• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 29
  • 24
  • 7
  • Tagged with
  • 60
  • 39
  • 32
  • 32
  • 24
  • 19
  • 14
  • 14
  • 14
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Mise en oeuvre d'un robot humanoïde et contribution à la génération de marches dynamiques optimales / Commissioning of a humanoid robot and contribution to optimal dynamic 3D gait generation

Fatoux, Julien 16 December 2014 (has links)
Le travail développé dans cette thèse a pour objectif la génération de trajectoires de marches dynamiques optimales qui puissent être validées sur une plateforme expérimentale.Le dispositif mis en oeuvre est le système locomoteur d'un robot humanoïde de petite taille (80cm pour 15kg) nommé Tidom. Ses caractéristiques mécaniques et son architecture de commande sont présentées dans le premier chapitre.Pour générer les trajectoires sur un pas de marche, nous avons utilisé une méthode d'optimisation paramétrique. Cette technique repose sur l'approximation des paramètres de configuration du mouvement par des fonctions splines de classe C3 constituées de polynômes de degré 4 raccordés en des instants équirépartis sur la durée du mouvement jusqu'aux suraccélérations. Les efforts de contact entre le pied balancé et le sol en phase bipodale sont également paramétrés par des fonctions splines, de classe C0. Les accélérations et les couples articulaires sont raccordés aux instants de transition entre les différentes phases du mouvement pour améliorer le contrôle et éviter la détérioration de la mécanique. Le vecteur des paramètres d'optimisation est ainsi composé des coordonnées articulaires aux points de jonction, des vitesses et accélérations aux extrémités des phases de la marche, des efforts de contact pied/sol en double appui auxquels s'ajoutent la longueur de pas et la durée de chaque phase. Il est à noter que la seule donnée d'une vitesse de marche permet d'engendrer un pas optimal cyclique.Plusieurs expérimentations présentées dans le dernier chapitre permettront à terme d'implémenter les trajectoires optimales sur le robot. / The work developed in this thesis aims at generating optimal trajectories for dynamic walking motions that can be validated on an experimental platform.The device used is the locomotion system of a small size humanoid robot (80cm and 15kg) named Tidom. Its mechanical characteristics and control architecture are presented in the first chapter.A parametric optimization method is developed to generate walking step trajectories. It consists in approximating joint motion coordinates using C3-spline functions, made up of 4-order polynomials linked at times equally distributed along the motion time, up to jerk linking. The contact forces between stance foot and ground are approximated using spline functions of class C0. Joint acceleration and joint torques are continuous at the transitions between single and double support phases of a step to improve the robot control and to prevent mechanical damage. The optimization variables are discrete values of joint coordinates at connecting points, joint velocities and accelerations at phase bounds, discrete values of contact forces at connecting points during the double support phase. The step length and the relative length of the step phases are also accounted for. The walking velocity is the only data required for generating an optimal cyclic step.Some experiments presented in the last chapter are the first steps towards the implementation of optimal trajectories on the humanoid robot.
42

Computational foundations of anthropomorphic locomotion / Fondements calculatoires de la locomotion anthropomorphe

