• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 431
  • 89
  • 76
  • 65
  • 65
  • 18
  • 15
  • 13
  • 11
  • 7
  • 6
  • 5
  • 5
  • 4
  • 2
  • Tagged with
  • 969
  • 969
  • 184
  • 67
  • 62
  • 61
  • 60
  • 60
  • 57
  • 57
  • 56
  • 56
  • 53
  • 51
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Parametric FE-modeling of High-speed Craft Structures

Antonatos, Alexandros January 2012 (has links)
The primary aim of the thesis was to investigate aluminum as building material for high speed craft, study the hull structure design processes of aluminum high speed craft and develop a parametric model to reduce the modeling time during nite element analysis. An additional aim of the thesis was to study the degree of validity of the idealizations and the assumptions of the semi-empirical design methods by using the parametric model. For the aluminum survey, a large amount of scientic papers and books related to the application of aluminum in shipbuilding industry were re-viewed while for the investigation of hull structure design, several designs of similar craft as well as all the classication rules for high speed craft were examined. The parametric model was developed on Abaqus nite ele-ment analysis software with the help of Python programming language. The study of the idealizations and the assumptions of the semi-empirical design methods was performed on a model derived by the parametric model with scanltings determined by the high speed craft classication rules of ABS. The review on aluminum showed that only specic alloys can be applied on marine applications. It also showed that the eect of reduced mechanical properties due to welding could be decreased by introducing new welding and manufacturing techniques. The study regarding the hull structure de-sign processes indicated that high speed craft are still designed according to semi-empirical classication rules but it also showed that there is ten- dency of transiting on direct calculation methods. The developed paramet-ric model does decrease the modeling time since it is capable of modeling numerous structural arrangements. The analysis related to the idealizations and the assumptions of the semi-empirical design methods revealed that the structural hierarchy idealization and the method of dening boundary by handbook type formulas are applicable for the particular structure while the interaction eect among the structural members is only possible to be studied by detailed modeling techniques.
372

Comparison of ballasted and ballastless bridges for high speed trains

Matos Sánchez, David, Nikolic, Maša January 2016 (has links)
The purpose of the project is to investigate the difference in performance between ballasted and ballastless railway bridges dedicated to high speed trains by taking into account both static and dynamic requirements. The main questions are: a) whether choosing a ballastless bridge results in a more slender section due to the lower self-weight b) if the design of bridges for high speed trains is governed by the static or by the dynamic requirements. The method followed was to first make a complete static design of a ballasted and a ballastless bridge, and then subject them to a 2D dynamic analyses in order to see if the cross section dimensions must be changed. Some of the bridges required a more thorough dynamic analyses, and for these, a 3D model was developed. The analysed bridge is a simply supported beam with a T section carrying one track. Some variations were also considered, namely a simply supported bridge with a double T section carrying two tracks, as well as a single track bridge in two spans. It was found that all of the analysed bridges are somewhat more slender for the ballastless alternative, and require a 10 -30% less reinforcement. Simply supported bridges carrying one track are governed by the dynamic requirements; the bridges in two spans are for shorter spans governed by the statics and for longer spans by the dynamics. Bridges in double T fulfilled all the requirements according to the 2D analyses, but were found to be greatly affected by the 3 dimensional effects and failed to satisfy the criteria when these were taken into account. Finally, the optimal design according to these analyses is a ballastless bridge in a simple T section. If the bridge constructed should carry two tracks, then it should be constructed as two T beams that are not connected to one another in order to avoid the unfavourable 3D effects.
373

