• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 17
  • 9
  • 1
  • Tagged with
  • 44
  • 39
  • 24
  • 24
  • 24
  • 22
  • 19
  • 12
  • 12
  • 11
  • 11
  • 11
  • 10
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Entwicklung und Bewertung von effizienten Berechnungskonzepten für keramische Filter

Storm, Johannes 02 December 2016 (has links)
Die vorliegende Dissertation beschäftigt sich mit der thermo-mechanischen Beschreibung und Bewertung von keramischen Filtern für die Metallschmelze-Filtration mithilfe der Finiten-Elemente-Methode. Infolge des zellularen Aufbaus des Werkstoffs handelt es sich um ein Mehrskalenproblem. Grundlegende Aufgaben der Arbeit waren deshalb die geometrische und mechanische Modellbildung sowie die Untersuchung verschiedener effizienzsteigernder Methoden zur Gewinnung einer akkuraten numerischen Lösung. Dabei wurden sowohl verschiedene Verfahren aus der Fachliteratur implementiert und kritisch bewertet, als auch neue Ansätze verfolgt. Die Untersuchungen konzentrierten sich auf das effektive elastische und elastisch-plastische Verhalten von Kelvin-, Weaire-Phelan- und Voronoi-Strukturen. Insbesondere die entwickelten Methoden und Werkzeuge zur automatisierten Modellbildung gestatten in einfacher Weise die Umsetzung von Parameterstudien und Optimierungsaufgaben. Aus darauf aufbauenden Sensitivitätsstudien wurden Empfehlungen hinsichtlich der geometrischen und mechanischen Modellbildung für zellulare Werkstoffe abgeleitet. Diese betreffen auch vielfach eingesetzte Methoden zur Modellreduktion für diese Werkstoffe und tragen somit zukünftig zu einer effizienteren Bewertung von Filterstrukturen bei.
42

A theory for the homogenisation towards micromorphic media and its application to size effects and damage

Hütter, Geralf 19 February 2019 (has links)
The classical Cauchy-Boltzmann theory of continuum mechanics requires that the dimension, over which macroscopic gradients occur, are much larger than characteristic length scales of the microstructure. For this reason, the classical continuum theory comes to its limits for very small specimens or if material degradation leads to a localisation of deformations into bands, whose width is determined by the microstructure itself. Deviations from the predictions of the classical theory of continuum mechanics are referred to as size effects. It is well-known, that generalised continuum theories can describe size effects in principle. Especially micromorphic theories gain increasing popularity due its favorable numerical implementation. However, the formulation of the additionally necessary constitutive equations is a problem. For linear-elastic behavior, the number of material parameters increases considerably compared to the classical theory. The experimental determination of these parameters is thus very difficult. For nonlinear and history-dependent processes, even the qualitative structure of the constitutive equations can hardly be assessed solely on base of phenomenological considerations. Homogenisation methods are a promising approach to solve this problem. The present thesis starts with a critical review on the classical theory of homogenisation and the approaches on micromorphic homogenisation which are available in literature. On this basis, a theory is developed for the homogenisation of a classical Cauchy-Boltzmann continuum at the microscale towards a micromorphic continuum at the macroscale. In particular, the micro-macro-relations are specified for all macroscopic kinetic and kinematic field quantities. On the microscale, the corresponding boundary-value problem is formulated, whereby kinematic, static or periodic boundary conditions can be used. No restrictions are imposed on the material behavior, i. e. it can be linear or nonlinear. The special cases of the micropolar theory (Cosserat theory), microstrain theory and microdilatational theorie are considered. The proposed homogenisation method is demonstrated for several examples. The simplest example is the uniaxial case, for which the exact solution can be specified. Furthermore, the micromorphic elastic properties of a porous, foam-like material are estimated in closed form by means of Ritz' method with a cubic ansatz. A comparison with partly available exact solutions and FEM solutions indicates a qualitative and quantitative agreement of sufficient accuracy. For the special cases of micropolar and microdilatational theory, the material parameters are specified in the established nomenclature from literature. By means of these material parameters the size effect of an elastic foam structure is