en tres escenaris distints. Els tres escenaris en els quals se centren les nostres propostes són: 1) NoCs que implementen un algoritme d'encaminament adaptatiu, 2) escenaris amb necessitat de temps baix d'accés a memòria i 3) sistemes amb previsió de seguretat en l'àmbit d'aplicació. Les primeres propostes se centren en l'augment de la productivitat en la xarxa utilitzant algoritmes d'encaminament adaptatiu mitjançant una millor utilització dels recursos de la xarxa, primera proposta SUR, i evitant que es ramifique la congestió quan existeix un trànsit intens cap a un únic destinatari, segona proposta EPC. La tercera i principal contribució d'aquesta tesi es basa en la problemàtica de reduir el temps d'accés a memòria. PROSA, mitjançant un disseny híbrid de commutació de paquet i commutació de circuit, redueix la latència de la xarxa aprofitant la latència d'accés a memòria i establint els circuits durant aquesta latència. D'aquesta forma la informació quan arriba a la NoC pot ser enviada sense cap retràs. Per últim, la proposta Token-based TDM se centra en l'escenari amb xarxes d'interconnexió d'alta seguretat. En aquest tipus de NoC les aplicacions estan dividides en dominis i la xarxa deu garantir que no existeixen interferències entre els diferents dominis per a evitar d'aquesta forma la intrusió de possibles aplicacions malicioses. Token-based TDM permet l'aïllament dels dominis sense tindre impacte en el disseny dels encaminadors de la NoC. Els resultats demostren com aquestes propostes han servit per a millorar les prestacions de la xarxa en els diferents escenaris. La seua implementació i simulació demostra com mitjançant el balancejat de la utilització dels recursos de la xarxa, els CMP amb algoritmes d'encaminament adaptatiu són capaços d'augmentar el trànsit suportat per la xarxa. A més, l'ús d'un filtre per a limitar l'adaptabilitat de l'encaminament adaptatiu en situacions de congestió permet prevenir els missatges de la congestió al llarg de la xarxa. Per altra banda, els resultats demostren que l'ús combinat de la commutació de paquet i commutació de circuit redueix molt significativament de la latència d'accés a memòria, contribuint en una reducció significativa del temps d'execució de l'aplicació. Per últim, Token-based TDM incrementa les prestacions de les xarxes TDM debut a la seua alta flexibilitat donat que no requereix cap modificació en la xarxa per a suportar una quantitat diferent de dominis mentre millora la latència de la xarxa i mantén un aïllament perfecte entre els trànsits de les aplicacions. / Gorgues Alonso, M. (2018). Improving Network-on-Chip Performance in Multi-Core Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/107336 / TESIS
489

Akcelerace ultrazvukových simulací pro axisymetrické medium / Acceleration of Axisymetric Ultrasound Simulations

Kukliš, Filip January 2018 (has links)
Simulácia šírenia ultrazvuku prostredníctvom mäkkých biologických tkanív má širokú škálu praktických aplikácií. Patria sem dizajn prevodníkov pre diagnostický a terapeutický ultrazvuk, vývoj nových metód spracovania signálov a zobrazovacích techník, štúdium anomálií ultrazvukových lúčov v heterogénnych médiách, ultrazvuková klasifikácia tkanív, učenie rádiológov používať ultrazvukové zariadenia a interpretáciu ultrazvukových obrazov, modelové vrstvenie medicínskeho obrazu a plánovanie liečby pre ultrazvuk s vysokou intenzitou. Ultrazvuková simulácia však predstavuje výpočtovo zložitý problém, pretože simulačné domény sú veľmi veľké v porovnaní s akustickými vlnovými dĺžkami, ktoré sú predmetom záujmu. Ale ak je problém osovo symetrický, problém môže byť riešený v 2D.To umožňuje spúšťanie simulácií na mriežke s väčším počtom bodov, s menším využitím výpoč- tových zdrojov za kratšiu dobu. Táto práca modeluje a implementuje zrýchlenie vlnovej nelineárnej ultrazvukovej simulácie v axisymetrickom súradnicovom systéme realizovanom v Matlabe pomocou Mex súborov pre diskrétne sínové a kosínové transformácie. Axisymetrická simulácia bola implementovaná v C++ ako open source rozšírenie K-WAVE toolboxu. Kód je optimalizovaný na beh na jednom uzle superpočítaču Salomon (IT4Innovations, Ostrava, Česká republika) s dvoma dvanásť-jadrovými procesormi Intel Xeon E5-2680v3. Na maximalizáciu výpočtovej efektívnosti boli vykonané viaceré optimalizácie