• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 50
  • 38
  • 10
  • 10
  • 8
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 266
  • 266
  • 77
  • 55
  • 53
  • 49
  • 45
  • 41
  • 38
  • 36
  • 36
  • 35
  • 34
  • 34
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Synthesis of Novel Polypeptide-Silica Hybrid Materials through Surface-Initiated N-carboxyanhydride Polymerization

Lunn, Jonathan D. 2010 May 1900 (has links)
There is an increasing demand for materials that are physically robust, easily recovered, and able to perform a wide variety of chemical functions. By combining hard and soft matter synergistically, organic-inorganic hybrid materials are potentially useful for a number of applications (e.g. catalysis, separations, sensing). In this respect, organic/ordered mesoporous silica (OMS) hybrids have attracted considerable attention, with an increasing emphasis on complex organic moieties achieved through multi-step reactions and polymerizations. It is on this front that we have focused our work, specifically in regard to polypeptides. Polypeptides are well suited organic components for hybrids as they provide a wide range of possible side chain chemistries (NH2, -SH, -COOH, -OH, etc.), chirality, and have conformations that are known to be responsive to external stimuli (pH, electrolytes, solvents, etc.). Our work has shown that N-carboxyanhydride chemistry offers a facile single step approach to the incorporation of dense polypeptide brushes in OMS. Modifying the initiator loading, pore size, pore topology, and monomer identity significantly impacted the properties of the obtained composites and peptide brush layers. Extending this work, a synthesis paradigm for preferentially grafting poly-L-lysine to the external and internal surfaces of SBA-15, a widely used OMS material, was developed. We observed that the pores of these hybrids could be opened and closed by the reversible swelling of the polypeptide layer. Similarly, novel bifunctional hybrids were synthesized by grafting polypeptides to the external surface of monodisperse OMS spheres that contain a thiol-functionalized core. The accessibility of the internal thiols to a fluorescent dye shows the potential of these hybrids for applications such as controlled uptake/release.
12

Synthesis and characterization of electronic materials for photovoltaic applications

Mejia, Michelle Leann 15 June 2011 (has links)
Electronic materials are of great interest for use in photovoltaics, sensors, light-emitting diodes, and molecular electronics. Hybrid Inorganic/Organic materials have been studied for device application due to their unique electronic properties. These properties result from the formation of bulk heterojunctions between inorganic (n-type) and organic (p-type) materials. However, due to incomplete pathways for charge transport and poor interfaces between materials, charge trapping and exciton recombination is often high. In an effort to alleviate these problems, we have developed an approach to fabricate bulk heterojunction materials via a seeded growth process. Electropolymerizable Schiff base complexes have been designed, synthesized, and utilized as precursors for conducting metallopolymers. The embedded metal centers are used as seed points for direct growth of size-controllable semiconductor nanoparticles within the polymer film leading to direct electronic communication between the two materials. The synthesis of CdS, CdSe, Ga₂S₃, CuInS₂, CuInSe₂, CuGaS₂, CuGaSe₂, CuGa[subscript x]In[subscript x]-₁S₂, and CuGa[subscript x]In[subscript x]-₁Se₂ has been seen through TEM and EDX. Devices have been fabricated and current studies have focused on the photovoltaic characterization of these materials which have a PCE of 0.11%. As a second but closely related area, polymers have also been studied as organic semiconductors for device applications. However they are hard to process from solution and their polymeric structure can vary. Both of these problems can be solved by using well-defined solution processable oligomers. Thiophene oligomers have been synthesized and characterized through Single Crystal X-Ray Crystallography, Four Point Probe Conductivity, and Powder Diffraction. These oligomers have a well-defined structure and are solution processable from a variety of solvents which can then be used as models to predict and study the properties of polythiophene. / text
13

Fabrication of 3D Hybrid Architectures Composed of sp2-Carbon and Inorganic Materials