investigated and compared with corresponding results from literature. Furthermore, micromorphic damage models for quasi-brittle and ductile failure are presented. Quasi-brittle damage is modelled by propagation of microcracks. For the ductile mechanism, Gurson's limit-load approach on the microscale is extended by microdilatational terms. A finite-element implementation shows, that the damage model exhibits h-convergence even in the softening regime and that it thus can describe localisation.:1 Introduction 2 Literature review: Micromorphic theory and strain-gradient theory 2.1 Variational approach 2.1.1 Cauchy-Boltzmann continuum 2.1.2 Second gradient theory / Strain gradient theory 2.1.3 Micromorphic theory 2.1.4 Method of virtual power 2.2 Homogenisation approaches 2.2.1 Classical theory of homogenisation 2.2.2 Strain-gradient theory by Gologanu, Kouznetsova et al. 2.2.3 Micromorphic theory by Eringen 2.2.4 Average field theory by Forest et al. 2.3 Scope of the present thesis 3 Homogenisation towards a micromorphic continuum 3.1 Thermodynamic considerations and generalized Hill-Mandel lemma 3.2 Surface operator and kinetic micro-macro relations 3.3 Kinematic micro-macro relations 3.4 Porous material 3.5 Kinematic and periodic boundary conditions 3.6 Special cases 3.6.1 Strain-gradient theory / Second gradient theory 3.6.2 Micropolar theory 3.6.3 Microstrain theory 3.6.4 Microdilatational theory 4 Elastic Behaviour 4.1 Uniaxial case 4.2 Upper bound estimates by Ritz' Method 4.3 Isotropic porous material 4.4 Micropolar theory 4.5 Microdilatational theory 4.6 Size effect in simple shear 5 Damage Models 5.1 Quasi-brittle damage 5.2 Microdilatational extension of Gurson’s model of ductile damage 5.2.1 Limit load analysis for rigid ideal-plastic material 5.2.2 Phenomenological extensions 5.2.3 FEM implementation 5.2.4 Example 6 Discussion / Die klassische Cauchy-Boltzmann-Kontinuumstheorie setzt voraus, dass die Abmessungen, über denen makroskopische Gradienten auftreten, sehr viele größer sind als charakteristische Längenskalen der Mikrostruktur. Aus diesem Grund stößt die klassische Kontinuumstheorie bei sehr kleinen Proben ebenso an ihre Grenzen wie bei Schädigungsvorgängen, bei denen die Deformationen in Bändern lokalisieren, deren Breite selbst von der Längenskalen der Mikrostruktur bestimmt wird. Abweichungen von Vorhersagen der klassischen Kontinuumstheorie werden als Größeneffekte bezeichnet. Es ist bekannt, dass generalisierte Kontinuumstheorien Größeneffekte prinzipiell beschreiben können. Insbesondere mikromorphe Theorien erfreuen sich auf Grund ihrer vergleichsweise einfachen numerischen Implementierung wachsender Beliebtheit. Ein großes Problem stellt dabei die Formulierung der zusätzlich notwendigen konstitutiven Gleichungen dar. Für linear-elastisches Verhalten steigt die Zahl der Materialparameter im Vergleich zur klassischen Theorie stark an, was deren experimentelle Bestimmung sehr schwierig macht. Bei nichtlinearen und lastgeschichtsabhängigen Prozessen lässt sich selbst die qualitative Struktur der konstitutiven Gleichungen ausschließlich auf Basis phänomenologischer Überlegungen kaum erschließen. Homogenisierungsverfahren stellen einen vielversprechenden Ansatz dar, um dieses Problem zu lösen. Die vorliegende Arbeit gibt zunächst einen kritischen Überblick über die klassische Theorie der Homogenisierung sowie die im Schrifttum verfügbaren Ansätze zur mikromorphen Homogenisierung. Auf dieser Basis wird eine Theorie zur Homogenisierung eines klassischen Cauchy-Boltzmann-Kontinuums auf Mikroebene zu einem mikromorphen Kontinuum auf der Makroebene entwickelt. Insbesondere werden Mikro-Makro-Relationen für alle makroskopischen kinetischen und kinematischen Feldgrößen angegebenen. Auf der Mikroebene wird das entsprechende Randwertproblem formuliert, wobei kinematische, statische oder periodische Randbedingungen verwendet werden können. Das Materialverhalten unterliegt keinen Einschränkungen, d. h., dass es sowohl linear als auch nichtlinear sein kann. Die Sonderfälle der mikropolaren Theorie (Cosserat-Theorie), Mikrodehnungstheorie und mikrodilatationalen Theorie werden erarbeitet. Das vorgeschlagene Homogenisierungsverfahren wird für eine Reihe von Beispielen demonstriert. Als einfachstes Beispiel dient der einachsige Fall, für den die exakte Lösung angegebenen werden kann. Weiterhin werden die mikromorphen, elastischen Eigenschaften eines porösen, schaumartigen Materials mittels des Ritz-Verfahrens mit einem kubischen Ansatz in geschlossener Form abgeschätzt. Ein Vergleich mit teilweise verfügbaren exakten Lösungen sowie FEM-Lösungen