• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 6
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Improved predictive models for pre-clinical drug toxicity studies

Navarro-Zornoza, Maria Dolores January 2015 (has links)
Increasingly, drug-induced liver injury is one of the main reason for drugs to be withdrawn from the market even after passing toxicity studies in pre-clinical and clinical trials because of risks of toxicity and ineffective treatments. Human immortalised hepatocyte cell lines used in drug testing are widely available, inexpensive and easy to culture. However, these cell lines are commonly known to have poor predictive capabilities and improved in vitro hepatic models are required for predicting hepatotoxicity of large numbers of compounds in drug discovery. In this study, the primary goal was to develop an improved in vitro human hepatic model using a combination of the C3A human hepatic cell line and human umbilical vein endothelial cells (HUVECs), for prediction of acetaminophen (APAP) hepatotoxicity. Initial experiments showed that co-culture of HUVEC:C3A in EGM-2, an endothelial medium, was essential to support both cell types, and that co-cultures maintained the initial cell seeding ratio of 1:1 (HUVEC:C3A) after 3 days. Phenotyping of co-cultured cells using platelet endothelial cell adhesion molecule (PECAM-1/CD31) for HUVECs, and hepatic epithelial (EpCAM) markers for C3As demonstrated that at ratio 1:1 (HUVEC:C3A), there is cross-talk between HUVECs and C3As and cells in co-culture showed properties of self-organisation. This interaction resulted in improved hepatic metabolic activity in vitro in respect of albumin synthesis and cytochrome P450 activity. Treatment with low (5 mM), intermediate (10 mM) and high doses (20 mM) of APAP, showed that prediction of hepatotoxicity using specific kits for cell viability and mitochondria function, was significantly improved in C3As in the presence of HUVECs, thus demonstrating an in vitro human hepatic co-culture could be an invaluable model for drug toxicity studies. We observed that the intermediate APAP dose had no effect on cell viability and mitochondrial function in co-cultures, whilst by comparison both lactate levels and oxidative stress were perturbed in mono-cultures. Co-cultures also up-regulated expression of vascular endothelial growth factor receptor-2 (VEGFR-2) in HUVECs following APAP exposure, which may be important in modulating the toxic effect of APAP on C3As. To further improve the in vitro liver-like model, Matrigel™ was incorporated to promote vascular formation by HUVECs and support hepatic organization, migration and function of C3As. In HUVEC mono-cultures, Matrigel™-promoted vascularization, haptotaxis and self-organization and in HUVEC:C3A co-cultures formation of structures reminiscent of liver sinusoids and maintenance of hepatic albumin synthesis and CYP3A4 activity. Time-lapse imaging showed haptotactic migration of hepatocytes towards endothelial cells, with Matrigel™ likely having a chemotactic effect on HUVECs and C3As, resulting in interconnected vascular network. APAP inhibited angiogenesis in HUVEC mono-cultures whereas APAP had no effect in HUVEC:C3A co-cultures. In conclusion, the development of an in vitro human organotypic co-culture model of HUVECs and C3As significantly enhanced hepatic function, demonstrated by significant improvement in hepatic metabolism, evidence of greater resistance to APAP toxicity, and improved cell-cell communication. Co-cultures markedly modulated APAP hepatotoxicity compared with C3A mono-cultures. Furthermore, co-culture of HUVECs and C3As using a complex basement membrane biomatrix (Matrigel™) produced a self-assembling interconnected vascular network, improved hepatocyte function as well as reproducibility of responses to APAP toxicity. The application of the described co-culture models may improve the accuracy, efficacy and predictive power of drug toxicity testing strategies in drug development.
2

Regulation of angiogenic and anti-angiogenic gene expression in human trophoblast

