• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 431
  • 89
  • 76
  • 65
  • 65
  • 18
  • 15
  • 13
  • 11
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • Tagged with
  • 969
  • 969
  • 184
  • 67
  • 62
  • 61
  • 60
  • 60
  • 57
  • 57
  • 56
  • 56
  • 53
  • 51
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
401

Understanding Design Requirements for Building Reliable, Space-Based FPGA MGT Systems Based on Radiation Test Results

Ellsworth, Kevin M. 20 March 2012 (has links) (PDF)
Space-based computing applications often demand reliable, high-bandwidth communication systems. FPGAs with Mulit-Gigabit Transceivers (MGTs) provide an effective platform for such systems, but it is important that system designers understand the possible susceptibilities MGTs present to the system. Previous work has provided a foundation for understanding the susceptibility of raw FPGA MGTs but has fallen short of testing MGTs as part of a larger system. This work focuses on answering the questions MGT system designers need to know in order to build a reliable space-based MGT system. Two radiation tests were performed with a test architecture built on the Aurora protocol. These tests were specifically designed to discover system susceptibilities, and effective mechanisms for upset detection, recovery, and recovery detection. Test results reveal that the Aurora protocol serves as an effective basis for simple point-to-point communication for space-based systems but that some additional logic is necessary for high reliability. Particularly, additional upset detection and recovery mechanisms are necessary as well as additional status indicators. These additions are minimal, however, and not all are necessary depending on system requirements. The most susceptible part of the MGT system is the MGT tile components on the RX data path. Upsets to these components most often results in data corruption only and do not affect system operation or disrupt the communication link. Most other upsets which do disrupt normal system operation can be recovered automatically by the Aurora protocol with built-in mechanisms. Only 1% of observed events in testing required additional recovery mechanisms not supplied by Aurora. In addition to test data results, this work also provides suggestions for system designers based on various system requirements and a proposed MGT system design based on the Aurora protocol. The proposed system serves as an example to illustrate how test data can be used to guide the system design and determine system availability. With this knowledge designers are able to build reliable MGT systems for a variety of space-based systems.
402

Single Event Mitigation for Aurora Protocol Based MGT FPGA Designs in Space Environments

Harding, Alexander Stanley 17 June 2014 (has links) (PDF)
This work has extended an existing Aurora protocol for high-speed serial I/O between FPGAs to provide greater fault recovery in the presence of high-energy radiation. To improve on the Aurora protocol, additional resets that affect larger portions of the system were used. Detection for additional error modes that occurred but were not detected by the Aurora protocol was designed. Radiation testing was performed on the Aurora protocol with the additional mitigation hardware. The test gathered large amounts of data on the various error modes of the Aurora protocol and how the additional mitigation circuitry affected the system. The test results showed that the addition of the recovery circuitry greatly enhanced the Aurora protocol's ability to recover from errors. The recovery circuit recovered from all but 0.01% of errors that the Aurora protocol could not. The recovery circuit further increased the availability of the transmission link by proactively applying resets at much shorter intervals than used in previous testing. This quick recovery caused the recovery mechanism to fix some errors that may have recovered automatically with enough time. However, the system still showed an increase in performance, and unrecoverable errors were reduced 100x. The estimated unrecoverable error rate of the system is 5.9E-07 in geosynchronous orbit. The bit error rate of the enhanced system was 8.47754E-015, an order of magnitude improvement.
403

Experimental Setup for Validating Simulated Local Structure Responses for High-speed Craft in Waves

Lei, Xiangyu, Persson, Jonas January 2017 (has links)
Using scantling codes such as DNV or ISO for designing high speed craft has been a routine for many constructors. However, the validity of these design methods are to be questioned, especially when dealing with modern material concepts and structural layouts, since they are based on data from ships designed in the 1960ies and 1970ies using semi-empirical methods containing substantial uncertainties and limitations. For direct assessment of loading conditions, modern methods such as CFD are appreciated. But they consume lots of time and resources in the design stage, which makes efficiency worse. A simulation approach making detailed assessment of loading conditions and structural behavior for high speed craft in waves has been developed at KTH Royal Institute of Technology in Sweden, with parts of the method still in need of further validation. In the here presented project an experimental setup has been developed for detailed validation of simulated local structural responses for high-speed craft in waves. The experimental setup consists of a model structure instrumented with strain gauges and pressure sensors that is integrated into a high speed craft model. Experimental data has been generated through experiments in regular and irregular waves in the towing tank at University of Naples “Federico II”. The model structure and generated data are concluded to be feasible for the intended validation.
404