Mazloumi Sadat, Seyed Mahyar 30 September 2013 (has links)
Three dimensional (3D) hybrid architectures are new types of materials that have a number of technological applications. However, the synthesis of such materials has been problematic to date. The objective of this study is to fabricate 3D hybrid architectures composed of sp2-carbon nanomaterials and inorganic nanostructures using a convenient microwave assisted technique. Sp2-Carbon nanomaterials such as carbon nanotubes (CNTs), graphene and its derivative graphene oxide (GO), have been explored by researchers as major components of hybrid materials due to their exceptional electrical, thermal, mechanical and biological properties. However, most of the research has been devoted to the hybrids with randomly dispersed phases. The present study explores the feasibility of using aligned 3D sp2-carbon structures in a bottom-up microwave-assisted chemical synthesis approach to fabricate various 3D sp2-carbon/inorganic hybrid architectures. The carbon nanostructures, either tubular or planar, not only contribute to the functionalities of the hybrids, but also template the ordered assembly of phases on nanometer scale. Mimicking nature is a key to develop novel types of materials with enhanced physical and mechanical properties suitable for advanced applications (e.g. lightweight and yet tough materials that are extensively needed in automotive and aerospace industries). One approach to obtain such materials or devices is to mimic nature processes and synthesize hybrid materials with ordered structures on the nanometer scale. Those functional structures are fabricated in this thesis through an in-situ microwave synthesis of inorganic materials on 3D sp2-carbon architectures. Generally, in chapter 1, it was shown and discussed the procedures to fabricate 3D architectures of carbon nanotubes and graphene oxide as basic components for template synthesis of the hybrids. Then in chapter 2 the microwave chemical synthesis approach was introduced as a convenient route for fabricating inorganic materials such as zinc oxide (ZnO) which was shown to be used as UV sensors. Through photolithography patterning of the iron catalyst thin films on Si/SiO2 substrates, 3D aligned CNT structures were fabricated and were coated in-situ with inorganic materials such as cobalt oxide, zinc oxide and manganese oxide using a microwave synthesis approach (chapter 3). The obtained aligned strips of CNT/Co3O4 were chosen as an example to illustrate the application of such 3D hybrids in energy storage applications. The capacitance of the aligned CNT/Co3O4 strips was measured to be 123.94 F/g. Using graphene oxide as template for manufacturing the 3D sp2-carbon/inorganic hybrid structures, interesting novel layered configurations are obtained that are similar to the layered structures of exoskeleton of the mollusks nacre. The layered hybrid structure shown to be mechanically improved compared to its constituents (chapter 4). Finally in chapter 5, some of the future routes have been proposed for further research on this novel field of 3D hybrid materials composed of sp2-carbons and inorganic nanomaterials.
14

Metal and Polymer Foam Hybrid Materials: Design, Fabrication and Analysis

Campbell, Julianna 12 January 2010 (has links)
Two novel hybrid materials for use in sandwich cores of structural materials are designed, manufactured and mechanically tested. Each material is a hybrid of metal and polymer foam. One set of hybrids is fabricated using an aluminium micro-truss filled with varying densities of polyurethane foam. Increases up to 120% in stiffness, 372% in strength, 740% in resilience and 106% in impact energy over the aluminium micro-truss are obtained from compression and impact testing. Furthermore, the stiffness of these hybrids can be tailored according to the density of the polyurethane foam. Another set of hybrids is fabricated using a rapid prototyped ABS polymer truss that is foamed and electroplated with nanocrystalline nickel. Increases up to 1525% in stiffness, 1165% in strength and 650% in energy absorption over the foamed ABS truss are obtained. Furthermore, the gain in strength, stiffness and energy absorption outweigh the gain in density in these hybrid materials.
15