Ismaeel, Haneen Moayad 01 December 2018 (has links) (PDF)
ABSTRACT Preeclampsia (PE) is a one of the more common pregnancy complications that affects 5-8% of pregnancies worldwide and produces significant morbidity and mortality for mother and fetus. Shallow trophoblast invasion and insufficient maternal spiral artery remodeling early in gestation is believed to lead to a relatively hypoxic placenta with inflammatory and trophoblast endoplasmic reticulum (ER) stress. These stresses cause an imbalance in trophoblast expression of angiogenic/anti-angiogenic molecules with decreased placental growth factor (PGF) and increased soluble fms like tyrosine kinase-1 receptor (sFlt-1) production. The decrease in trophoblast PGF seems to be mediated at the transcriptional level while increased expression of sFlt-1 is mediated by alternative splicing. Two variants known to be elevated in PE are the sFlt-1i13 and sFlt-1e15a isoforms. Both share the first 13 exons of Flt-1. A read through into intron 13 and utilization of an alternative poly (A) signal sequence produces the sFlt-1i13 variants protein, while sFlt-1e15a results from alternative splicing of exon 14 to exon 15a, rather than exon 15, and utilization of an alternative poly (A) signal sequence. This angiogenic imbalance contributes to the clinical manifestations of PE later in pregnancy including maternal hypertension and proteinuria. Currently, there are no pharmacological options available for the prevention of PE and the only way to reverse PE symptoms is by delivery. The overall goal of my project was (1) to investigate potential therapeutic mechanisms that could be used to relieve the maternal symptoms of PE by correcting the angiogenic imbalance, and (2) to gain a better understanding of the alternative splicing mechanisms responsible for producing sFlt-1 gene expression in human trophoblast. PE shares some similar pathophysiology and risk factors with cardiovascular diseases. This has prompted use of statins as a potential therapy for PE. However, existing preclinical investigations for statin use has been mostly restricted to PE animal models without elucidating the cell types that respond to statin treatment. Therefore, we sought to determine the effect of statins on angiogenic gene expression in cells that are in direct contact with maternal blood during pregnancy and could contribute to PE: primary trophoblast and endothelial cells. Placental tissue and isolated cells were cultured under hypoxic stress (1% O2) as a model for the hypoxic environment noted in PE. We compared the effectiveness of two types of statins (hydrophilic vs hydrophobic) on angiogenic and anti-angiogenic gene expression from the human tissues and cells. Human placenta villus explants, umbilical vein endothelial cells (HUVECs), and cytotrophoblast were isolated from normal term placentae and cultured under low oxygen tension (1% O2) with serial concentrations of statins. Expression of proangiogenic genes (VEGF and PGF) and the prominent anti-angiogenic sFlt-1 isoforms (sFlt-1i13 & sFlt-1e15a) were analyzed. In villus explants, hypoxia (1% O2) tended to alter angiogenic gene expression in their predicted fashion, by increasing VEGF mRNA (hypoxia marker), decreasing PGF mRNA, and increasing both sFlt-1i13 and sFlt-1e15a mRNA expression. However, the changes in gene expression were quite variable and statistically not significant. Hypoxia significantly increased both sFlt-1i13 and sFlt-1e15a mRNA and protein expression in primary trophoblast but had limited effects on expression in HUVECs. Hypoxia significantly decreased PGF mRNA and protein expression in primary trophoblast, yet significantly increased PGF mRNA and protein expression in HUVECs. Concentrations of pravastatin or simvastatin used had limited effects on altering PGF mRNA and protein expression in any of the cell types. In primary trophoblast, lower concentrations of pravastatin (100/500 µg/ml) had no significant effects on sFlt-1i13 or sFlt-1e15a mRNA expression while higher concentrations (1000 µg/ml) significantly decreased sFlt-1i13 and tended to decrease sFlt-1e15a mRNA expression. Secreted sFlt-1 protein from trophoblast decreased with increasing concentrations of pravastatin. Similarly, simvastatin had limited