Numerical study on multi-pantograph railway operation at high speed

Liu, Zhendong January 2015 (has links)
Multi-pantograph operation allows several short electric multiple unit (EMU) trainsets to be coupled or decoupled to adapt to daily or seasonal passenger-flow variation. Although this is a convenient and efficient way to operate rolling stock and use railway infrastructure, pantographs significantly influence each other and even significantly change the dynamic behaviour of the system compared to single-pantograph operation in the same condition. The multi-pantograph system is more sensitive and vulnerable than the single-pantograph system, especially at high operational speeds or with pantographs spaced at short distances. Heavy oscillation in the system can result in low quality of current collection, electromagnetic interference, severe wear on the contact surfaces or even structural damage. The mechanical interaction between the pantograph and the catenary is one of the key issues which limits the maximum operational speed and decides the maintenance cost.     Many researchers have paid a lot of attention to the single-pantograph operation and have made great progress on system modelling, optimizing, parameter studies and active control. However, how the pantographs in a train configuration affect each other in multi-pantograph operation and which factors limit the number of pantographs is not fully investigated. Nowadays, to avoid risking operational safety, there are strict regulations to limit the maximum operational speed, the maximum number of pantographs in use, and the minimum spacing distance between pantographs. With the trend of high-speed railways, there are huge demands on increasing operational speed and shortening spacing distance between pantographs. Furthermore, it is desirable to explore more practical and budget-saving methods to achieve higher speed on existing lines without significant technical modification.     In addition to a literature survey of the dynamics of pantograph-catenary systems, this thesis carries out a numerical study on multi-pantograph operation based on a three-dimensional pantograph-catenary finite element (FE) model. In this study, the relationship between dynamic performance and other parameters, i.e. the number of pantographs in use, running speed and the position of the pantographs, are investigated. The results show that the spacing distance between pantographs is the most critical factor and the trailing pantograph does not always suffer from deterioration of the dynamic performance. By discussing the two-pantograph operation at short spacing distances, it is found that a properly excited catenary caused by the leading pantograph and the wave interference between pantographs can contribute to an improvement on the trailing pantograph performance. To avoid the additional wear caused by poor dynamic performance on the leading pantograph and achieve further improvement at high speeds, it is suggested to use the leading pantograph as an auxiliary pantograph, which does not conduct any electric current and optimize the uplift force on the leading pantograph. After a brief discussion on some system parameter deviations, it is shown that a 30% of speed increase should be possible to achieve while still sustaining a good dynamic performance without large modifications on the existing catenary system. / <p>QC 20150928</p>
374

METHODS FOR SHOCK ANDVIBRATION EVALUATION APPLIEDON OFFSHORE POWER BOATS

De Alwis, Pahansen January 2014 (has links)
Vibration is a part of human life. People use vibrations in many useful ways but eventually human exposure to vibration has become an impediment to human life. Health problems due to exposure to vibration and shock are common among the crew operating high speed craft (HSC). Whole body vibration and repeated shocks have been identified as one of the major causes for health effects among HSC crew. Whole body vibration can affect health, comfort and performance depending on the magnitude, waveform and time of exposure. Therefore it is prudent the significance of consideration of human exposure to vibration and shock when deciding the operational envelope of an offshore HSC. This report addresses this question in two correlated parts where it identifies the interrelationship between the human exposure to vibration and shock and the operational envelope of HSC. The first part consists of a state of the art review on methods and measures for evaluation of workplaces exposed to vibrations containing multiple shocks and select a suitable method to be used in the second part. The second part is a case study of a Swedish Coast Guard HSC, KBV 476, which describes crew exposure to shock and vibration using the method selected from the state of the art review, and discusses the results in relation to the risks involved with the crew in the perspective of short and long term exposure. Nature of the vibration exposure and the corresponding risk involved is then discussed with respect to the operational envelope of the craft.
375

Hybrid Power Control in Time Division Scheduling Wideband Code Division Multiplex Access