Carpentier, Justin 01 September 2017 (has links)
La locomotion anthropomorphe est un processus complexe qui met en jeu un très grand nombre de degrés de liberté, le corps humain disposant de plus de trois cents articulations contre une trentaine chez les robots humanoïdes. Pris dans leur ensemble, ces degrés de liberté montrent une certaine cohérence rendant possible la mise en mouvement du système anthropomorphe et le maintien de son équilibre, dans le but d'éviter la chute. Cette thèse met en lumière les fondements calculatoires à l'origine de cette orchestration. Elle introduit un cadre mathématique unifié permettant à la fois l'étude de la locomotion humaine, et la génération de trajectoires locomotrices pour les robots humanoïdes. Ce cadre consiste en une réduction de la dynamique corps-complet du système pour ne considérer que sa projection autour du centre de gravité, aussi appelée dynamique centroïdale. Bien que réduite, nous montrons que cette dynamique centroïdale joue un rôle central dans la compréhension et la formation des mouvements locomoteurs. Pour ce faire, nous établissons dans un premier temps les conditions d'observabilité de cette dynamique, c'est-à-dire que nous montrons dans quelle mesure cette donnée peut être appréhendée à partir des capteurs couramment employés en biomécanique et en robotique. Forts de ces conditions d'observabilité, nous proposons un estimateur capable de reconstruire la position non-biaisée du centre de gravité. A partir de cet estimateur et de l'acquisition de mouvements de marche sur divers sujets, nous mettons en évidence la présence d'un motif cycloïdal du centre de gravité dans le plan sagittal lorsque l'humain marche de manière nominale, c'est-à-dire sans y penser. La présence de ce motif suggère l'existence d'une synergie motrice jusqu'alors ignorée, soutenant la théorie d'une coordination générale des mouvements pendant la locomotion. La dernière contribution de cette thèse porte sur la locomotion multi-contacts. Les humains ont une agilité remarquable pour effectuer des mouvements locomoteurs qui nécessitent l'utilisation conjointe des bras et des jambes, comme lors de l'ascension d'une paroi rocheuse. Comment doter les robots humanoïdes de telles capacités ? La difficulté n'est certainement pas technologique, puisque les robots actuels sont capables de développer des puissances mécaniques suffisantes. Leurs performances, évaluées tant en termes de qualité des mouvements que de temps de calcul, restent très limitées. Dans cette thèse, nous abordons le problème de génération de trajectoires multi-contacts sous la forme d'un problème de commande optimale. L'intérêt de cette formulation est de partir du modèle réduit de la dynamique centroïdale tout en répondant aux contraintes d'équilibre. L'idée originale consiste à maximiser la vraisemblance de cette dynamique réduite vis-à-vis de la dynamique corps-complet. Elle repose sur l'apprentissage d'une mesure d'occupation qui reflète les capacités cinématiques et dynamiques du robot. Elle est effective : l'algorithmique qui en découle est compatible avec des applications temps réel. L'approche a été évaluée avec succès sur le robot humanoïde HRP-2, sur plusieurs modes de locomotions, démontrant ainsi sa polyvalence. / Anthropomorphic locomotion is a complex process that involves a very large number of degrees of freedom, the human body having more than three hundred joints against thirty in humanoid robots. Taken as a whole, these degrees of freedom show a certain coherence making it possible to set the anthropomorphic system in motion and maintain its equilibrium, in order to avoid falling. This thesis highlights the computational foundations behind this orchestration. It introduces a unified mathematical framework allowing both the study of human locomotion and the generation of locomotive trajectories for humanoid robots. This framework consists of a reduction of the body-complete dynamics of the system to consider only its projection around the center of gravity, also called centroid dynamics. Although reduced, we show that this centroidal dynamics plays a central role in the understanding and formation of locomotive movements. To do this, we first establish the observability conditions of this dynamic, that is to say that we show to what extent this data can be apprehended from sensors commonly used in biomechanics and robotics. Based on these observability conditions, we propose an estimator able to reconstruct the unbiased position of the center of gravity. From this estimator and the acquisition of walking motions on various subjects, we highlight the presence of a cycloidal pattern of the center of gravity in the sagittal plane when the human is walking nominally, that is, to say without thinking. The presence of this motif suggests the existence of a motor synergy hitherto unknown, supporting the theory of a general coordination of movements during locomotion. The last contribution of this thesis is on multi-contact locomotion. Humans have remarkable agility to perform locomotive movements that require joint use of the arms and legs, such as when climbing a rock wall. How to equip humanoid robots with such capabilities? The difficulty is certainly not technological, since current robots are able to develop sufficient mechanical powers. Their performances, evaluated both in terms of quality of movement and computing time, remain very limited. In this thesis, we address the problem of generating multi-contact trajectories in the form of an optimal control problem. The interest of this formulation is to start from the reduced model of centroid dynamics while responding to equilibrium constraints. The original idea is to maximize the likelihood of this reduced dynamic with respect to body-complete dynamics. It is based on learning a measurement of occupation that reflects the kinematic and dynamic capabilities of the robot. It is effective: the resulting algorithmic is compatible with real-time applications. The approach has been successfully evaluated on the humanoid robot HRP-2, on several modes of locomotion, thus demonstrating its versatility.
43