effects and did not significantly decrease sFlt-1i13 or sFlt-1e15a expression in hypoxic primary trophoblast. Both pravastatin and simvastatin significantly down-regulated sFlt-1i13 and sFlt-1e15a mRNA expression and sFlt-1 protein production in HUVECs. To overcome the effects of statin treatments on sFlt-1 expression, primary HUVECs were treated with farnesyl pyrophosphate ammonium salt (FPP), an intermediate in the cholesterol synthesis pathway. FPP partially restored sFlt-1i13 and sFlt-1e15a mRNA expression. Our data support that the angiogenic imbalance seen in PE can be medicated by hypoxia, and that statin could be a promising medication to limit PE symptoms. The effect of statins may be more evident on endothelial cells than on trophoblast, and the reduction in sFlt-1 expression by statins seems to be partially mediated through the cholesterol synthesis pathway in endothelial cells. The antiangiogenic protein, sFlt-1, plays a central role in the pathophysiology of PE. Excessive amounts of the sFlt-1 receptor in maternal circulation leads to maternal endothelial cell dysfunction and subsequent clinical symptoms of PE. However, the mechanism governing sFlt-1 mRNA expression in trophoblast remains unclear. Jumonji C domain containing gene 6 (JMJD6) has been shown to be involved in splicing of sFlt-1i13 in endothelial cells, although with conflicting outcomes as to whether it increases or decreases alternative splicing of sFlt-1i13. It is unknown if JMJD6 functions to regulate splicing in human primary trophoblast. Therefore, we assessed whether JMJD6 expression is altered in primary trophoblast under hypoxia or ER stress and its ability to regulate alternative splicing of sFlt-1. Human cytotrophoblast were isolated from normal term placentae and were cultured in the presence or absence of ER stress inducer (tunicamycin) or at 1% O2 to simulate trophoblast stressors during PE. Expression of JMJD6, C/EBP homologous protein (CHOP), and sFlt-1 (sFlt-1i13, and sFlt-1e15a) variants were analyzed. Hypoxic stress significantly increases JMJD6, sFlt-1i13, and sFlt-1e15a mRNA expression. ER stress also tended to increase JMJD6, sFlt-1i13, and sFlt-1e15a mRNA expression in primary trophoblast. Collectively, our results show that low oxygen tension (1% O2) or ER stress increase JMJD6 mRNA expression which may contribute to increased sFlt-1i13 and sFlt-1e15a variant expression in primary trophoblast. Similarly, JMJD6 knock down with siRNA tends to slightly decrease sFlt-1i13 and sFlt-1e15a mRNA expression in primary trophoblast. JMJD6 overexpression in HTR-8 cells (choriocarcinoma) tended to increase sFlt-1i13 and sFlt-1e15a mRNA expression; however, results using HTR-8 were inconsistent due to extremely low expression of endogenous Flt-1 mRNA. To overcome this, a Flt-1 minigene plasmid was transfected into HTR-8 cell line. Under 1%O2 these cells increased expression of the sFlt-1i13 isoform. To more directly confirm effects of JMJD6 and hypoxia on sFlt-1 expression, HEK293 and JEG3 stable clones harboring the Flt-1 minigene were generated. Preliminary results from selected single colony isolates show that several stable clones express the Flt-1 minigene products. HEK293 and JEG3 stable clones harboring the Flt-1 minigene, HEK293-Flt1#5 and JEG3-Flt1#5 respectively, were cultured at 1%O2 for 48 or 72 hours. Hypoxic stress had no significant on altering sFlt-1 variant production or JMJD6 mRNA expression in HEK293-Flt1#5 cells. However, hypoxic JEG3-Flt1#5 cells significantly increased sFlt-1i13 isoform mRNA expression (˜6 fold) and mFlt-1 mRNA expression (2.5 Fold) and also increased JMJD6 mRNA expression (1.8 Fold). In summary, these data suggest a role for statins as a potential therapeutic approach for the prevention and treatment of PE by decreasing systemic sFlt-1 expression in endothelial cells. This effect seems most significant in endothelial cells. If substantiated by clinical studies, use of statins would offer an affordable and easily accessible therapy to lessen PE symptoms. Moreover, our preliminary data suggest a potential involvement of JMJD6 in splicing process of sFlt-1i13. Confirming of JMJD6 role in splicing of Flt-1 may provide therapeutic strategies to treat Flt-1 associated disorder.
3