kódu. Po prvé, fourierové tramsformácie boli vypočítané pomocou real-to-complex FFT z knižnice FFTW. V porovnaní s complex-to-complex FFT to znížilo čas výpočtu a pamäť spojenú s výpočtom FFT o takmer 50%. Taktiež diskrétne sínové a kosínové transformácie sa počítali pomocou knižnice FFTW, ktoré v Matlab verzii museli byť vyvolané z dynamicky načítaných MEX súborov. Po druhé, aby sa znížilo zaťaženie priepustnosti pamäte, boli všetky operácie počítané jednoduchej presnosti pohyblivej rádovej čiarky. Po tretie, elementárne operá- cie boli paralelizované pomocou OpenMP a potom vektorizované pomocou rozšírení SIMD (SSE). Celkový výpočet C++ verzie je až do 34-násobne rýchlejší a využíva menej ako tretinu pamäte ako Matlab verzia simulácie. Simulácia ktorá by trvala takmer dva dni tak môže byť vypočítaná za jeden a pol hodinu. Toto všetko umožňuje počítať simuláciu na výpočetnej mriežke s veľkosťou 16384 × 8192 bodov v primeranom čase.
490

Elastic, Interoperable and Container-based Cloud Infrastructures for High Performance Computing

López Huguet, Sergio 02 September 2021 (has links)
Tesis por compendio / [ES] Las aplicaciones científicas implican generalmente una carga computacional variable y no predecible a la que las instituciones deben hacer frente variando dinámicamente la asignación de recursos en función de las distintas necesidades computacionales. Las aplicaciones científicas pueden necesitar grandes requisitos. Por ejemplo, una gran cantidad de recursos computacionales para el procesado de numerosos trabajos independientes (High Throughput Computing o HTC) o recursos de alto rendimiento para la resolución de un problema individual (High Performance Computing o HPC). Los recursos computacionales necesarios en este tipo de aplicaciones suelen acarrear un coste muy alto que puede exceder la disponibilidad de los recursos de la institución o estos pueden no adaptarse correctamente a las necesidades de las aplicaciones científicas, especialmente en el caso de infraestructuras preparadas para la ejecución de aplicaciones de HPC. De hecho, es posible que las diferentes partes de una aplicación necesiten distintos tipos de recursos computacionales. Actualmente las plataformas de servicios en la nube se han convertido en una solución eficiente para satisfacer la demanda de las aplicaciones HTC, ya que proporcionan un abanico de recursos computacionales accesibles bajo demanda. Por esta razón, se ha producido un incremento en la cantidad de clouds híbridos, los cuales son una combinación de infraestructuras alojadas en servicios en la nube y en las propias instituciones (on-premise). Dado que las aplicaciones pueden ser procesadas en distintas infraestructuras, actualmente la portabilidad de las aplicaciones se ha convertido en un aspecto clave. Probablemente, las tecnologías de contenedores son la tecnología más popular para la entrega de aplicaciones gracias a que permiten reproducibilidad, trazabilidad, versionado, aislamiento y portabilidad. El objetivo de la tesis es proporcionar una arquitectura y una serie de servicios para proveer infraestructuras elásticas híbridas de procesamiento que puedan dar respuesta a las diferentes cargas de trabajo. Para ello, se ha considerado la utilización de elasticidad vertical y horizontal desarrollando una prueba de concepto para proporcionar elasticidad vertical y se ha diseñado una arquitectura cloud elástica de procesamiento de Análisis de Datos. Después, se ha trabajo en una arquitectura cloud de recursos heterogéneos de procesamiento de imágenes médicas que proporciona distintas colas de procesamiento para trabajos con diferentes requisitos. Esta arquitectura ha estado enmarcada en una colaboración con la empresa QUIBIM. En la última parte de la tesis, se ha evolucionado esta arquitectura para diseñar e implementar un cloud elástico, multi-site y multi-tenant para el procesamiento de imágenes médicas en el marco del proyecto europeo PRIMAGE. Esta arquitectura utiliza un almacenamiento distribuido integrando servicios externos para la autenticación y la autorización basados en OpenID Connect (OIDC). Para ello, se ha desarrollado la herramienta kube-authorizer que, de manera automatizada y a partir de la información obtenida en el proceso de autenticación, proporciona el control de acceso a los recursos