Cheng, Zhuo January 2011 (has links)
With high date rates using Enhanced Uplink (EUL), a conventional signal to interference ratio (SIR) based power control algorithm may lead to a power rush due to self interference or incompatible SIR target [2]. Time division (TD) scheduling in Wideband Code Division Multiplex Access (WCDMA) is considered to be a key feature in achieving high user data rates. Unfortunately, power oscillation/peak is observed in time division multiplexing (TDM) at the transition between active and inactive transmission time intervals [1]. Therefore there is a need to revisit power control algorithms for different time division scheduling scenarios. The objective of power control in the context of this study is to minimize the required rise over thermal noise (RoT) for a given data rate, subject to the constraint that the physical layer control channel quality is sufficient (assuming that the dedicated physical control channel (DPCCH) SIR should not go below 3dB with a probability of at most 5%). Another goal is to minimize the local oscillation in power (power peaks) that may occur, for example due to transitions between active and inactive transmission time intervals. The considered hybrid power control schemes are: (1) non-parametric Generalized rake receiver SIR (GSIR) Inner Loop Power Control (ILPC) during active transmission time intervals + Received Signal Code Power (RSCP) ILPC during inactive transmission time intervals and (2) RSCP ILPC during active transmission time intervals + GSIR ILPC during inactive transmission time intervals. Both schemes are compared with pure GSIR and pure RSCP ILPC. Link level simulations with multiple users connected to a single cell show that: The power peak problem is obviously observed in GSIR + GSIR transmit power control (TPC), but in general it performs well in all time division scenarios studied. GSIR outperforms other TPC methods in terms of RoT, especially in the TU channel model. This is because it is good in combating instantaneously changed fading and accurately estimates SIR. Among all TPC methods presented, GSIR + GSIR TPC is best in maintaining the quality of the DPCCH channel. No power rush is observed when using GSIR + GSIR TPC. RSCP + RSCP eliminates the power peak problem and outperforms other TPC methods presented under the 3GPP Pedestrial A (pedA) 3km/h channel in terms of RoT. However, in general it is worse in maintaining the control channel’s quality than GSIR + GSIR TPC. GSIR + RSCP ILPC eliminates the power peak problem and out-performs GSIR power control in the scenario of 2 and 4 TDM high data rate (HDR) UE and 2 TDM HDR UE coexistence with 4 Code DivisionMultiplex (CDM) LDR UE, in the pedA 3km/h channel, in terms of RoT. However, the control channel quality is not maintained as well during inactive transmission time intervals. It is not recommended to use RSCP + GSIR TPC since it performs worst among these TPC methods for most of the cases in terms of RoT, even though it is the second best in maintaining the control channel quality. The power peak is visible when using RSCP + GSIR TPC. To maintain the control channel’s quality, a minimum SIR condition is always used on top of all proposed TPC methods. However, when there are several connected TDM HDR UEs in the cell, results indicates that it is challenging to meet the quality requirement on the control channels. So it may become necessary to limit the number of connected terminals in a cell in a time division scenario. / Med den höga datahastighet som Enhanced Uplink (EUL) medger kan en konventionell algoritm för effektkontroll baserad på signal to interference ratio (SIR) leda till effekthöjning beroende på självinterferens eller felaktigt SIR mål. Time division (TD) schedulering vid Wideband Code Division Multiple Access (WCDMA) anses vara en nyckelfunktion för att uppnå höga datahastigheter. I övergången mellan aktiv och inaktiv transmissionstidsintervall vid time division multiplexing (TDM) har effektoscillering/effektpeak observerats. Detta gör det nödvändigt att se över algoritmerna för effektkontroll vid olika scenarion av TD schedulering. Målet med effektkontrollen i denna studie är att minimera rise over thermal noise (RoT) för en given datahastighet givet begränsningen att kvaliteten på physical layer control channel är tillräcklig (beaktande att dedicated physical control channel (DPCCH) SIR inte understiger 3dB med en sannolikhet på som mest 5%). Ett annat mål är att minimera den lokala effektoscillationen (effektpeakar) som kan inträffa till exempel vid övergång mellan aktiv och inaktiv transmissionstidsintervall. De undersökta hybrida metoderna för effektkontroll är: (1) icke-parametrisk Generalized rake receiver SIR (GSIR) Inner Loop Power Control (ILPC) vid aktiv transmissionstidsintervall + Received Signal Code Power (RSCP) ILPC vid inaktiv transmissionstidsintervall och (2) RSCP ILPC under aktiv transmissionstidsintervall + GSIR ILPC under inaktiv transmissiontidsintervall. Båda metoderna jämförs med ren GSIR och ren RSCP ILPC. Länk nivå simulering med flera användare anslutna till en enda cell visar att: Problemet med effektpeakar observeras tydligt vid GSIR + GSIR transmit power control (TPC) men generellt sett presterar den bra i alla studerade TD scenarion. GSIR presterar bättre än andra TPC metoder beträffande RoT, speciellt i TU kanal modellen. Detta beror på att metoden är bra på att motverka momentant förändrad fading och med god precision estimerar SIR. Bland alla presenterade TPC metoder är GSIR + GSIR TPC den bästa på att behålla en god kvalitet på DPCCH kanalen. Ingen effekthöjning har observerats vid GSIR + GSIR TPC. RSCP + RSCP eliminerar problemet med effektpeakar och presterar bättre än andra TPC metoder presenterade under 3GPPs Pedestrial A (pedA) 3km/h kanal beträffande RoT. Dock är metoden generellt sett sämre på att behålla kontrollkanalens kvalitet än GSIR + GSIR TPC. GSIR + GSIR ILPC eliminerar problemet med effektpeakar och presterar bättre än GSIR power control i ett scenario med 2 och 4 TDM high data rate (HDR) UE och 2 TDM HDR UE tillsammans med 4 Code Division Multiplex (CDM) LDR UE i pedA 3km/h kanalen beträffande RoT. Dock kan inte kvaliteten på kontrollkanalen behållas i detta fall heller under inaktiv transmissionstidsintervall. Det är inte rekommenderat att använda RSCP + GSIR TPC eftersom den presterar sämst av alla TPC metoder beträffande RoT i de allra flesta fall. Till dess fördel är att den är den näst bästa på att behålla kvaliteten på kontrollkanalen. Effektpeakar har observerats när RSCP + GSIR TPC använts. För att behålla kontrollkanalens kvalitet används alltid en minimum SIR nivå ovanpå alla föreslagna TPC metoder. När det finns flera anslutna TDM HDR UEs i cellen indikerar resultaten att det är en utmaning att behålla kvalitetskraven på kontrollkanalen. På grund av detta kan det bli nödvändigt att begränsa antalet anslutna terminaler i en cell i ett TD scenario.
376

Influence of the Vertical Support Stiffness on the Dynamic Behavior of High-Speed Railway Bridges