Assessment of Invasive Activities of Ovarian Cancer Cells In Vitro

Shah, Hetal 15 April 2005 (has links)
The interactions between neighboring cells and between cells and their attached substrate have long been studied in tissue culture. These in vitro studies may provide information regarding cell behavior in vivo including cell movement, cell proliferation, tissue development and wound healing. Transcellular resistance (or impedance) measurements, using various dc or ac techniques have been used to study the barrier function of epithelial and endothelial cell layers. With an appropriate equivalent circuit used for data analysis, junctional resistance between cells and other cellular properties, including cell membrane capacitance, can be determined. However, these techniques have seldom been applied to fibroblastic cell layers because the transcellular resistance is so small that it is difficult to measure it accurately. This research is based on detecting the invasive activities of metastatic cells in vitro using electric cell-impedance sensing (ECIS). The metastatic cells where added over the established endothelial cells and were observed to attach and invade the cell layer. Human umbilical vein endothelial cells (HUVECs) were first grown and then loaded on eight well gold electrodes. The impedance of these electrodes was followed after the suspension of different sublines of cancer cells (SKOV3, OVCA429). For highly metastatic sublines, within an hour after being challenged, the impedance of confluent HUVECs layer was substantially reduced. In addition the conditioned cancer media and heat-killed cancer cells was also suspended which had no substantial effect on the impedance. This result suggests that ECIS based assay might be used with primary human cultures to establish the metastatic abilities of cells.
4

Cellular and molecular effects of fibroblast growth factors 2 and 4 on human umbilical veinal endothelial cells

Kabbara, Khaled Wally 22 January 2016 (has links)
Fibroblast growth factors (FGFs), encompasses a family of 22 related polypeptide. There are 18 different biologically active FGF proteins. They influence a wide array of biological and physiological responses such as migration, proliferation, tissue homeostasis, and wound healing. Most FGF are secreted and bind to heparin sulphate binding proteins (HPSG) in the extra cellular matrix (ECM). FGF-binding protein (FGF-BP) is a chaperon protein that binds to FGF releasing from the ECM and chaperoning it to bind to FGF receptors (FGFRs). FGFR dimerize when bound to FGF and starts series of a signal cascade that ultimately leads to the activation of MAPK. FGF2 and FGF4 are selected from the pool of 18 different FGF to be studied in this investigation. Both FGF2 and FGF4 have been reported to be critical for development during embryogenesis. De-regulation of these proteins could lead to various pathologies including different types of cancers. Hence we attempt to investigate the cellular and molecular role of these proteins and their implication on cells in an attempt to set up a foundational understanding for further studies that will include FGF-BPs and FGFRs. To do so, we used HUVECs to examine FGF2 and FGF4 activity through Western Blot analysis. We also investigated their effect on migration using the ECIS Migration Assays, on wound healing by the ECIS Wound Healing Assays and captured wound healing images through Incucyte. Data from these experiments indicated that both, FGF2 and FGF4, have a role in cellular migration and wound healing. They also show they have a dose response on these cells. As a result, we can use these models to further investigate FGF2 and FGF4 modulation by FGF-BP1 and FGF-BP3 and the affects cellular response.
5

Mecanismo potencial de proteção de microRNAs na expressão de endotelina-1 em células endoteliais incubadas com plasma de pré-eclâmpticas / Potential protective mechanism by miRNAs on endothelin-1 expression in endothelial cells incubated with plasma from preeclampsia