Metal and Polymer Foam Hybrid Materials: Design, Fabrication and Analysis

Campbell, Julianna 12 January 2010 (has links)
Two novel hybrid materials for use in sandwich cores of structural materials are designed, manufactured and mechanically tested. Each material is a hybrid of metal and polymer foam. One set of hybrids is fabricated using an aluminium micro-truss filled with varying densities of polyurethane foam. Increases up to 120% in stiffness, 372% in strength, 740% in resilience and 106% in impact energy over the aluminium micro-truss are obtained from compression and impact testing. Furthermore, the stiffness of these hybrids can be tailored according to the density of the polyurethane foam. Another set of hybrids is fabricated using a rapid prototyped ABS polymer truss that is foamed and electroplated with nanocrystalline nickel. Increases up to 1525% in stiffness, 1165% in strength and 650% in energy absorption over the foamed ABS truss are obtained. Furthermore, the gain in strength, stiffness and energy absorption outweigh the gain in density in these hybrid materials.
16

Chemical Transformations Supported by the [Re₆(μ₃-Se)₈]²⁺ Cluster Core

Corbin, William C. January 2015 (has links)
Hexanuclear transition metal clusters are a distinct class of chemical compounds that have some very interesting chemical and physical properties. Of recent interest in this field has been the [Re₆(μ₃-Se)₈]²⁺ cluster core. This Lewis acidic cluster core contains six substitutable coordination sites, and site differentiation can be accessed through protecting group ligands. The Lewis acidity has been shown to activate unsaturated cluster-bound ligands, and the expanded atom-like structure and high symmetry of the cluster core has potential use in synthesizing some fascinating and novel hybrid materials. Little work has been performed in establishing the scope of these chemical transformations. The work herein describes the efforts and successes of such work. Chapter 1 provides the essential background required for understanding the [Re₆(μ₃-Se)₈]²⁺ cluster core's synthesis, properties, and currently known research directions and successes. This chapter first introduces hexanuclear clusters in a general format, then focuses on the established catalytic and material capabilities that have been determined using this specific cluster core. Chapter 2 discusses the synthesis, characterization, and hydrogen-bonded assemblies formed from [Re₆(μ₃-Se)₈]²⁺ cluster-isonicotinic acid cluster complexes. These complexes have potential uses as hybrid inorganic/organic linkers for the generation of luminescent Lewis acidic metal-organic frameworks (MOFs). Prospective applications of such materials include catalysis, separations, and gas storage. Chapter 3 focuses on the novel chemistry of [Re₆(μ₃-Se)₈]²⁺ cluster-activated CH₃CN with N-based nucleophiles to form acetamidines. These ligands are of interest due to their use in medicinal chemistry, CO₂/CS₂ sequestration, and the formation of synthetically-relevant species. Quantitative yields are obtained and single-crystal XRD analyses reveal specific stereochemical outcomes. Trifluoroacetic acid (TFA) in a cluster-amidine CH₃CN solution removes the ligand as the acetamidinium TFA salt, and the starting cluster solvate is reproduced making a recyclable catalyst. Chapter 4 expands on a project similar to that of chapter 3, except that O-based nucleophiles are utilized for specific cluster isomers. The newly formed ligands, imino esters, are of interest in organic synthesis as valuable starting materials for the generation of β-lactams and heterocycles. ³¹P NMR and single–crystal XRD reveal Z stereochemistry is preferred in the cis isomer, but conflicting results for the hexasubstituted isomer leave stereochemical analyses unresolved. Chapter 5 attempts to incorporate the chemistry established in chapters 2-4 to provide some fresh and interesting research outlooks possible with the [Re₆(μ₃-Se)₈]²⁺ cluster core. Incorporation of the cluster into MOFs is discussed, and the possibility of post-synthetic modifications for metal sequestration, catalysis, and sensing is explained. Appendix A provides all the NMR data obtained for synthesized materials with peak picks and integrations provided. Appendix B entails all crystallographic information for structures determined after syntheses. Appendix C provide high-resolution mass spectra.
17