L'homme et le robot humanoïde : Transmission, Résistance et Subjectivation

Baddoura-Gaugler, Rita 17 June 2013 (has links) (PDF)
Hier fiction, maintenant réalité, le robot humanoïde, machine intelligente créée sur le modèle humain, concrétise des rêves ancestraux, avec pour ambition que la copie puisse égaler ou dépasser son modèle et créateur ; voire effectuer un bond dans l'évolution, par delà l'altérité homme/machine et la finitude. Afin de questionner ce qui sous-tend la réalisation du robot, ses enjeux, et ce que ses caractéristiques disent de l'homme aujourd'hui, cette réflexion revisite ses traces mythologiques et techniques depuis l'Antiquité, puis aborde les principaux axes de recherche en robotique interactive. Au regard de la contextualité contemporaine sous le règne de la science et du néolibéralisme, et marquée par l'imaginaire de la science-fiction, des nouvelles technologies, et par l'héritage de la mort collective du 20e siècle ; sont examinésles fantasmes originaires et la dynamique pulsionnelle (concernant notamment l'emprise et la satisfaction, les interactions précoces, et la formation du double) à l'oeuvre dans l'avènement du robot humanoïde. En approchant ce que l'humain reproduit sciemment dans son double technologique, et tout ce qu'à son insu il y dépose, transparaît l'empreinte de la répétition et des tentatives de subjectivation de la place du sujet dans la filiation et du legs transgénérationnel en ce qu'il a d'irreprésentable ou de traumatique. Tenant de l'invention scientifique, du symptôme, de l'objet transitionnel et de l'oeuvre d'art, le robot humanoïde procède d'une double résistance, se traduisant en potentialités de répétition aliénante ou de subjectivation réparatrice, susceptibles de s'actualiser pendant la réalisation du robot ou dans l'interaction avec lui.
44

Design and Control of a Dexterous Anthropomorphic Robotic Hand / Conception et Contrôle d’une Main Robotique anthropomorphique et dextre

Cerruti, Giulio 17 October 2016 (has links)
Cette thèse présente la conception et la commande d’une main robotique légère et peu onéreuse pour un robot compagnon humanoïde. La main est conçue pour exprimer des émotions à travers des gestes et pour saisir de petits objets légers. Sa géométrie est définie à l’aide de données anthropométriques. Sa cinématique est simplifiée par rapport à la main humaine pour réduire le nombre d’actionneurs tout en respectant ses exigences fonctionnelles. La main préserve son anthropomorphisme grâce aux nombres et au placement de la base des doigts et à une bonne opposabilité du pouce. La mécatronique de la main repose sur un compromis entre des phalanges couplés, qui permettent de bien connaître la posture des doigts pendant les gestes, et des phalanges capable de s’adapter à la forme des objets pendant la saisie, réunis en une conception hybride unique. Ce compromis est rendu possible grâce à deux systèmes d’actionnement distincts placés en parallèle. Leur coexistence est garantie par une transmission compliante basée sur des barres en élastomère. La solution proposée réduit significativement le poids et la taille de la main en utilisant sept actionneurs de faible puissance pour les gestes et un seul moteur puissant pour la saisie. Le système est conçue pour être embarqué sur Romeo, un robot humanoïde de1.4 [m] produit par Aldebaran. Les systèmes d’actionnements sont dimensionnés pour ouvrir et fermer les doigts en moins de 1 [s] et pour saisir une canette pleine de soda. La main est réalisée et contrôlée pour garantir une interaction sûre avec l’homme mais aussi pour protéger l’intégrité de la mécanique. Un prototype (ALPHA) est réalisé pour valider la conception et ses capacités fonctionnelles. / This thesis presents the design and control of a low-cost and lightweight robotic hand for a social humanoid robot. The hand is designed to perform expressive hand gestures and to grasp small and light objects. Its geometry follows anthropometric data. Its kinematics simplifies the human hand structure to reduce the number of actuators while ensuring functional requirements. The hand preserves anthropomorphism by properly placing five fingers on the palm and by ensuring an equilibrated thumb opposability. Its mechanical system results from the compromise between fully-coupled phalanges and self-adaptable fingers in a unique hybrid design. This answers the need for known finger postures while gesturing and for finger adaptation to different object shapes while grasping. The design is based on two distinct actuation systems embodied in parallel within the palm and the fingers. Their coexistence is ensured by a compliant transmission based on elastomer bars. The proposed solution significantly reduces the weightand the size of the hand by using seven low-power actuators for gesturing and a single high-power motor for grasping. The overall system is conceived to be embedded on Romeo, a humanoid robot 1.4 [m] tall produced by Aldebaran. Actuation systems are dimensioned to open and close the fingers in less than1 [s] and to grasp a full soda can. The hand is realized and controlled to ensure safe human-robot interaction and to preserve mechanical integrity. A prototype(ALPHA) is realized to validate the design feasibility and its functional capabilities.
45