weist eine qualitative und quantitative Übereinstimmung hinreichender Genauigkeit aus. Für die Sonderfälle mikropolaren und mikrodilatationalen Theorien werden die Materialparameter in der im Schrifttum üblichen Nomenklatur angegebenen. Mittels dieser Materialparameter wird der Größeneffekt in einer elastischen Schaumstruktur untersucht und mit entsprechenden Ergebnissen aus dem Schrifttum verglichen. Desweiteren werden mikromorphe Schädigungsmodelle für quasi-sprödes und duktiles Versagen vorgestellt. Quasi-spröde Schädigung wird durch das Wachstum von Mikrorissen modelliert. Für den duktilen Mechanismus wird der Ansatz von Gurson einer Grenzlastanalyse auf Mikroebene um mikrodilatationale Terme erweitert. Eine Finite-Elemente-Implementierung zeigt, dass das Schädigungsmodell auch im Entfestigungsbereich h-Konvergenz aufweist und die Lokalisierung beschreiben kann.:1 Introduction 2 Literature review: Micromorphic theory and strain-gradient theory 2.1 Variational approach 2.1.1 Cauchy-Boltzmann continuum 2.1.2 Second gradient theory / Strain gradient theory 2.1.3 Micromorphic theory 2.1.4 Method of virtual power 2.2 Homogenisation approaches 2.2.1 Classical theory of homogenisation 2.2.2 Strain-gradient theory by Gologanu, Kouznetsova et al. 2.2.3 Micromorphic theory by Eringen 2.2.4 Average field theory by Forest et al. 2.3 Scope of the present thesis 3 Homogenisation towards a micromorphic continuum 3.1 Thermodynamic considerations and generalized Hill-Mandel lemma 3.2 Surface operator and kinetic micro-macro relations 3.3 Kinematic micro-macro relations 3.4 Porous material 3.5 Kinematic and periodic boundary conditions 3.6 Special cases 3.6.1 Strain-gradient theory / Second gradient theory 3.6.2 Micropolar theory 3.6.3 Microstrain theory 3.6.4 Microdilatational theory 4 Elastic Behaviour 4.1 Uniaxial case 4.2 Upper bound estimates by Ritz' Method 4.3 Isotropic porous material 4.4 Micropolar theory 4.5 Microdilatational theory 4.6 Size effect in simple shear 5 Damage Models 5.1 Quasi-brittle damage 5.2 Microdilatational extension of Gurson’s model of ductile damage 5.2.1 Limit load analysis for rigid ideal-plastic material 5.2.2 Phenomenological extensions 5.2.3 FEM implementation 5.2.4 Example 6 Discussion
43

Schädigungsprognose mittels Homogenisierung und mikromechanischer Materialcharakterisierung

Goldmann, Joseph 01 October 2018 (has links)
In der vorliegenden Arbeit wird die Frage untersucht, ob effektive Eigenschaften von Verbunden auch nach dem Auftreten einer Dehnungslokalisierung aufgrund von entfestigendem Materialverhalten noch durch numerische Homogenisierungsmethoden berechnet werden können. Ihr Nutzen für diesen Anwendungsfall wird in der Literatur kritisch beurteilt. Aus diesem Grund werden hier systematisch alle Teilaufgaben betrachtet, die zu diesem Zweck gelöst werden müssen. Die erste dieser Aufgaben ist die Charakterisierung der einzelnen Verbundbestandteile. Zur Demonstration einer experimentell gestützten Charakterisierung wird ein glasfaserverstärktes Epoxidharz als Beispielmaterial gewählt. Neben der Beschreibung von Faser- und Matrixmaterial wird besonderes Augenmerk auf die Charakterisierung der Grenzschicht zwischen beiden gelegt. Die für die Glasfasern vorliegenden Festigkeitsmessungen entsprechen nicht der Kettenhypothese. Daher werden zahlreiche Verallgemeinerungen der Weibull-Verteilung untersucht, um störende Effekte zu erfassen. Schließlich werden Wahrscheinlichkeitsverteilungen hergeleitet, die Faserbrüche im Bereich der Einspannung einbeziehen. Die Messwerte können von diesen Verteilungen gut wiedergegeben werden. Zusätzlich macht ihre Anwendung das aufwändige Aussortieren und Wiederholen jener Experimente unnötig, bei denen der Faserbruch im Klemmbereich auftritt. Zur Modellierung der Grenzfläche wird ein Kohäsivzonengesetz entwickelt. Die Bestimmung seiner Parameter erfolgt anhand von Daten aus Pullout- und Einzelfaserfragmentierungsversuchen. Aus diesen ermittelte Festigkeiten und Energiefreisetzungsraten weisen eine sehr gute Übereinstimmung zwischen beiden Versuchen auf. Dabei erfolgt die Parameteridentifikation mithilfe von Finite-Elemente-Modellen anstatt der häufig genutzten vereinfachten analytischen Modelle, welche üblicherweise eine schlechtere Übereinstimmung erreichen. Sobald eine Dehnungslokalisierung auftritt, ist neben der Materialmodellierung auch das Homogenisierungsschema zu verallgemeinern. Zu diesem gehören die Generierung repräsentativer Volumenelemente, Randbedingungen (RB) und ein Mittelungsoperator. Anhand des aktuellen Standes der Literatur werden die Randbedingungen als ein signifikanter