High-Speed Communication Scheme in OSI Layer 2 Research and Implementation

Zaklouta, Ahmadmunthar January 2019 (has links)
This thesis is part of a project at Bombardier’s Object Controller System. This system acts as a communication interface for several sub-systems that control the railway traffic. Therefore, part of the safety and availability of railway transportation is dependent on the performance and reliability of this system especially the digital communication system that handles the board-to-board communication. Thus, Bombardier has implemented new high-speed LVDS channels to use instead of the implemented RS-485 channels to improve the board-to-board communication performance in the Object Controller System but they lack a transceiver. This thesis work explores possible transceiver solutions that achieve Bombardier requirements. Reusability is very important for Bombardier for safety compliance and certification. Therefore, the investigation was carried out by looking into what is currently implemented and then was carried on by looking into transceivers that used in highspeed communication and check their suitability and compliance for the FPGA and the requirements. This exploration results in three experiments for different transceiver architecture. The first experiment exploits the currently implemented transceiver architecture and it is not suitable for high-speed data rate due to a limitation in the buffer. The second experiment overcomes the buffer limitation by using a clock domain crossing buffer and results in a 100-time faster system. The third experiment aimed to achieve a higher data rate by using a clock and data recovery transceiver and results in a promising solution but needs some enhancements. For testing, a verification methodology following the one-way stress test architecture has been developed using VHDL for simulation and for in-chip testing and the results were verified using ChipScope logic analyzer from Xilinx. In addition, a thermal test for the solution from the second experiment has been performed. / Denna avhandling är en del av ett projekt på Bombardiers Object Controller System. Detta system fungerar som ett kommunikationsgränssnitt för flera delsystem som styr järnvägstrafiken. Därför är en del av säkerheten och tillgängligheten av järnvägstransporten beroende av systemets prestanda och tillförlitlighet, särskilt det digitala kommunikationssystemet som hanterar kommunikationen ombord. Bombardier har sålunda implementerat nya höghastighets LVDS-kanaler för att använda istället för de implementerade RS-485-kanalerna för att förbättra kommunikationsprestandan ombord i objektkontrollen, men de saknar en transceiver. Denna avhandling arbetar med att undersöka möjliga transceiverlösningar som uppnår Bombardier-krav. Återanvändbarhet är mycket viktigt för Bombardier för säkerhetsöverensstämmelse och certifiering. Undersökningen genomfördes därför genom att undersöka vad som för närvarande implementeras och sedan genomföras genom att titta på transceivers som används i höghastighetskommunikation och kontrollera deras lämplighet och överensstämmelse för FPGA och kraven. Denna undersökning resulterar i tre experiment för olika transceiverarkitektur. Det första experimentet utnyttjar den nuvarande implementerade transceiverarkitekturen. Den är inte lämplig för höghastighetsdatakommunikation på grund av en begränsning i bufferten. Det andra experimentet övervinns buffertbegränsningen genom att använda en klockdomänöverföringsbuffert vilket resulterar i ett 100-timmars snabbare system. Det tredje experimentet syftade till att uppnå en högre datahastighet genom att använda en klockoch dataåterställningstransceiver vilket resulterar i en lovande lösning men behöver vissa förbättringar. För testning har en verifieringsmetod som följer envägsstresstestarkitekturen utvecklats med hjälp av VHDL för simulering och för inchip-testning. Resultaten verifierades med hjälp av ChipScope logic analyzer från Xilinx. Dessutom har ett termiskt test för lösningen från det andra experimentet utförts.
405

Measurements in Air-water Bubbly Flow Through a Vertical Narrow High-aspect Ratio Channel

Patrick, Benjamin R. 01 January 2011 (has links)
Two-Phase bubbly flows are encountered in a wide range of industrial applications, particularly where phase changes occur as seen in high performance heat exchangers and boiling reactors for power generation. These flows have been extensively studied in channels with circular geometries using air-water flows, though little data exists for flows through narrow rectangular channels. Measurements in thin geometries are particularly challenging since large bubbles bridge the gap, and it is difficult to compare point measurements with photographic techniques. The objective of this study is to explore the abilities of hot-film anemometry and high speed photography for taking measurements in a narrow vertical rectangular channel for a range of volume fractions, with particular attention on the narrow dimension. Hot-film anemometry (HFA) is a measurement technique originally developed for the measurement of fluid velocities, but has since been found to have applications for broader measurements in multiphase flow. With the sensor operating on the principle of heat loss, the method takes advantage of the differing abilities of the phases to transport heat, with each phase leaving its own signature in the signal response. The linchpin of this method lies in the ability to accurately distinguish between the two phases within the signal, and to execute this operation, various algorithms and techniques have been developed and used with some success for a wide range of flow conditions. This thesis is a study of the various methods of analysis such as amplitude threshold for triggering, and small slope threshold for finely tuning the edges of the bubble interactions, and demonstrates the capabilities of the hot-film sensor in a narrow rectangular vertical duct with a high aspect ratio. A vertical acrylic test section was fabricated for the purposes of this study, inset with a rectangular channel 38.1mm in width and 3.125mm in depth. Experiments were conducted for volume fractions ranging from 2% to 35%, which remained within the limits of the bubbly flow regime, but ranged from small uniform bubbles to larger bubbles coalescing into a transition regime. The hot-film signal was analyzed for void fraction, bubble speed, and bubble size. An in-depth study of the various methods of phase discrimination was performed and the effect of threshold selection was examined. High-speed video footage was taken in conjunction with the anemometer data for a detailed comparison between methods. The bubble speed was found to be in close agreement between the HFA and high-speed video, staying within 10% for volume fractions above 10%, but still remaining under a 30% difference for even as low as the 2% volume fraction, where measurements have been found to be historically difficult. The trends with volume fraction between the HFA and high-speed results were very similar. A correlation for narrow rectangular channels employing a simple drift flux model was found to compare with the void fraction data where appropriate. Good agreement was found between the methods using a hybrid phase discrimination technique for the HFA data for the void fraction and bubble speed results, with the high-speed video results showing a slight over-estimation in regards to the bubble size.
406