Contribution to study and implementation of intelligent adaptive control strategies : application to control of complex dynamic systems / Contribution à l’étude et à la mise en œuvre de stratégies adaptatives de commandes intelligentes : application au contrôle de systèmes dynamiques complexes

Yu, Weiwei 02 March 2011 (has links)
La principale limitation du modèle connexionniste (réseau neuronal artificiel) CMAC (Cerebellar Model Articulation Controller) et son applicabilité à la résolution des problèmes inhérents au systèmes automatisés complexes (robots, véhicules autonomes, etc.) est liée à la taille de mémoire requise par ce type de modèle connexionniste. Il est pertinent de rappeler que la capacité de mémoire exigée par le CMAC dépend, en premier lieu, de la précision de la quantification des signaux d'entrée, puis, de la dimension de l'espace des entrées (espace caractéristique) du système modélisé. Dans le cas des applications requérant une exécution en temps-réel, la tendance est à la réduction de l'espace caractéristique (aussi petit que possible) et la précision (de la quantification : aussi faible que possible). Cependant, souvent, les systèmes complexes impliquent plusieurs entrées. Pour résoudre le problème inhérent à cet antagonisme et la taille de la mémoire, nous nous sommes intéressés, dans la présente thèse, à l'influence des paramètres intervenant dans la précision de la quantification et dans la capacité de la généralisation sur la qualité d'approximation du modèle CMAC. L'objectif escompté était d'arriver à des structures optimales du CAMC pour le contrôle des systèmes dynamiques complexes. Les robots bipèdes (humanoïdes) et des véhicules volants hypersoniques sont deux domaines d'applications très actuelles impliquant des systèmes complexes. Nous avons appliqué des concepts étudiés aux problèmes soulevés par les deux domaines précités. Des résultats obtenus à partir de la simulation ont montré que des structures optimales ou quasi-optimales conduisant à une réduction sensible d'erreur de modélisation peuvent être obtenues. Ces résultats ont montré que les choix effectués dans l'optimisation de la structure permet une réduction de la taille de la mémoire requise (par le CMAC) et une réduction du temps d'exécution à la fois / The main limitation of the CMAC (Cerebellar Model Articulation Controller) network in realistic applications for complex automated systems (robots, automated vehicles, etc…) is related to the required memory size. It is pertinent to remind that the memory used by CMAC depends firstly on the input signal quantification step and secondly on the input space dimension. For real CMAC based control applications, on the one hand, in order to increase the accuracy of the control the chosen quantification step must be as small as possible; on the other hand, generally the input space dimension is greater than two. In order to overcome the problem relating the memory size, how both the generalization and step quantization parameters may influence the CMAC's approximation quality has been discussed. Our goal is to find an optimal CMAC structure for complex dynamic systems' control. Biped robots and Flight control design for airbreathing hypersonic vehicles are two actual areas of such systems. We have applied the investigated concepts on these two quite different areas. The presented simulation results show that an optimal or sub-optimal structure carrying out a minimal modeling error could be achieved. The choice of an optimal structure allows decreasing the memory size and reducing the computing time as well
46

Contribution à la commande temps réel des robots marcheurs. Application aux stratégies d'évitement des chutes / Contributions to walking robots real time control, Application to fall avoidance strategies