Schwachpunkt von Homogenisierungsverfahren erkannt. Daher erfolgt die Untersuchung periodischer RB, linearer Verschiebungsrandbedingungen und minimal kinematischer RB sowie zweier adaptiver RB, nämlich Lokalisierungspfad-ausgerichteter RB und generalisiert periodischer RB. Unter der Bezeichnung Tesselationsrandbedingungen wird ein weiterer Typ adaptiver RB vorgeschlagen. Zunächst erfolgt der Beweis, dass alle drei adaptiven RB die Hill-Mandel-Bedingung erfüllen. Des Weiteren wird mittels einer Modifikation der Hough-Transformation ein systematischer Fehler derselben bei der Bestimmung der Richtung von Lokalisierungszonen eliminiert. Schließlich werden die Eigenschaften aller Randbedingungen an verschiedenen Beispielen demonstriert. Dabei zeigt sich, dass nur Tesselationsrandbedingungen sowohl beliebige Richtungen von Lokalisierungszonen erlauben als auch fehlerhafte Lokalisierungen in Eckbereichen ausschließen. Zusammengefasst können in der Literatur geäußerte grundlegende Einschränkungen hinsichtlich der Anwendbarkeit numerischer Homogenisierungsverfahren beim Auftreten von Dehnungslokalisierungen aufgehoben werden. Homogenisierungsmethoden sind somit auch für entfestigendes Materialverhalten anwendbar. / The thesis at hand is concerned with the question if numerical homogenization schemes can be of use in deriving effective material properties of composite materials after the onset of strain localization due to strain softening. In this case, the usefulness of computational homogenization methods has been questioned in the literature. Hence, all the subtasks to be solved in order to provide a successful homogenization scheme are investigated herein. The first of those tasks is the characterization of the constituents, which form the composite. To allow for an experimentally based characterization an exemplary composite has to be chosen, which herein is a glass fiber reinforced epoxy. Hence the constituents to be characterized are the epoxy and the glass fibers. Furthermore, special attention is paid to the characterization of the interface between both materials. In case of the glass fibers, the measured strength values do not comply with the weakest link hypothesis. Numerous generalizations of the Weibull distribution are investigated, to account for interfering effects. Finally, distributions are derived, that incorporate the possibility of failure inside the clamped fiber length. Application of such a distribution may represent the measured data quite well. Additionally, it renders the cumbersome process of sorting out and repeating those tests unnecessary, where the fiber fails inside the clamps. Identifying the interface parameters of the proposed cohesive zone model relies on data from pullout and single fiber fragmentation tests. The agreement of both experiments in terms of interface strength and energy release rate is very good, where the parameters are identified by means of an evaluation based on finite element models. Also, the agreement achieved is much better than the one typically reached by an evaluation based on simplified analytical models. Beside the derivation of parameterized material models as an input, the homogenization scheme itself needs to be generalized after the onset of strain localization. In an assessment of the current state of the literature, prior to the generation of representative volume elements and the averaging operator, the boundary conditions (BC) are identified as a significant issue of such a homogenization scheme. Hence, periodic BC, linear displacement BC and minimal kinematic BC as well as two adaptive BC, namely percolation path aligned BC and generalized periodic BC are investigated. Furthermore, a third type of adaptive BC is proposed, which is called tesselation BC. Firstly, the three adaptive BC are proven to fulfill the Hill-Mandel condition. Secondly, by modifying the Hough transformation an unbiased criterion to determine the direction of the localization zone is given, which is necessary for adaptive BC. Thirdly, the properties of all the BC are demonstrated in several examples. These show that tesselation BC are the only type, that allows for arbitrary directions of localization zones, yet is totally unsusceptible to spurious localization zones in corners of representative volume elements. Altogether, fundamental objections, that have been raised in the literature against the application of homogenization in situations with strain localization, are rebutted in this thesis. Hence, the basic feasibility of homogenization schemes even in case of strain softening material behavior is shown.