Filmes finos híbridos orgânicos-inorgânicos para fotônica

Oliveira, Daniela Coelho de [UNESP] 16 June 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:35:08Z (GMT). No. of bitstreams: 0 Previous issue date: 2006-06-16Bitstream added on 2014-06-13T18:46:25Z : No. of bitstreams: 1 oliveira_dc_dr_araiq.pdf: 3933489 bytes, checksum: a5dad8dc37a7fbb9d8a4df2c0eb00150 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O material estudado neste trabalho é um híbrido orgânico-inorgânico denominado di-ureasil formado por uma cadeia tipo poliéter unida em ambas extremidades a um grupo siloxano por pontes de uréia. As curvas de SAXS mostram um pico de interferência característico, atribuído a uma correlação espacial existente entre as partículas de siloxanos. Um complexo formado entre zircônio e ácido metacrílico foi adicionado ao material base e o aumento do teor deste complexo leva a um alargamento das bandas e um deslocamento de q para valores maiores. O alargamento é devido ao aumento na dispersão das distâncias interpartículas e o deslocamento pode ser devido a interação do zicônio com a região polimérica levando a uma diminuição das distâncias entre as partículas de siloxanos. As mesmas informações podem ser obtidas a partir das curvas de difração de raios X. A desconvolução gaussiana das curvas experimentais indica a formação de nanodomínios de óxido de zircônio. As curvas de transmissão na região do infravermelho mostram a interação dessas espécies de zircônio com a região polimérica da matriz híbrida. Entretanto, a competição pela água do meio reacional entre espécies de Zr e Si levam a uma diminuiçào no grau de condensação das espécies de siloxano evidenciada pelo aparecimento de bandas relativas a silanóis residuais apenas para amostras com alta concentração de zircônio. Este fato é confirmado pelas análises de RMN de 29Si. As propriedades ópticas dos di-ureasis também foram estudadas. Uma banda larga de emissão que cobre a parte do visível do espectro eletromagnético é devida à combinação de duas componentes atribuídas à processos de recombinação doador-aceptor, que ocorre entre grupos NH das ligações uréia e nos centros de siloxanos. / The base material studied is the organic-inorganic host termed di-ureasil formed by poly(ether)-based chains grafted at both ends to a siloxone backbone through urea cross linkages. SAXS curves display a characteristic interference peak attributed to the spatial correlation between siloxane nanoparticles. A methacrylate modified zirconium alcoxide (Zr- AMA) was added to this base host and the increasing addition leads to broadening and q shift to higher values. Broadening is due to increasing dispersion in the interparticle distances and the shift could be due to zirconium interaction with the polymeric part leading decreasing distances between siloxane particles. Essentially the same information is obtained from XRD curves. Gaussian deconvolution of the experimental curves indicate the formation of zirconium oxide based nanodomains. FT-IR spectra analysis have shown the interaction of the zirconium based species with the polymeric part of the hybrid host. Moreover competition for water between Si and Zr species lead to decrease on the condensation degree of siloxane species as evidenced by the appearence of characteristic silanol bands only for higher Zr content. This fact is confirmed by 29Si NMR. The optical properties of the di-ureasils were also studied. A broad emission band covering the visible part of the electromagnetic spectrum is attributed to the convolution of two components assigned to radiative recombination processes typical of donor-acceptor pairs occurring in the NH groups of the urea cross-links and in the siliceous nanodomains. With the addition of Zr-AMA broadening is observed. Luminescence spectroscopy shows that the addition of highly emitting Eu3+ â -diketonate complex [Eu(tta)3(H2O)2] (where tta stands for thenoiltrifluoribetadiketonate) to the di-ureasil host has lead to interesting features.
18

Preparação e caracterização de novos materiais híbridos a partir de (3-aminopropil) trimetoxisilano

