Spelling suggestions: "subject:"hydro"" "subject:"eydro""
391 |
Techniques to inject pulsating momentumKranenbarg, Jelle January 2020 (has links)
Hydro power plants are an essential part of the infrastructure in Sweden as they stand for a large amount of the produced electricity and are used to regulate supply and demand on the electricity grid. Other renewable energy sources, such as wind and solar power, have become more popular as they contribute to a fossil free society. However, wind and solar power are intermittent energy sources causing the demand for regulating power on the grid to increase. Hydro power turbines are designed to operate at a certain design point with a specific flow rate. The plants are operated away from the design point when used to regulate the supply and demand of electricity. This can cause a specific flow phenomenon to arise in the draft tube at part load conditions called a Rotating Vortex Rope (RVR) which causes dangerous pressure fluctuation able to damage blades and bearings. A solution to mitigate a RVR is to inject pulsating momentum into the draft tube by using an actuator operating at a certain frequency. A literature study was conducted and three techniques were numerically simulated using ANSYS Workbench 19.0 R3; a fluidic oscillator, a piston actuator and a synthetic jet actuator. A dynamic mesh was used to simulate the movement of the piston actuator and diaphragm of the synthetic actuator whilst the mesh of the fluidic oscillator was stationary. The relative errors of the three numerical models were all below 3 %. All devices showed promising results and could potentially be used to mitigate a RVR because they all have the ability to produce high energy jets. The fluidic oscillator had an external supply of water, whereas the other two did not, which means that it could inject the largest mass flow. The piston actuator required a driving motor to move the piston. The diaphragm of the synthetic jet actuator was moved by a Piezoelectric element. Advantages of the fluidic oscillator are that it has no moving parts, in contrary to the two other devices, it can directly be connected to the penstock or draft tube to obtain the required water supply and it is easy to install. It will most likely also be smaller compared to the other two for the same mass flow rate. It does however not generate a pulsating jet, but rather an oscillating jet. The other two devices generate pulsating jets, but have problems with low pressure areas during the intake stroke which can cause cavitation problems. These areas cause the formation of vortex rings close to the outlet. Simulations showed that a coned piston together with a coned cylinder outlet could decrease losses by almost 16 % compared to a normal piston and cylinder. It also decreased the risk for cavitation and the required force to move the piston. Otherwise, a shorter stroke length for a constant cylinder diameter or a longer stroke length for a constant volume displacement also decreased the risk for cavitation and required force. The gasket between the piston and cylinder is a potential risk for leakage. A solution to avoid critical low pressure areas is to install an auxiliary fluid inlet or valve which opens at a certain pressure for the piston actuator as well as the synthetic jet actuator. This will also allow larger mass flow rates and a higher injected momentum. Both devices are more complicated to install and require likely more maintenance compared to the fluidic oscillator. However, there exist many possible design options for the piston actuator. The design of the synthetic jet is more limited because of the diaphragm. The amplitude of the diaphragm also has a direct effect on the pressure levels. The losses increased proportional to the mass flow to the power of three which suggests that it is better to install many small actuators instead of a few large ones.