44

Contributions to the Simulation and Optimization of the Manufacturing Process and the Mechanical Properties of Short Fiber-Reinforced Plastic Parts

Ospald, Felix 16 December 2019 (has links)
This thesis addresses issues related to the simulation and optimization of the injection molding of short fiber-reinforced plastics (SFRPs). The injection molding process is modeled by a two phase flow problem. The simulation of the two phase flow is accompanied by the solution of the Folgar-Tucker equation (FTE) for the simulation of the moments of fiber orientation densities. The FTE requires the solution of the so called 'closure problem'', i.e. the representation of the 4th order moments in terms of the 2nd order moments. In the absence of fiber-fiber interactions and isotropic initial fiber density, the FTE admits an analytical solution in terms of elliptic integrals. From these elliptic integrals, the closure problem can be solved by a simple numerical inversion. Part of this work derives approximate inverses and analytical inverses for special cases of fiber orientation densities. Furthermore a method is presented to generate rational functions for the computation of arbitrary moments in terms of the 2nd order closure parameters. Another part of this work treats the determination of effective material properties for SFRPs by the use of FFT-based homogenization methods. For these methods a novel discretization scheme, the 'staggered grid'' method, was developed and successfully tested. Furthermore the so called 'composite voxel'' approach was extended to nonlinear elasticity, which improves the approximation of material properties at the interfaces and allows the reduction of the model order by several magnitudes compared to classical approaches. Related the homogenization we investigate optimal experimental designs to robustly determine effective elastic properties of SFRPs with the least number of computer simulations. Finally we deal with the topology optimization of injection molded parts, by extending classical SIMP-based topology optimization with an approximate model for the fiber orientations. Along with the compliance minimization by topology optimization we also present a simple shape optimization method for compensation of part warpage for an black-box production process.:Acknowledgments v Abstract vii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Nomenclature 3 Chapter 2. Numerical simulation of SFRP injection molding 5 2.1 Introduction 5 2.2 Injection molding technology 5 2.3 Process simulation 6 2.4 Governing equations 8 2.5 Numerical implementation 18 2.6 Numerical examples 25 2.7 Conclusions and outlook 27 Chapter 3. Numerical and analytical methods for the exact closure of the Folgar-Tucker equation 35 3.1 Introduction 35 3.2 The ACG as solution of Jeffery's equation 35 3.3 The exact closure 36 3.4 Carlson-type elliptic integrals 37 3.5 Inversion of R_D-system 40 3.6 Moment tensors of the angular central Gaussian distribution on the n-sphere 49 3.7 Experimental evidence for ACG distribution hypothesis 54 3.8 Conclusions and outlook 60 Chapter 4. Homogenization of SFRP materials 63 4.1 Introduction 63 4.2 Microscopic and macroscopic model of SFRP materials 63 4.3 Effective linear elastic properties 65 4.4 The staggered grid method 68 4.5 Model order reduction by composite voxels 80 4.6 Optimal experimental design for parameter identification 93 Chapter 5. Optimization of parts produced by SFRP injection molding 103 5.1 Topology optimization 103 5.2 Warpage compensation 110 Chapter 6. Conclusions and perspectives 115 Appendix A. Appendix 117 A.1 Evaluation of R_D in Python 117 A.2 Approximate inverse for R_D in Python 117 A.3 Inversion of R_D using Newton's/Halley's method in Python 117 A.4 Inversion of R_D using fixed point method in Python 119 A.5 Moment computation using SymPy 120 A.6 Fiber collision test 122 A.7 OED calculation of the weighting matrix 123 A.8 OED Jacobian of objective and constraints 123 Appendix B. Theses 125 