Luvison, Caroline 24 February 2016 (has links)
Nesse trabalho, foi investigada a obtenção de novos materiais a partir de reações de hidrólise e condensação ácida do (3-aminopropil)trimetoxisilano, que resultaram na formação de nanoestruturas híbridas com grupos amônios e contraíons cloreto (POSS-NH3Cl). As nanoestruturas posteriormente foram submetidas a trocas iônicas durante 0,5, 2, 12 e 48 h, para remoção dos íons cloreto. As análises titulométricas mostraram que a troca iônica ocorreu parcialmente. As partículas de POSS-NH2 formadas apresentam predominância de estruturas em forma de gaiola (T8) octafuncionalizadas. Após a troca iônica, as nanoestruturas possuem capacidade de se autoassociar por meio de interações eletrostáticas formando estruturas do tipo blackberry com aproximadamente 100 nm. Os aglomerados de POSS-NH2 são formados por partículas primárias com tamanho de 1,4 nm em forma de fractal de massa e tamanho de correlação () dependente da quantidade do tempo de troca iônica. Devido à característica eletrostática das partículas foi possível obter filmes híbridos opticamente transparentes com elevado grau de hidrofilicidade. As nanopartículas de POSS-NH2 foram utilizadas como aditivo de lubrificantes de fontes renováveis (ácidos graxos) por meio de reações de amidação direta assistida por micro-ondas, sem o uso de catalisadores. A formação das ligações amidas foi constatada por meio das técnicas FTIR e RMN de 1H, onde observaram-se bandas de deformação angular do NH em 1550 cm-1 e 1120 cm-1 e o aparecimento de um singleto alargado em 6,50 ppm (N-H). Em termos estruturais, para o biolubrificante foi constatado que uma molécula de ácido graxo liga com uma molécula de POSS-NH2, entretanto foi notada ainda a existência de aglomerados após a amidação, conforme resultados de MET dos lubrificantes. O uso de POSS-NH2 reduziu a taxa de oxidação dos biolubrificantes com dependência do tempo de troca iônica das partículas. Todos os biolubrificantes apresentaram comportamento reológico newtoniano, e a viscosidade a 25ºC mostrou-se dependente da quantidade de partículas e não do tempo de troca iônica. A adição de nanopartículas de POSS-NH2 melhorou o desempenho dos biolubrificantes aplicados em superfícies metálicas, visto que tribossistema estudado apresentou valores inferiores e mais estáveis de coeficiente de atrito em comparação com o óleo base. Além disso, os biolubrificantes apresentaram uma elevada capacidade do suporte de carga, que representa a carga crítica para a ocorrência de engripamento (scuffing) do sistema. A resistência ao desgaste das superfícies metálicas variou com a adição de partículas no óleo lubrificante e com os tempos de troca iônica adotados para a síntese das partículas. / Submitted by Ana Guimarães Pereira (agpereir@ucs.br) on 2016-10-17T17:00:31Z No. of bitstreams: 1 Tese Caroline Luvison.pdf: 4503708 bytes, checksum: 86b0b05a5ba2a8c5180438f872bfe537 (MD5) / Made available in DSpace on 2016-10-17T17:00:31Z (GMT). No. of bitstreams: 1 Tese Caroline Luvison.pdf: 4503708 bytes, checksum: 86b0b05a5ba2a8c5180438f872bfe537 (MD5) Previous issue date: 2016-10-17 / Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul, FAPERGS / In this work, was investigated the obtaining of new materials from the hydrolysis and acid condensation reactions of (3-aminopropyl) trimethoxysilane, which resulted in the formation of hybrid nanostructures with ammoniums groups and counter ions chloride (POSS-NH3Cl). The nanostructures were subjected to ion exchange procedures for 0.5, 2, 12 and 48 h for the removal of chloride ions. The titrimetric and volumetric results showed that the ion exchange occurred partially. The synthesized particles are predominantly POSS-NH2 cage-shaped structures (T8). After the ion exchange, the nanostructures have ability to selfassembly through electrostatic interactions forming the blackberry-like structures with approximately 100 nm. The POSS-NH2 cluster are formed by primary particles with a size of 1.4nm structured in form of a mass fractal with correlation length () dependent on the ion exchange time. Due to the electrostatic characteristic of the particles was possible obtained hybrid films optically transparent with a high degree of hydrophilicity. POSS-NH2 nanoparticles were used as additive of lubricants of renewable sources (fatty acids) by means of microwave-assisted direct reactions of amidation, without the use of catalysts. The formation of amide bonds were confirmed through the FTIR and 1H NMR techniques, where angular deformation bands in NH in 1550 cm-1 and 1120 cm-1 and the appearance of an enlarged singlet in 6.50 ppm (NH) were observed. The biolubricants was found that an alloy fatty acid molecule with a POSS, but has not yet noticed the existence of agglomerates after amidation, as TEM results of biolubricants. The POSS-NH2 are bonded individually to only one fatty acid molecule, however it was noted the existence of cluster after amidation reactions, as observed in TEM results of the biolubricants. The addition of POSS-NH2 nanoparticles reduced the oxidation rate of the biolubricants and has dependence on the ion exchange time. All the biolubricants showed a Newtonian rheological behavior and the viscosity at 25°C dependent on the amount of particles and not the exchange time. The addition of POSS-NH2, improved the performance of the biolubricants applied on metallic surfaces, since the studied sliding pair showed lower and more stable values of coefficient of friction, as compared to the base oil. Moreover, the biolubricants showed a high load support capacity, which represents the critical load for the scuffing occurrence of the system. The wear resistance of the metallic surfaces changed with the addition of POSS particles in the lubricant oil and with the ionic exchange time adopted for the synthesis of the particles.
19