|
392 |
Novel approach of using Hydrogeochemistry, Hydrogeologic and Hydrostratigraphic techniques in evaluating coastal aquifers in Heuningnes catchment, South AfricaMokoena, Portia Leah January 2019 (has links)
Philosophiae Doctor - PhD / The increasing population in search for better social and economic development in coastal areas puts groundwater resources under pressure because of the high fresh water demand for domestic and agriculture use. Seawater intrusion is widely recognised as major concern in coastal aquifers across the globe and is influenced by multiple factors, being climate variation which is projected to adjust recharge of groundwater because of decreased precipitation patterns and to increase sea level variations and over-abstraction due to high freshwater demand as a result of increased population and agricultural practices, thereby inducing salinization in groundwater. The coastal aquifer in Heuningnes Catchment is not exempted from these issues and salinization is a major concern in the area affecting groundwater quality. In Heuningnes Catchment and South Africa in general there is limited knowledge on the application of integrated approach for assessing groundwater quality especially salinization mechanism in coastal aquifers. The main goal of this research is to test and demonstrate the viability of using joint interpretation approach of geophysics, geochemical and geological information to investigate groundwater quality in coastal aquifers thus improving on the understanding of using such approach. This work offers the initial thorough assessment of groundwater quality and understanding of the salinity sources and hydro-geochemical processes governing the chemical composition of groundwater in the region. Thus provide advice on the fitness of this water for consumption and irrigation purposes. Thirty-two groundwater samples were collected and analysed for (Mg2+), (Ca2+), (Na+), (K+), (Cl-), (SO42), (HCO3-), (pH, TDS and EC). To estimate fitness of groundwater quality for consumption purposes WHO (2011) and SANS241 guideline were used and for irrigation utilization the water quality indices (EC), (Na+%), (SAR), (RSC), (KR) and (MR) were used. Statistics approaches were employed to ascertain the primary geochemical processes governing the chemical composition of groundwater in the research region. Lastly, the spatial distribution maps were created by means of ArcGIS. Electrical resistivity method was used to map the extent of saline distribution within the subsurface. The findings of this study revealed that groundwater in the region is alkaline type and TDS, EC, Na+, Cl- exceeded WHO and SANS241 guidelines for consumption water. The geophysical investigation revealed that the sandy clay/clayey sand, fine sand and fractured sandstone units make up the coastal aquifer systems within the area. Further, revealed that these aquifers were saturated with fresh, saline or brackish water depending on the subsurface layer. The presence of saline and brackish was confirmed by the chemical results which indicated a Na+-Cl- type as a dominant water type. Also classifying groundwater based on EC and TDS supports these findings. The foremost hydro-geochemical processes that controls the salinity and quality of groundwater in the study region as indicated by Gibbs plot are water-rock interaction followed by evaporation process. Furthermore, analysis of hydrochemical data also proposes that weathering of silicate minerals, ion-exchange and dissolution of carbonate minerals amended ion concentration in groundwater thus influencing salinisation in certain parts of the study region. Also assessment of ionic-ratios displays influences of marine sprays as well as seawater, on the chemical structure of groundwater within the Heuningnes Catchment aquifer. Valuation of groundwater quality and its fitness for ingestion and irrigation purposes, the results indicated that shallow groundwater in the area is not suitable for any use; however, groundwater from deeper boreholes was found fresh and appropriate for irrigation and household purposes. Findings of this study indicated that salinity is the major groundwater quality issue for this area and that monitoring of groundwater quality in Heuningnes Catchment is limited. The absence of consistent monitoring program on groundwater quality makes it difficult to ascertain long term trends on groundwater quality parameters. Therefore, this study emphasizes the need for regular groundwater quality monitoring to assess the trends of these parameters in order to make an informed decision as to what can be done for mitigation purposes.