Gastebois, Jérémy 20 December 2017 (has links)
Les grands robots marcheurs sont des systèmes mécatroniques poly-articulés complexes qui cristallisent la volonté des humains de conférer leurs capacités à des artefacts, l’une d’entre elle étant la locomotion bipède, et plus particulièrement la conservation de l’équilibre face à des perturbations extérieures. Cette thèse propose un stabilisateur postural ainsi que sa mise en œuvre sur le système locomoteur BIP 2000.Ce robot anthropomorphique possède quinze degrés de libertés actionnés par moteurs électriques et a reçu un nouvel automate ainsi que des variateurs industriels lors de la mise à jour réalisée dans le cadre de ces travaux. Un contrôleur a été conçu et implémenté en suivant les principes de la programmation orientée objet afin de fournir une modularité qui s’inspire de la symétrie naturelle des humanoïdes. Cet aspect a conduit à l’élaboration d’un ensemble d’outils mathématiques permettant de calculer l’ensemble des modèles d’un robot composé de sous-robots dont on connaîtrait déjà les modèles. Le contrôleur permet notamment à la machine de suivre des trajectoires calculées hors ligne par des algorithmes de génération de marches dynamiques ainsi que de tester le stabilisateur postural.Ce dernier consiste en un contrôle en position du robot physique par la consigne d’un robot virtuel de modèle dégradé, commandé en effort, soumis à des champs électrostatiques contraignant sa configuration articulaire. Les tests effectués ont permis de montrer la faisabilité de la méthode. / Big walking robots are complex multi-joints mechanical systems which crystallize the human will to confer their capabilities on artefacts, one of them being the bipedal locomotion and more especially the balance keeping against external disturbances. This thesis proposes a balance stabilizer under operating conditions displayed on the locomotor system BIP 2000.This anthropomorphic robot has got fifteen electrically actuated degree of freedom and an Industrial controller. A new software has been developed with an object-oriented programming approach in order to propose the modularity required by the emulated and natural human symmetry. This consideration leads to the development of a mathematical tool allowing the computation of every modelling of a serial robot which is the sum of multiple sub robots with already known modelling. The implemented software also enables the robot to run offline generated dynamic walking trajectories and to test the balance stabilizer.We explore in this thesis the feasibility of controlling the center of gravity of a multibody robotic system with electrostatic fields acting on its virtual counterpart in order to guarantee its balance. Experimental results confirm the potential of the proposed approach.
47

Contribution à la commande corps-complet des robots humanoïdes : du concept à l'implémentation temps-réel / Contribution to whole-body control of humanoid robots : From concept to real time implementation

Galdeano, David 13 November 2014 (has links)
Les robots humanoïdes sont en passe d'être commercialisés pour le public à grande échelle, mais pour réussir cet objectif il est nécessaire de rendre ces robots fiables, fonctionnels et sécurisés. Ceci implique de nombreuses améliorations par rapport à de l'état de l'art, pour permettre un produit fini. Un des domaines à améliorer est la commande corps-complet des robots humanoïdes. Les objectifs de cette thèse sont de proposer une architecture de commande permettant de générer des mouvements corps-complet bio-inspirés. L'idée principale étant de s'inspirer de la marche humaine afin de reproduire ces mouvements sur un robot humanoïde. La solution de commande proposée utilise le principe de tâches pour quatre objectifs cinématiques: (i) la pose relative des pieds, (ii) la position du CoM, (iii) l'orientation du buste, et (iv) l'évitement des butées articulaires. La stabilité est renforcée en modifiant la position du CoM désirée à l'aide d'un stabilisateur basé sur la régulation non linéaire du ZMP. L'approche résultante est appelée architecture de commande hybride cinématique/dynamique. Cette approche a été validée expérimentalement sur deux prototypes de robots humanoïdes pour différentes tâches telles que le squat et la marche. / Humanoid robots are a rising trend, and are about to be sold to the public on a large scale, but for this to be possible it is necessary to make them reliable, secure and functional. This implies many improvements over the prior state of the art. A domain of improvement is the full-body control of humanoid robots. The objective of this thesis is to propose a control architecture for generating a bio-inspired full-body control. The main idea is to learn from human walking to replicate these movements on a humanoid robot. The proposed control solution uses the principle of kinematics task for four objectives: (i) the relative pose of the feet, (ii) the position of the Centre de masse (CoM), (iii) the orientation of the upper-body, and (iv) the joints' limits avoidance. Stability is enhanced by modifiying the CoM position by using a stabilizer based on nonlinear regulation of the Zero Moment Point (ZMP). The resulting approach is called hybrid kinematic / dynamic control architecture. This approach has been validated experimentally on two prototypes of humanoid robots for tasks such as squat and walking.
48