de la infraestructura de procesamiento mediante la creación de las políticas y roles. Finalmente, se ha desarrollado otra herramienta, hpc-connector, que permite la integración de infraestructuras de procesamiento HPC en infraestructuras cloud sin necesitar realizar cambios en la infraestructura HPC ni en la arquitectura cloud. Cabe destacar que, durante la realización de esta tesis, se han utilizado distintas tecnologías de gestión de trabajos y de contenedores de código abierto, se han desarrollado herramientas y componentes de código abierto y se han implementado recetas para la configuración automatizada de las distintas arquitecturas diseñadas desde la perspectiva DevOps. / [CA] Les aplicacions científiques impliquen generalment una càrrega computacional variable i no predictible a què les institucions han de fer front variant dinàmicament l'assignació de recursos en funció de les diferents necessitats computacionals. Les aplicacions científiques poden necessitar grans requisits. Per exemple, una gran quantitat de recursos computacionals per al processament de nombrosos treballs independents (High Throughput Computing o HTC) o recursos d'alt rendiment per a la resolució d'un problema individual (High Performance Computing o HPC). Els recursos computacionals necessaris en aquest tipus d'aplicacions solen comportar un cost molt elevat que pot excedir la disponibilitat dels recursos de la institució o aquests poden no adaptar-se correctament a les necessitats de les aplicacions científiques, especialment en el cas d'infraestructures preparades per a l'avaluació d'aplicacions d'HPC. De fet, és possible que les diferents parts d'una aplicació necessiten diferents tipus de recursos computacionals. Actualment les plataformes de servicis al núvol han esdevingut una solució eficient per satisfer la demanda de les aplicacions HTC, ja que proporcionen un ventall de recursos computacionals accessibles a demanda. Per aquest motiu, s'ha produït un increment de la quantitat de clouds híbrids, els quals són una combinació d'infraestructures allotjades a servicis en el núvol i a les mateixes institucions (on-premise). Donat que les aplicacions poden ser processades en diferents infraestructures, actualment la portabilitat de les aplicacions s'ha convertit en un aspecte clau. Probablement, les tecnologies de contenidors són la tecnologia més popular per a l'entrega d'aplicacions gràcies al fet que permeten reproductibilitat, traçabilitat, versionat, aïllament i portabilitat. L'objectiu de la tesi és proporcionar una arquitectura i una sèrie de servicis per proveir infraestructures elàstiques híbrides de processament que puguen donar resposta a les diferents càrregues de treball. Per a això, s'ha considerat la utilització d'elasticitat vertical i horitzontal desenvolupant una prova de concepte per proporcionar elasticitat vertical i s'ha dissenyat una arquitectura cloud elàstica de processament d'Anàlisi de Dades. Després, s'ha treballat en una arquitectura cloud de recursos heterogenis de processament d'imatges mèdiques que proporciona distintes cues de processament per a treballs amb diferents requisits. Aquesta arquitectura ha estat emmarcada en una col·laboració amb l'empresa QUIBIM. En l'última part de la tesi, s'ha evolucionat aquesta arquitectura per dissenyar i implementar un cloud elàstic, multi-site i multi-tenant per al processament d'imatges mèdiques en el marc del projecte europeu PRIMAGE. Aquesta arquitectura utilitza un emmagatzemament integrant servicis externs per a l'autenticació i autorització basats en OpenID Connect (OIDC). Per a això, s'ha desenvolupat la ferramenta kube-authorizer que, de manera automatitzada i a partir de la informació obtinguda en el procés d'autenticació, proporciona el control d'accés als recursos de la infraestructura de processament mitjançant la creació de les polítiques i rols. Finalment, s'ha desenvolupat una altra ferramenta, hpc-connector, que permet la integració d'infraestructures de processament HPC en infraestructures cloud sense necessitat de realitzar canvis en la infraestructura HPC ni en l'arquitectura cloud. Es pot destacar que, durant la realització d'aquesta tesi, s'han utilitzat diferents tecnologies de gestió de treballs i de contenidors de codi obert, s'han desenvolupat ferramentes i components de