Dias, Mayara Caldeira [UNESP] 29 February 2016 (has links)
Submitted by MAYARA CALDEIRA DIAS (mayara_09_9@hotmail.com) on 2016-06-23T19:06:52Z No. of bitstreams: 1 Dissertação Defesa Mestrado 2016 com ficha cat.pdf: 1188779 bytes, checksum: cfba6baf30d14e0b0dab3353afac61e1 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-06-27T18:36:50Z (GMT) No. of bitstreams: 1 dias_mc_me_bot.pdf: 1188779 bytes, checksum: cfba6baf30d14e0b0dab3353afac61e1 (MD5) / Made available in DSpace on 2016-06-27T18:36:50Z (GMT). No. of bitstreams: 1 dias_mc_me_bot.pdf: 1188779 bytes, checksum: cfba6baf30d14e0b0dab3353afac61e1 (MD5) Previous issue date: 2016-02-29 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / Estudos demonstraram que a incubação de plasma de gestantes que posteriormente desenvolveram pré-eclâmpsia em células endoteliais prejudica o funcionamento dessas células, porém nenhum estudo examinou a expressão de microRNAs em células endoteliais incubadas com plasma dessas gestantes. Este estudo investigou os efeitos da incubação do plasma de gestantes que posteriormente desenvolveram pré-eclâmpsia e gestantes que permaneceram saudáveis na expressão de 84 genes relacionados à biologia da célula endotelial através de PCR-array em células endoteliais de veia umbilical humana (HUVECs). Em células incubadas com plasma de gestantes que posteriormente desenvolveram pré-eclâmpsia, a expressão do gene EDN1, que codifica a ET-1, estava significativamente aumentada em relação às gestantes que permaneceram saudáveis. Em seguida, a expressão de EDN1 e os níveis de ET-1 foram quantificados em HUVECs incubadas com plasma de gestantes que já desenvolveram pré-eclâmpsia e gestantes saudáveis. A expressão de EDN1 foi similar nos grupos, porém os níveis de ET-1 estavam reduzidos após o desenvolvimento da pré-eclâmpsia. Posteriormente, foi realizada a expressão de microRNAs, preditos em atuar no gene EDN1, nas HUVECs. A expressão dos microRNAs miR-125a, 125b, let-7a, let-7b e let-7c estava aumentada em HUVECs incubadas com plasma de gestantes pré-eclâmpticas. Correlações inversas significativas entre a expressão dos microRNAs da família let-7 e os níveis de ET-1 foram encontradas após o desenvolvimento da pré-eclâmpsia, principalmente em células incubadas com plasma de gestantes pré-eclâmpticas que são não-responsivas ao tratamento com anti-hipertensivos. Portanto, este estudo propõe a regulação pelos microRNAs como forma de explicar a diminuição nos níveis de ET-1 quando a pré-eclâmpsia já está estabelecida. Os resultados sugerem que os microRNAs podem ser um mecanismo protetor na pré-eclâmpsia, através da supressão dos níveis de ET-1. / Objectives of the study: Plasma from pregnant women who subsequently developed preeclampsia was shown to impair the endothelial function in endothelial cells. However, no study has examined miRNA expression in endothelial cells incubated with plasma from preeclamptic women. Methods: We examined the effects of plasma incubation from pregnant who subsequently developed preeclampsia (cases) and from healthy pregnant (controls) on the expression of 84 genes related to endothelial cell biology using PCR-array in human umbilical vein endothelial cells (HUVECs). Results: Higher EDN1 expression and ET-1 levels were found in cases. Next, we quantified EDN1 expression and ET-1 levels in HUVECs incubated with plasma from pregnant who had already developed preeclampsia and healthy pregnant. While EDN1 expression was similar between groups, ET-1 levels were reduced after preeclampsia development. We then examined whether miRNAs that were predicted to target EDN1 could modulate ET-1 levels in HUVECs. Inverse correlations between the expression of miRNAs of let-7 family and ET-1 levels were found after preeclampsia development and in patients nonresponsive to antihypertensive therapy. Conclusions: We propose that regulation by miRNAs as a mechanism explaining the decreased ET-1 levels when the symptoms of preeclampsia are already established. Our findings suggest that miRNAs may be a protective mechanism in preeclampsia, by suppressing ET-1 levels. / CNPq: 131125/2014-1
6

Mecanismo potencial de proteção de microRNAs na expressão de endotelina-1 em células endoteliais incubadas com plasma de pré-eclâmpticas