Experimental Design and Construction of the First Rotor Induced Collision Cell (RICC) for Studying High Velocity Molecular Impacts

De la Cruz Hernandez, Abraham Lehi 03 August 2022 (has links)
The identification and characterization of molecular biomarkers using mass spectrometry on an orbiting or fly-by spacecraft is one of the preferred analytical techniques in the search for life beyond the Earth. However, analysis is complicated by unwanted molecular dissociation occurring when sampled native molecules impact the instrument at high velocity. The mechanisms of chemical changes produced in high velocity impacts have been studied experimentally in some cases; however, there are significant experimental limitations to these techniques. Here I present the design, construction, and testing of a new experimental technique to produce high velocity molecular and microparticle collisions under a controlled lab setting using a high-speed spinning rotor. Chapter 1 of this manuscript gives a scientific review of the astrobiological importance of this project for future and current space missions as well as describing previous techniques used to produced hypervelocity impacts and their limitations. Chapter 2 presents the design, construction, calibration, and preliminary experiments of the new technique involving the high-speed rotor. Chapter 3 describes the fabrication of a molecular beam system from the ground up to be coupled with the high-speed rotor. Chapter 4, describes future project directions and presents future experiments using the rotor as a stand-alone instrument. Lastly, the appendix contains the standard operation procedures and design notes regarding the operation of these two instruments.
407

Super High-speed Miniaturized Permanent Magnet Synchronous Motor

Zheng, Liping 01 January 2005 (has links)
This dissertation is concerned with the design of permanent magnet synchronous motors (PMSM) to operate at super-high speed with high efficiency. The designed and fabricated PMSM was successfully tested to run upto 210,000 rpm The designed PMSM has 2000 W shaft output power at 200,000 rpm and at the cryogenic temperature of 77 K. The test results showed the motor to have an efficiency reaching above 92%. This achieved efficiency indicated a significant improvement compared to commercial motors with similar ratings. This dissertation first discusses the basic concept of electrical machines. After that, the modeling of PMSM for dynamic simulation is provided. Particular design strategies have to be adopted for super-high speed applications since motor losses assume a key role in the motor drive performance limit. The considerations of the PMSM structure for cryogenic applications are also discussed. It is shown that slotless structure with multi-strand Litz-wire is favorable for super-high speeds and cryogenic applications. The design, simulation, and test of a single-sided axial flux pancake PMSM is presented. The advantages and disadvantages of this kind of structure are discussed, and further improvements are suggested and some have been verified by experiments. The methodologies of designing super high-speed motors are provided in details. Based on these methodologies, a super high-speed radial-flux PMSM was designed and fabricated. The designed PMSM meets our expectation and the tested results agree with the design specifications. 2-D and 3-D modeling of the complicated PMSM structure for the electromagnetic numerical simulations of motor performance and parameters such as phase inductors, core losses, rotor eddy current loss, torque, and induced electromotive force (back-EMF) are also presented in detail in this dissertation. Some mechanical issues such as thermal analysis, bearing pre-load, rotor stress analysis, and rotor dynamics analysis are also discussed. Different control schemes are presented and suitable control schemes for super high- speed PMSM are also discussed in detail.
408

New Optimal High Efficiency Dsp-based Digital Controller Design For Super High-speed Permanent Magnet Synchronous Motor