Bibliography 127 / Diese Arbeit befasst sich mit Fragen der Simulation und Optimierung des Spritzgießens von kurzfaserverstärkten Kunststoffen (SFRPs). Der Spritzgussprozess wird durch ein Zweiphasen-Fließproblem modelliert. Die Simulation des Zweiphasenflusses wird von der Lösung der Folgar-Tucker-Gleichung (FTE) zur Simulation der Momente der Faserorientierungsdichten begleitet. Die FTE erfordert die Lösung des sogenannten 'Abschlussproblems'', d. h. die Darstellung der Momente 4. Ordnung in Form der Momente 2. Ordnung. In Abwesenheit von Faser-Faser-Wechselwirkungen und anfänglich isotroper Faserdichte lässt die FTE eine analytische Lösung durch elliptische Integrale zu. Aus diesen elliptischen Integralen kann das Abschlussproblem durch eine einfache numerische Inversion gelöst werden. Ein Teil dieser Arbeit leitet approximative Inverse und analytische Inverse für spezielle Fälle von Faserorientierungsdichten her. Weiterhin wird eine Methode vorgestellt, um rationale Funktionen für die Berechnung beliebiger Momente in Bezug auf die Abschlussparameter 2. Ordnung zu generieren. Ein weiterer Teil dieser Arbeit befasst sich mit der Bestimmung effektiver Materialeigenschaften für SFRPs durch FFT-basierte Homogenisierungsmethoden. Für diese Methoden wurde ein neuartiges Diskretisierungsschema 'staggerd grid'' entwickelt und erfolgreich getestet. Darüber hinaus wurde der sogenannte 'composite voxel''-Ansatz auf die nichtlineare Elastizität ausgedehnt, was die Approximation der Materialeigenschaften an den Grenzflächen verbessert und die Reduzierung der Modellordnung um mehrere Größenordnungen im Vergleich zu klassischen Ansätzen ermöglicht. Im Zusammenhang mit der Homogenisierung untersuchen wir optimale experimentelle Designs, um die effektiven elastischen Eigenschaften von SFRPs mit der geringsten Anzahl von Computersimulationen zuverlässig zu bestimmen. Schließlich beschäftigen wir uns mit der Topologieoptimierung von Spritzgussteilen, indem wir die klassische SIMP-basierte Topologieoptimierung um ein Näherungsmodell für die Faserorientierungen erweitern. Neben der Compliance-Minimierung durch Topologieoptimierung stellen wir eine einfache Formoptimierungsmethode zur Kompensation von Teileverzug für einen Black-Box-Produktionsprozess vor.:Acknowledgments v Abstract vii Chapter 1. Introduction 1 1.1 Motivation 1 1.2 Nomenclature 3 Chapter 2. Numerical simulation of SFRP injection molding 5 2.1 Introduction 5 2.2 Injection molding technology 5 2.3 Process simulation 6 2.4 Governing equations 8 2.5 Numerical implementation 18 2.6 Numerical examples 25 2.7 Conclusions and outlook 27 Chapter 3. Numerical and analytical methods for the exact closure of the Folgar-Tucker equation 35 3.1 Introduction 35 3.2 The ACG as solution of Jeffery's equation 35 3.3 The exact closure 36 3.4 Carlson-type elliptic integrals 37 3.5 Inversion of R_D-system 40 3.6 Moment tensors of the angular central Gaussian distribution on the n-sphere 49 3.7 Experimental evidence for ACG distribution hypothesis 54 3.8 Conclusions and outlook 60 Chapter 4. Homogenization of SFRP materials 63 4.1 Introduction 63 4.2 Microscopic and macroscopic model of SFRP materials 63 4.3 Effective linear elastic properties 65 4.4 The staggered grid method 68 4.5 Model order reduction by composite voxels 80 4.6 Optimal experimental design for parameter identification 93 Chapter 5. Optimization of parts produced by SFRP injection molding 103 5.1 Topology optimization 103 5.2 Warpage compensation 110 Chapter 6. Conclusions and perspectives 115 Appendix A. Appendix 117 A.1 Evaluation of R_D in Python 117 A.2 Approximate inverse for R_D in Python 117 A.3 Inversion of R_D using Newton's/Halley's method in Python 117 A.4 Inversion of R_D using fixed point method in Python 119 A.5 Moment computation using SymPy 120 A.6 Fiber collision test 122 A.7 OED calculation of the weighting matrix 123 A.8 OED Jacobian of objective and constraints 123 Appendix B. Theses 125 Bibliography 127

Page generated in 0.0726 seconds