Dias, Mayara Caldeira January 2016 (has links)
Orientador: Valéria Cristina Sandrim / Resumo: Estudos demonstraram que a incubação de plasma de gestantes que posteriormente desenvolveram pré-eclâmpsia em células endoteliais prejudica o funcionamento dessas células, porém nenhum estudo examinou a expressão de microRNAs em células endoteliais incubadas com plasma dessas gestantes. Este estudo investigou os efeitos da incubação do plasma de gestantes que posteriormente desenvolveram pré-eclâmpsia e gestantes que permaneceram saudáveis na expressão de 84 genes relacionados à biologia da célula endotelial através de PCR-array em células endoteliais de veia umbilical humana (HUVECs). Em células incubadas com plasma de gestantes que posteriormente desenvolveram pré-eclâmpsia, a expressão do gene EDN1, que codifica a ET-1, estava significativamente aumentada em relação às gestantes que permaneceram saudáveis. Em seguida, a expressão de EDN1 e os níveis de ET-1 foram quantificados em HUVECs incubadas com plasma de gestantes que já desenvolveram pré-eclâmpsia e gestantes saudáveis. A expressão de EDN1 foi similar nos grupos, porém os níveis de ET-1 estavam reduzidos após o desenvolvimento da pré-eclâmpsia. Posteriormente, foi realizada a expressão de microRNAs, preditos em atuar no gene EDN1, nas HUVECs. A expressão dos microRNAs miR-125a, 125b, let-7a, let-7b e let-7c estava aumentada em HUVECs incubadas com plasma de gestantes pré-eclâmpticas. Correlações inversas significativas entre a expressão dos microRNAs da família let-7 e os níveis de ET-1 foram encontradas após o dese... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: Objectives of the study: Plasma from pregnant women who subsequently developed preeclampsia was shown to impair the endothelial function in endothelial cells. However, no study has examined miRNA expression in endothelial cells incubated with plasma from preeclamptic women. Methods: We examined the effects of plasma incubation from pregnant who subsequently developed preeclampsia (cases) and from healthy pregnant (controls) on the expression of 84 genes related to endothelial cell biology using PCR-array in human umbilical vein endothelial cells (HUVECs). Results: Higher EDN1 expression and ET-1 levels were found in cases. Next, we quantified EDN1 expression and ET-1 levels in HUVECs incubated with plasma from pregnant who had already developed preeclampsia and healthy pregnant. While EDN1 expression was similar between groups, ET-1 levels were reduced after preeclampsia development. We then examined whether miRNAs that were predicted to target EDN1 could modulate ET-1 levels in HUVECs. Inverse correlations between the expression of miRNAs of let-7 family and ET-1 levels were found after preeclampsia development and in patients nonresponsive to antihypertensive therapy. Conclusions: We propose that regulation by miRNAs as a mechanism explaining the decreased ET-1 levels when the symptoms of preeclampsia are already established. Our findings suggest that miRNAs may be a protective mechanism in preeclampsia, by suppressing ET-1 levels. / Mestre
7

Small Organic Molecule Inhibition of Tumor Necrosis Factor-a Induced Vascular Cell Adhesion Molecule-1 Expression by Endothelial Cells

Alapati, Anuja 24 September 2013 (has links)
No description available.
8

Efeitos do LBP (780nm) sobre os aspectos morfológicos do complexo músculo tendíneo do músculo plantar de ratos durante o processo de hipertrofia compensatória: in vivo e in vitro / Effects of low-level laser (780nm) on the morphology of the tendon muscle complex in plantar muscle of rats during the process of compensatory hypertrophy: in vivo and in vitro