Utilização de uma matriz híbrida orgânica-inorgânica na dinâmica de liberação controlada de fármacos /

Lopes, Leandro. January 2010 (has links)
Orientador: Sandra Helena Pulcinelli / Banca: Raul Cesar Evangelista / Banca: Agnieszka Joanna Pawlicka Maule / Resumo: As condições de preparação de matrizes híbridas siloxano0polióxido de etileno (POE) e siloxano0polióxido de propileno (POP) contendo fármacos foram estabelecidas nessa dissertação. A capacidade de liberação do diclofenaco de sódio por essas matrizes foi estudada a partir de curvas de liberação obtidas em meio aquoso. A caracterização das amostras foi realizada utilizando0se as técnicas de DSC, TG0DTA, DMA, DRX, SAXS, RMN do 13 C, 29 Si e do 23 Na e espectroscopia Raman. O estudo de liberação revelou que é possível controlar a velocidade de saída do fármaco a partir da variação da massa molecular da cadeia polimérica e da concentração do diclofenaco de sódio ou da combinação de precursores híbridos de diferentes classes. As medidas de SAXS "in situ" mostraram que o intumescimento é acompanhado por um relaxamento da matriz polimérica, conduzindo a um afastamento dos grupos siloxano constituintes da molécula. Esse relaxamento também é observado quando se acrescenta fármaco à matriz híbrida polimérica. As medidas de DSC indicaram a existência de interações entre as matrizes híbridas POE e o diclofenaco, mudanças de cristalinidade da fase polimérica e, quando associadas a medidas de TG0DTA e DMA, mostraram que as matrizes híbridas apresentam elevada estabilidade térmica e mecânica. Os espectros de RMN revelaram que a matriz híbrida possui elevado grau de policondensação, que o fármaco se apresenta de forma dissociada dentro da matriz, e que as amostras contendo alta concentração de fármaco apresentam aumento na rigidez da parte polimérica da matriz. Além disso, foi possível definir as regiões de interação das moléculas de diclofenaco de sódio com a matriz polimérica com associação da espectroscopia Raman / Abstract: The preparation conditions of siloxane poly(ethylene oxide) PEO and siloxane poly(propylene oxide) PPO hybrid matrixes containing drugs have been established in this work. The ability of these matrixes to release sodium diclefenac (SDF) was studied from release profiles in aqueous medium. The samples characterization was performed from DSC, TG0DTA, DMA, XRD, SAXS, ¹³C, ² 9 Si and ²³Na NMM and Raman meassurements. The release study revealed that the drugs flux release can be controlled by the polymer molecular weight, the SDF concentration or by combining hybrid precursors of different class. In situ SAXS measurements have shown that swelling is followed by matrix relaxation, giving rise to more separated siloxane groups in the polymeric moities. This relaxation is also observed as drug is loaded in the hybrid matrix. DSC measurements have indicated both the presence of interactions between POE hybrid matrix and SDF, and change in the polymer phase crystallinity. Moreover when these measurements were, associated to TG0DTA and DMA results, they have shown that hybrid matrix presents both high thermal and mechanical stability. The NMR study revealed that matrix shows high polycondensation degree, the drug is loaded insideis in its dissociated form and samples containing the highest tested SDF concentration present more rigid polymer moities. Moreover, the regions responsible for matrix and SDF molecules interaction were determined by associating the Raman results. / Mestre
20