Tavares, Rui Afonso January 2007 (has links)
No description available.
377

Traffic induced vibrations on a portal frame railway bridge : Comparison of theory and measurements

Llorens García, Andrea January 2011 (has links)
The effect of different vertical support stiffness of a frame railway bridge is investigated in this study. Due to the dynamic loads of the high speed trains that run over the railway bridges, the response of these structures is far from the static effects. The frame bridge chosen for this study is the Rössjö bridge, located on the Bothnia Line, the first high speed railway built in Sweden. Using a theoretical model of this bridge, the eigenfrequencies of the structure and the vertical accelerations of the deck are evaluated. Not only different vertical support stiffness, but also different trains and train speeds are studied. Finally, some real in-situ measurements are compared with the results from the theoretical model.
378

Optimal Design of Bridges for High-Speed Trains : Single and double-span bridges

Mellier, Carine January 2010 (has links)
To deal with an increasing demand in transportation, trains are made longer and faster. Higher speeds imply higher impacts on bridges. Therefore, structures have to be designed to resist these new constraints. The Eurocode (2002) introduced additional checks for the design of high-speed railway bridges. Among them, the maximum vertical deck acceleration criterion often determines alone the design of the structure. Tests on shake table brought to the conclusion that vertical bridge deck acceleration should never exceed 3.5 m/s2 for ballasted tracks. This master thesis investigates the optimization of cross section parameters of single-track simply supported and double-span bridges based on the limit of the maximum vertical deck acceleration criterion. The first natural frequency is considered as a proof of the feasibility of the structure. The optimization is carried out through MATLAB for both types of bridges. The deck acceleration of simply supported bridges is analytically calculated using the Train Signature (ERRI D214 1999) in MATLAB. The dynamic calculations of double-span bridges are implemented through the finite element software ABAQUS. The implemented programs have been verified by comparison to values of simple cases found in the literature. Structures are tested under the influence of the ten HSLM-A trains of the Eurocode running at speeds between 150 km/h and 350 km/h. Optimization algorithms are presented and compared in this study but their applicability in such context is questioned. Indeed, as the problem contains several suitable minima, the algorithms, which end in one solution, are not adapted. To overtake this difficulty, a scanning of the interesting zone is advised. However, the latter is very time consuming, even more if the finite element analysis is used. Suggestions to decrease analysis time are presented in this report. Single span composite bridges with a span longer than 20 m appeared to be impossible to optimize within the objectives defined in this work (i.e. considering limits of deck acceleration and first natural frequency), which draws doubts about their suitability for high-speed railways. Nevertheless, simply supported bridges made of concrete seem more adapted for high-speed railways and their optimized parameters are presented in this work. Optimized parameters for double-span concrete bridges are also presented.
379

Simply supported composite railway bridge: a comparison of ballasted and ballastless track alternatives : Case of the Banafjäl Bridge

Gillet, Guillaume January 2010 (has links)
No description available.
380

Traffic-induced vibrations on a two span composite railway bridge : Comparison of theory and measurements

Miguel Escudero López, José January 2011 (has links)
The economic and technologic development experienced by the society in the last decades has caused the demand of a new type of faster and more comfortable transport. This type of demand has been covered by the air transport, the road transport and the railway transport. This situation where the society demands an improvement in her quality of life is the best situation for the birth of the high speed trains. Different studies carried out in the transport field have demonstrated that for distances between four hundred and one thousand of kilometres, the high speed trains provide a lower travelling times than the rest of the transports. These types of high speed trains have increased the axle loads and the average speeds, thus generally a dynamic analysis is required by the ERRI in all the railway bridges when the train speed is higher than 200 Km/h. Besides, when the train speed is going to be higher than 200 Km/h, the vibrations induced in the bridge can reduce the service life of the vehicles and structure, and generally, this fact leads to become the dynamic effect in the principal factor to take into account in order to design the structure. Therefore, an important knowledge in railway bridges dynamic is required to not to oversize the structures with the consequent economic cost. The purpose of this thesis is to study the possibility of accurately predicting the dynamic response of an existing railway bridge, subjected to the high speed train Gröna Tåget, implementing a simplified 2D finite element model with the aid of the program Abaqus. The bridge chosen is the Lögdeälv Bridge, a two spans composite bridge, located along the Bothnia Line (the new Swedish high-speed line), between the localities of Nordmaling and Rundvik. The measured eigenfrequencies due to bending modes of vibration are used for updating the model and then, these frequencies and the accelerations measured are used to compare and validate the different 2D updated models. The parameters used to update the models are; the damping coefficient of the structure, the mass and the stiffness of the bridge, and the supports stiffness. Finally it is concluded that the best model is achieved when the rotational support stiffness is modified in the two extremes supporters of the bridge.

Page generated in 0.0431 seconds