Terena, Stella Maris Lins 28 June 2016 (has links)
Submitted by Nadir Basilio (nadirsb@uninove.br) on 2018-06-14T20:50:43Z No. of bitstreams: 1 Stella Maris Lins Terena.pdf: 2089344 bytes, checksum: 21a72af34c64206cc3ab2d9b66964a22 (MD5) / Made available in DSpace on 2018-06-14T20:50:43Z (GMT). No. of bitstreams: 1 Stella Maris Lins Terena.pdf: 2089344 bytes, checksum: 21a72af34c64206cc3ab2d9b66964a22 (MD5) Previous issue date: 2016-06-28 / Skeletal muscle is a tissue of great adaptive capacity and is able to change its characteristics to meet various functional demands. This adaptation can be caused by mechanical overloading which results in an increase in the size of the area of muscle fiber and increase muscle mass. This process is known as muscle hypertrophy and during numerous modifications hypertrophy occur in both the muscle tissue and tendons. Studies with low-level laser (LLL) in skeletal muscle have demonstrated that its effects are positive with respect to the reduction process of inflammation, myonecrosis and reduced influence on the collagen fibers during the remodeling process.The present study aimed to analyze the effects of LLL (780nm) during the compensatory hypertrophy process on the muscular aspects and tendon of the plantaris muscle of mice (in vivo) and also evaluate its effects on human endothelial cells (HUVECs) in vitro. They were used for the in vivo experiment 22 Wistar rats were divided into control group, non-irradiated group and irradiated group hypertrophy hypertrophy. The parameters used for the irradiation were λ = 780nm, beam area 0.04 cm2, 40mW output power, energy density of 10 J / cm2. periods of 7 and 14 days were analyzed. To cause hypertrophy model was used for ablation of synergists being taken for this study, the gastrocnemius medial and lateral muscles and the soleus muscle, leaving the plantaris muscle suffered overload. the cross-sectional area were analyzed, collagen area, the number of myonuclei and mature blood vessels in muscle tissue and the organization and arrangement of collagen fibers in the tendon. For the experiment in vitro endothelial cells were used (HUVECs) were divided into control group and the other groups irradiated also with λ = 780nm, 0.04 cm2 beam area, 40mW output power and energy density of 1 J / cm2, 5J / cm2, 10 J / cm2 to 20J / cm2. The different application time was calculated for all groups received the same dose of energy. They assessed cell viability, total protein and vessel formation in Matrigel. The in vivo results showed that there was increased cross-sectional area of the irradiated group after 14 days (26.3%) when compared to non-irradiated group. There was also increased number of myonuclei in the irradiated group after 14 days. The total area of muscle collagen increased (4.2%) in the irradiated group in 7 days and decreased (6.4%) in the irradiated group after 14 days when compared to non-irradiated group in both periods. Analysis by birefringence in the tendons showed better organization of the fibers 7 and 14 days when compared to non-irradiated group. In vitro results have shown decrease in cell viability in all irradiated all groups compared to the control and counting mature vessels was increased number of vessels in the irradiated group even after 14 days. In conclusion laser irradiation increased muscle mass, the number of myonuclei and the number of mature vessels and decreased collagen total area of muscle tissue after 14 days; improved tendon collagen organization for 7 and 14 days and interfere with the viability and total protein concentration in a dose-dependent endothelial cells HUVECs. / O músculo esquelético é um tecido de grande capacidade adaptativa e que é capaz de alterar suas características para atender às diversas demandas funcionais. Essa adaptação pode ser causada por uma sobrecarga mecânica que resulta num aumento do tamanho da área da fibra muscular e aumento de massa muscular. Esse processo é conhecido como hipertrofia muscular e durante a hipertrofia inúmeras modificações ocorrem tanto no tecido muscular quanto nos tendões. Os trabalhos recentes com laser de baixa potência (LBP) no músculo esquelético tem demonstrado que seus efeitos são positivos no que diz respeito ao processo de redução da inflamação, redução da mionecrose e influência sobre as fibras de colágeno durante o processo de remodelamento. Nesse contexto o presente estudo teve por objetivo analisar os efeitos do LBP (780nm) durante o processo de hipertrofia compensatória sobre os aspectos músculares e tendíneos do músculo plantar de ratos (in vivo) e também avaliar seus efeitos em células endoteliais humanas (Huvecs) in vitro. Foram utilizados para o experimento in vivo 22 ratos Wistar, divididos em 3 grupos: controle, não irradiado com hipertrofia e irradiado com hipertrofia. Os parâmetros utilizados para a irradiação foram λ= 780nm, área do feixe 0,04 cm2, potência de saída 40mW, densidade de energia de 10J/cm2. Foram analisados os períodos de 7 e 14 dias. Para causar a hipertrofia foi utilizado o modelo de ablação dos sinergistas sendo retirados para este estudo os músculos gastrocnêmio lateral e medial e o músculo sóleo, restando o músculo plantar que sofreu a sobrecarga. Foram analisados a área de secção transversa, a área do colágeno, o número de mionúcleos e vasos sanguíneos maduros no tecido muscular e organização e disposição das fibras de colágeno no tendão. Para o experimento in vitro foram utilizadas células endoteliais (Huvecs) divididas em grupos controle e os demais grupos irradiados também com λ= 780nm, área do feixe 0,04 cm2, potência de saída 40mW e densidades de energia de 1J/cm2, 5J/cm2, 10J/cm2 e 20J/cm2. O tempo de aplicação foi diferente, calculado para que todos os grupos recebessem a mesma dose de energia. Foram avaliados a viabilidade celular, proteína total e a formação de vasos em matrigel. Os resultados in vivo obtidos demonstraram que houve aumento da área de secção transversa do grupo irradiado após 14 dias (26,3%) quando comparado ao grupo não irradiado. Houve também aumento do número de mionúcleos no grupo irradiado após 14 dias. A área total do colágeno muscular aumentou (4,2%) no grupo irradiado em 7 dias e diminui (6,4%) no grupo irradiado após 14 dias quando comparado ao grupo não irradiado nos dois períodos. A análise por birrefringência nos tendões demonstrou maior organização das fibras em 7 e em 14 dias quando comparadas ao grupo não irradiado. Os resultados in vitro demonstraram que as diferentes fluências do laser interferiram de maneira diferente na viabilidade de células Huvecs em todos os períodos avaliados. Com relação a contagem de vasos maduros houve aumento no grupo irradiado após 14 dias. Em conclusão a irradiação laser aumentou a massa muscular, o número de mionúcleos e o número de vasos maduros e diminuiu a área total de colágeno no tecido muscular após 14 dias; melhorou a organização do colágeno tendíneo em 7 e em 14 dias e interferiu na viabilidade e concentração de proteína total de maneira dose dependente das células endoteliais Huvecs.
9