Filmes finos híbridos orgânicos-inorgânicos para fotônica /

Oliveira, Daniela Coelho de. January 2006 (has links)
Resumo: O material estudado neste trabalho é um híbrido orgânico-inorgânico denominado "di-ureasil" formado por uma cadeia tipo poliéter unida em ambas extremidades a um grupo siloxano por pontes de uréia. As curvas de SAXS mostram um pico de interferência característico, atribuído a uma correlação espacial existente entre as partículas de siloxanos. Um complexo formado entre zircônio e ácido metacrílico foi adicionado ao material base e o aumento do teor deste complexo leva a um alargamento das bandas e um deslocamento de q para valores maiores. O alargamento é devido ao aumento na dispersão das distâncias interpartículas e o deslocamento pode ser devido a interação do zicônio com a região polimérica levando a uma diminuição das distâncias entre as partículas de siloxanos. As mesmas informações podem ser obtidas a partir das curvas de difração de raios X. A desconvolução gaussiana das curvas experimentais indica a formação de nanodomínios de óxido de zircônio. As curvas de transmissão na região do infravermelho mostram a interação dessas espécies de zircônio com a região polimérica da matriz híbrida. Entretanto, a competição pela água do meio reacional entre espécies de Zr e Si levam a uma diminuiçào no grau de condensação das espécies de siloxano evidenciada pelo aparecimento de bandas relativas a silanóis residuais apenas para amostras com alta concentração de zircônio. Este fato é confirmado pelas análises de RMN de 29Si. As propriedades ópticas dos di-ureasis também foram estudadas. Uma banda larga de emissão que cobre a parte do visível do espectro eletromagnético é devida à combinação de duas componentes atribuídas à processos de recombinação doador-aceptor, que ocorre entre grupos NH das ligações uréia e nos centros de siloxanos. / Abstract: The base material studied is the organic-inorganic host termed "di-ureasil" formed by poly(ether)-based chains grafted at both ends to a siloxone backbone through urea cross linkages. SAXS curves display a characteristic interference peak attributed to the spatial correlation between siloxane nanoparticles. A methacrylate modified zirconium alcoxide (Zr- AMA) was added to this base host and the increasing addition leads to broadening and q shift to higher values. Broadening is due to increasing dispersion in the interparticle distances and the shift could be due to zirconium interaction with the polymeric part leading decreasing distances between siloxane particles. Essentially the same information is obtained from XRD curves. Gaussian deconvolution of the experimental curves indicate the formation of zirconium oxide based nanodomains. FT-IR spectra analysis have shown the interaction of the zirconium based species with the polymeric part of the hybrid host. Moreover competition for water between Si and Zr species lead to decrease on the condensation degree of siloxane species as evidenced by the appearence of characteristic silanol bands only for higher Zr content. This fact is confirmed by 29Si NMR. The optical properties of the di-ureasils were also studied. A broad emission band covering the visible part of the electromagnetic spectrum is attributed to the convolution of two components assigned to radiative recombination processes typical of donor-acceptor pairs occurring in the NH groups of the urea cross-links and in the siliceous nanodomains. With the addition of Zr-AMA broadening is observed. Luminescence spectroscopy shows that the addition of highly emitting Eu3+ â -diketonate complex [Eu(tta)3(H2O)2] (where tta stands for thenoiltrifluoribetadiketonate) to the di-ureasil host has lead to interesting features. / Orientador: Sidney José Lima Ribeiro / Coorientador: Jean-Michel Nunzi / Banca: Luis Antonio Ferreira Martins Dias Carlos / Banca: Cid Bartolomeu de Araujo / Banca: Alain Fort / Doutor

Page generated in 0.078 seconds