codi obert, i s'han implementat receptes per a la configuració automatitzada de les distintes arquitectures dissenyades des de la perspectiva DevOps. / [EN] Scientific applications generally imply a variable and an unpredictable computational workload that institutions must address by dynamically adjusting the allocation of resources to their different computational needs. Scientific applications could require a high capacity, e.g. the concurrent usage of computational resources for processing several independent jobs (High Throughput Computing or HTC) or a high capability by means of using high-performance resources for solving complex problems (High Performance Computing or HPC). The computational resources required in this type of applications usually have a very high cost that may exceed the availability of the institution's resources or they are may not be successfully adapted to the scientific applications, especially in the case of infrastructures prepared for the execution of HPC applications. Indeed, it is possible that the different parts that compose an application require different type of computational resources. Nowadays, cloud service platforms have become an efficient solution to meet the need of HTC applications as they provide a wide range of computing resources accessible on demand. For this reason, the number of hybrid computational infrastructures has increased during the last years. The hybrid computation infrastructures are the combination of infrastructures hosted in cloud platforms and the computation resources hosted in the institutions, which are named on-premise infrastructures. As scientific applications can be processed on different infrastructures, the application delivery has become a key issue. Nowadays, containers are probably the most popular technology for application delivery as they ease reproducibility, traceability, versioning, isolation, and portability. The main objective of this thesis is to provide an architecture and a set of services to build up hybrid processing infrastructures that fit the need of different workloads. Hence, the thesis considered aspects such as elasticity and federation. The use of vertical and horizontal elasticity by developing a proof of concept to provide vertical elasticity on top of an elastic cloud architecture for data analytics. Afterwards, an elastic cloud architecture comprising heterogeneous computational resources has been implemented for medical imaging processing using multiple processing queues for jobs with different requirements. The development of this architecture has been framed in a collaboration with a company called QUIBIM. In the last part of the thesis, the previous work has been evolved to design and implement an elastic, multi-site and multi-tenant cloud architecture for medical image processing has been designed in the framework of a European project PRIMAGE. This architecture uses a storage integrating external services for the authentication and authorization based on OpenID Connect (OIDC). The tool kube-authorizer has been developed to provide access control to the resources of the processing infrastructure in an automatic way from the information obtained in the authentication process, by creating policies and roles. Finally, another tool, hpc-connector, has been developed to enable the integration of HPC processing infrastructures into cloud infrastructures without requiring modifications in both infrastructures, cloud and HPC. It should be noted that, during the realization of this thesis, different contributions to open source container and job management technologies have been performed by developing open source tools and components and configuration recipes for the automated configuration of the different architectures designed from the DevOps perspective. The results obtained support the feasibility of the vertical elasticity combined with the horizontal elasticity to implement QoS policies based on a deadline, as well as the feasibility of the federated authentication model to combine public and on-premise clouds. / López Huguet, S. (2021). Elastic, Interoperable and Container-based Cloud Infrastructures for High Performance Computing [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172327 / TESIS / Compendio

Page generated in 0.3858 seconds