Zhao, limei 01 January 2005 (has links)
This dissertation investigates digital controller and switch mode power supply design for super high-speed permanent magnet synchronous motors (PMSM). The PMSMs are a key component for the miniaturic cryocooler that is currently under development at the University of Central Florida with support from NASA Kennedy Space Center and the Florida Solar Energy Center. Advanced motor design methods, control strategies, and rapid progress in semiconductor technology enables production of a highly efficient digital controller. However, there are still challenges for such super high-speed controller design because of its stability, high-speed, variable speed operation, and required efficiency over a wide speed range. Currently, limited research, and no commercial experimental analysis, is available concerning such motors and their control system design. The stability of a super high-speed PMSM is an important issue particularly for open-loop control, given that PMSM are unstable after exceeding a certain applied frequency. In this dissertation, the stability of super high-speed PMSM is analyzed and some design suggestions are given to maximize this parameter. For ordinary motors, the V/f control curve is a straight line with a boost voltage because the stator resistance is negligible and only has a significant effect around the DC frequency. However, for the proposed super high-speed PMSM the situation is quite different because of the motor's size. The stator resistance is quite large compared with the stator reactive impedance and cannot be neglected when employing constant a V/f control method. The challenge is to design an optimal constant V/f control scheme to raise efficiency with constant V/f control. In the development, test systems and prototype boards were built and experimental results confirmed the effectiveness of the dissertation system.
409

Dsp Implementation Of Dc Voltage Regulation Using Adaptive Control For 200 Kw 62000 Rpm Induction Generator

Elkhomri, Othman 01 January 2006 (has links)
The thesis discusses the development of closed loop system to control the DC voltage for 200 kW induction generator rated at a speed of 62000 RPM under different load conditions. The voltage regulation has been implemented using PI controller. A gain scheduling control algorithm has been developed to select the appropriate controller gains with respect to the generator load. Further, a relationship between the generator loads and the controller gains has been established. This relationship has been modeled using adaptive control technique to vary the gains automatically at any load condition. The adaptive control technique has been successfully generalized for real time DSP implementation to regulate the DC voltage for high speed induction generators rated from 5 kW to 200 kW.
410

Experiments In Pool Boiling Heat Transfer And Nucleationdynamics Of High Pressure Refrigerants

Joo, Daniel 01 January 2006 (has links)
A high pressure pool boiling experiment of pressurized R134a is designed and built, utilizing thermochromatic liquid crystal techniques. Liquid crystals thermo-chromatography uses encapsulated liquid crystals that are sensitive to temperature. When exposed to hot temperatures the crystal reflect a blue/violet color, and when exposed to cooler temperatures it reflects a red/orange color. The color value or hue is proportional to its temperature. Using this technique this experiment is capable of studying the physics and thermodynamics of refrigerants under nucleate pool boiling. The main objective of this experiment was the design of the experimental setup. Various designs were tested and validated, of which all incorporated a pressure resistant chamber constructed out of aluminum and glass viewing ports. Design parameters such as the heating element thickness were verified using a transient FEA thermal model. This model, which was developed in ANSYS, verified that this design would be able to capture the thermal response of the thermochromatic liquid crystals. This analysis concluded that a negligible error of 0.02°C is expected due to transient effects. Difficulties were encountered during early stages of development; most notable were imaging limitations such as low camera frame-rates and poor resolution. Since a TLC technique was used to measure the temperature of the boiling surface, a camera system fast enough to capture the thermal response was needed. At bubble frequencies of 30 nucleations per second, it was necessary for the camera to have much higher frame rates. Through the use of two synchronized cameras, the surface temperature, position, size and shape of the bubbles were recorded simultaneously. Two camera systems were designed and tested. The first system consisted of a high speed CMOS camera capable of capturing 1,000 frames per second, and an RBG CCD color camera capable of 30 Frames per second. However, this system was limited the slow frame rate and low resolution of the RBG camera. The second system used two high resolution and fast shutter speed cameras, which were able to capture fast bubble nucleations. This method required the assumption that under constant operating conditions, the path of one bubble was identical to the next. This method was tested utilizing the high speed camera, and was shown that there was less than a .04% deviation from the path any bubble to that of the next. Detailed analysis of nucleating surface temperatures using thermochromatic liquid crystal technique and temporal-temperature response under various heat flux and at 813.6kPa (118Psia) and 882.5kPa (128Psia) was performed. It is seen that temperature distribution is quite varied in each case. At high pressures the size of nucleation site decreases, giving rise to an increase in the surface temperature. Bubble growth is also analyzed through the use of high speed cameras and compared to temperature distributions. Simultaneous temperature and bubble size measurements provided a correlation between bubble growth and heat transfer. Boiling parameters such as bubble frequency, bubble size, and contact area are also analyzed. From the surface temperature plots, the local and average heat transfer coefficients were calculated as a function of time and bubble dynamics.

Page generated in 0.0418 seconds