HSPA12B Inhibits Lipopolysaccharide-Induced Inflammatory Response in Human Umbilical Vein Endothelial Cells

Wu, Jun, Li, Xuehan, Huang, Lei, Jiang, Surong, Tu, Fei, Zhang, Xiaojin, Ma, He, Li, Rongrong, Li, Chuanfu, Li, Yuehua, Ding, Zhengnian, Liu, Li 01 January 2015 (has links)
Heat shock protein A12B (HSPA12B) is a newly discovered member of the HSP70 protein family. This study investigated the effects of HSPA12B on lipopolysaccharide (LPS)-induced inflammatory responses in human umbilical vein endothelial cells (HUVECs) and the possible mechanisms involved. A HUVECs inflammatory model was induced by LPS. Overexpression of HSPA12B in HUVECs was achieved by infection with recombinant adenoviruses encoding green fluorescence protein-HSPA12B. Knockdown of HSPA12B was achieved by siRNA technique. Twenty four hours after virus infection or siRNA transfection, HUVECs were stimulated with 1 μg/ml LPS for 4 hrs. Endothelial cell permeability ability was determined by transwell permeability assay. The binding rate of human neutrophilic polymorphonuclear leucocytes (PMN) with HUVECs was examined using myeloperoxidase assay. Cell migrating ability was determined by the wound-healing assay. The mRNA and protein expression levels of interested genes were analyzed by RT-qPCR and Western blot, respectively. The release of cytokines interleukin-6 and tumour necrosis factor-α was measured by ELISA. HSPA12B suppressed LPS-induced HUVEC permeability and reduced PMN adhesion to HUVECs. HSPA12B also inhibited LPS-induced up-regulation of adhesion molecules and inflammatory cytokine expression. By contrast, knockdown of HSPA12B enhanced LPS-induced increases in the expression of adhesion molecules and inflammatory cytokines. Moreover, HSPA12B activated PI3K/Akt signalling pathway and pharmacological inhibition of this pathway by Wortmannin completely abrogated the protection of HSPA12B against inflammatory response in HUVECs. Our results suggest that HSPA12B attenuates LPS-induced inflammatory responses in HUVECs via activation of PI3K/Akt signalling pathway.
10

Celecoxib: Its non-cox-2 targets and its anti-cancer effects

Lin, Ho-Pi 24 August 2005 (has links)
No description available.

Page generated in 0.0356 seconds