Commande de chute pour robots humanoïdes par reconfiguration posturale et compliance adaptative / Humanoid fall control by postural reshaping and adaptive compliance

Samy, Vincent 13 November 2017 (has links)
Cette thèse traite du problème de la chute de robots humanoïdes. L’étude consiste à découpler la stratégie de chute en une phase de pré-impact et une phase de post-impact. Dans la première, une solution géométrique permet au robot de choisir des points d’impact dans un environnement encombré. Pour ce faire, le robot réadapte sa posture tout en évident les singularités de chute et en préparant le seconde phase. La phase de post-impact utilise une commande par Programmation Quadratique (QP) qui permet d’adapter les gains Proportionnels-Dérivés (PD)des moteurs en ligne, ceci afin d’obtenir de la compliance dans les articulations. L’approche consiste à incorporer les gains de raideur et d’amortissement dans le vecteur d’optimisation du QP avec les variables habituelles que sont l’accélération articulaire et les forces de contact. Les contraintes ont été adaptées à ce nouveau QP. Enfin,comme la solution est locale, une commande de modèle prédictif sur un modèle simplifié du robot. A chaque pas du développement, plusieurs expériences et simulations ont été effectuées. / This thesis deals with the problem of humanoid falling with a decoupled strategy consisting of a pre-impactand a post-impact stages. In the pre-impact stage, geometrical reasoning allows the robot to choose appropriateimpact points in the surrounding environment –that can be unstructured and may contain cluttered obstacles,and to adopt a posture to reach them while avoiding impact singularities and preparing for the post-impact. Thepost-impact stage uses a quadratic program controller that adapts on-line the joint proportional-derivative (PD)gains to make the robot compliant, i.e. to absorb post-impact dynamics, which lowers possible damage risks.We propose a new approach incorporating the stiffness and damping gains directly as decision variables in theQP along with the usually-considered variables that are the joint accelerations and contact forces. By doing so,various constraints can be added to the QP. Finally, since the gain adaptation is local, we added a preview ona time-horizon for more optimal gain adaptation based on model reduction. At each step of the development,several experiments on the humanoid robot HRP-4 in a full-dynamics simulator are presented and discussed.
49

Etude de la direction du regard dans le cadre d'interactions sociales incluant un robot / Gaze direction in the context of social human-robot interaction

Massé, Benoît 29 October 2018 (has links)
Les robots sont de plus en plus utilisés dans un cadre social. Il ne suffit plusde partager l’espace avec des humains, mais aussi d’interagir avec eux. Dansce cadre, il est attendu du robot qu’il comprenne un certain nombre de signauxambiguës, verbaux et visuels, nécessaires à une interaction humaine. En particulier, on peut extraire beaucoup d’information, à la fois sur l’état d’esprit despersonnes et sur la dynamique de groupe à l’œuvre, en connaissant qui ou quoichaque personne regarde. On parle de la Cible d’attention visuelle, désignéepar l’acronyme anglais VFOA. Dans cette thèse, nous nous intéressons auxdonnées perçues par un robot humanoı̈de qui participe activement à une in-teraction sociale, et à leur utilisation pour deviner ce que chaque personneregarde.D’une part, le robot doit “regarder les gens”, à savoir orienter sa tête(et donc la caméra) pour obtenir des images des personnes présentes. Nousprésentons une méthode originale d’apprentissage par renforcement pourcontrôler la direction du regard d’un robot. Cette méthode utilise des réseauxde neurones récurrents. Le robot s’entraı̂ne en autonomie à déplacer sa tête enfonction des données visuelles et auditives. Il atteint une stratégie efficace, quilui permet de cibler des groupes de personnes dans un environnement évolutif.D’autre part, les images du robot peuvent être utilisée pour estimer lesVFOAs au cours du temps. Pour chaque visage visible, nous calculons laposture 3D de la tête (position et orientation dans l’espace) car très fortementcorrélée avec la direction du regard. Nous l’utilisons dans deux applications.Premièrement, nous remarquons que les gens peuvent regarder des objets quine sont pas visible depuis le point de vue du robot. Sous l’hypothèse quelesdits objets soient regardés au moins une partie du temps, nous souhaitonsestimer leurs positions exclusivement à partir de la direction du regard despersonnes visibles. Nous utilisons une représentation sous forme de carte dechaleur. Nous avons élaboré et entraı̂né plusieurs réseaux de convolutions afinde d’estimer la régression entre une séquence de postures des têtes, et les posi-tions des objets. Dans un second temps, les positions des objets d’intérêt, pou-vant être ciblés, sont supposées connues. Nous présentons alors un modèleprobabiliste, suggéré par des résultats en psychophysique, afin de modéliserla relation entre les postures des têtes, les positions des objets, la directiondu regard et les VFOAs. La formulation utilise un modèle markovien à dy-namiques multiples. En appliquant une approches bayésienne, nous obtenonsun algorithme pour calculer les VFOAs au fur et à mesure, et une méthodepour estimer les paramètres du modèle.Nos contributions reposent sur la possibilité d’utiliser des données, afind’exploiter des approches d’apprentissage automatique. Toutes nos méthodessont validées sur des jeu de données disponibles publiquement. De plus, lagénération de scénarios synthétiques permet d’agrandir à volonté la quantitéde données disponibles; les méthodes pour simuler ces données sont explicite-ment détaillée. / Robots are more and more used in a social context. They are required notonly to share physical space with humans but also to interact with them. Inthis context, the robot is expected to understand some verbal and non-verbalambiguous cues, constantly used in a natural human interaction. In particular,knowing who or what people are looking at is a very valuable information tounderstand each individual mental state as well as the interaction dynamics. Itis called Visual Focus of Attention or VFOA. In this thesis, we are interestedin using the inputs from an active humanoid robot – participating in a socialinteraction – to estimate who is looking at whom or what.On the one hand, we want the robot to look at people, so it can extractmeaningful visual information from its video camera. We propose a novelreinforcement learning method for robotic gaze control. The model is basedon a recurrent neural network architecture. The robot autonomously learns astrategy for moving its head (and camera) using audio-visual inputs. It is ableto focus on groups of people in a changing environment.On the other hand, information from the video camera images are used toinfer the VFOAs of people along time. We estimate the 3D head poses (lo-cation and orientation) for each face, as it is highly correlated with the gazedirection. We use it in two tasks. First, we note that objects may be lookedat while not being visible from the robot point of view. Under the assump-tion that objects of interest are being looked at, we propose to estimate theirlocations relying solely on the gaze direction of visible people. We formulatean ad hoc spatial representation based on probability heat-maps. We designseveral convolutional neural network models and train them to perform a re-gression from the space of head poses to the space of object locations. Thisprovide a set of object locations from a sequence of head poses. Second, wesuppose that the location of objects of interest are known. In this context, weintroduce a Bayesian probabilistic model, inspired from psychophysics, thatdescribes the dependency between head poses, object locations, eye-gaze di-rections, and VFOAs, along time. The formulation is based on a switchingstate-space Markov model. A specific filtering procedure is detailed to inferthe VFOAs, as well as an adapted training algorithm.The proposed contributions use data-driven approaches, and are addressedwithin the context of machine learning. All methods have been tested on pub-licly available datasets. Some training procedures additionally require to sim-ulate synthetic scenarios; the generation process is then explicitly detailed.
50

Identification et contrôle des systèmes non linéaires : application aux robots humanoïdes

Suleiman, Wael 18 September 2008 (has links) (PDF)
Le travail de recherche dans ce mémoire aborde les problèmes de l'identification des systèmes non linéaires et également de l'application de la théorie d'optimisation. Dans une première partie, nous proposons des méthodes efficaces et nouvelles afin d'identifier les systèmes linéaires dans le cas d'expérimentations multiples, les séries de Volterra à horizon infini et les systèmes quadratiques en l'état. Dans une seconde partie, nous appliquons la théorie d'identification à la modélisation de la locomotion humaine. Nous abordons ensuite l'optimisation des mouvements des robots humanoïdes, l'imitation des mouvements humains par un robot humanoïde et enfin le paramétrage temporel des chemins dans l'espace des configurations pour un robot humanoïde. Les résultats expérimentaux de nos méthodes sur la plate-forme HRP-2 ont révélé non seulement leur efficacité, mais aussi leurs bonnes performances qui dépassent largement celles des méthodes conventionnelles.

Page generated in 0.4201 seconds