|
393 |
Optimization of hydro power on the Nordic electricity exchange using financial derivatives / Optimering av vattenkraftsproduktion på den Nordiska elmarknaden med hjälp av finansiella derivatEnoksson, Viktor, Svedberg, Fredrik January 2015 (has links)
Since the deregulation of the Nordic electricity market in 1996, electricity has become one of the most traded commodities in the Nordic region. The electricity price is characterized by large fluctuations as the supply and demand of electricity are seasonally dependent. The main interest of the hydro power producers is to assure that they can sell their hydro power at an attractive rate over time. This means that there is a demand for hedging against these fluctuations which in turn creates trading opportunities for third party actors that offer solutions between consumers and producers. Telge Krafthandel is one of these actors interested in predicting the future supply of hydro power, and consequently the resulting price of electricity. Several existing models employ the assumption of perfect foresight regarding the weather in the future. In this thesis, the authors develop new models for hydro power optimization that take hydrological uncertainty into account by implementing a variation of multi-stage optimization in order to maximize the income of the hydro power producers. The optimization is performed with respect to prices of financial derivatives on electricity. This gives insights into the expected supply of hydro power in the future which in turn can be used as an indicator of the price of electricity. The thesis also discusses, among other things, different methods for modeling stochastic inflow to the reservoirs and scenario construction. This practice will result in different methods that are suitable for various key players in the industry. / Sedan avregleringen av den Nordiska elmarknaden år 1996 har el blivit en av de mest handlade råvarorna i Norden. Elpriset karaktäriseras av stora svängningar eftersom utbudet och efterfrågan på el är säsongsberoende. Huvudintresset för vattenkraftsproducenter är att säkerställa att de kan sälja sin vattenkraft till ett attraktivt pris över tid. Detta innebär att det finns en efterfrågan för skydd mot dessa variationer, vilket i sin tur skapar affärsmöjligheter för tredjepartsaktörer som erbjuder lösningar mellan konsumenter och producenter. Telge Krafthandel är en av dessa aktörer och är därmed intresserad av att förutsäga det framtida utbudet på vattenkraft, och det resulterande elpriset. Flera befintliga modeller använder antagandet om perfekt förutseende när det gäller vädret i framtiden. I denna rapport utvecklar författarna nya modeller för vattenkraftsoptimering, som tar hänsyn till hydrologisk osäkerhet genom att implementera en variant av flerstegsoptimering för att maximera intäkterna för vattenkraftsproducenter. Optimeringen utförs med hänsyn till priserna på elderivat. Detta ger insikter i den förväntade tillgången på vattenkraft i framtiden, vilket i sin tur kan användas som en indikator på elpriset. I rapporten diskuteras också, bland annat, olika metoder för att modellera stokastiskt inflöde till vattenmagasinen och scenariokonstruktion. Detta kommer att leda till flera metoder som är lämpliga för olika aktörer i branschen.
|
394 |
Future Nordic Grid Frequency Quality : A quantitative simulation study of current and potential frequency control methods with emphasis on synthetic inertiaArvidsson, Emil January 2021 (has links)
The power grid faces stability problems due to loss of inertia. The ancillary services balancing the system must be improved to maintain stability. In contrast to earlier studies, this thesis estimates how the future grid frequency quality in both the short and long term is affected by different control methods, using an ensemble of quality measures. The thesis uses conventional one-area models for the power grid and FCR-N (frequency containment reserve – normal operation) but develops new models for FCR-D (– disturbed operation), FFR (fast frequency reserve), and synthetic inertia (SI). To acquire proper input data the thesis uses an inverse model of the power grid to compute the momentary load disturbance, i.e., the difference between load and generation, from the grid frequency. The thesis makes a difference between proportional and derivative SI, where the latter is the one commonly associated with the term SI. The results show that derivative SI can improve some quality measures but requires very high power capacity. In contrast, proportional SI improves almost every measure the most, for a fraction of the required capacity. Derivative SI is therefore worth less from a system perspective. However, it is shown that the quality measures improved by derivative SI are related to hydropower wear and tear, making it more interesting for hydro power owners. Moreover, FFR gives no benefit to long time quality measures. Considering the short-term analysis where a large disturbance occurs, FFR gives almost no benefit and risks worsening the stability. Also, for the large disturbance, proportional SI performs the best. The results are limited by the small number of simulations that were performed and can only provide indications of trends. A more solid conclusion, however, is that one cannot expect transmission system operators (TSO) to introduce an ancillary service that builds on derivative SI.
|
395 |
Effect of Surface roughness for Hydro Turbine Step-up EfficiencyBeraki, Ermias January 2018 (has links)
The energy produced by the flow of water is known as hydropower. It is an easily accessible and available source of energy in large quantity in the form of, rivers, lakes, streams and runoffs around the world. Hydropower is dependent upon hydrological cycle hence; this beneficial characteristic of hydropower makes it a renewable source of energy. Hydropower is free from poisonous emission; therefore, it is considered as a safer and pollution free source of energy. It is usually used to develop electricity from generators. These generators are connected to the hydro turbines by means of shaft. The electricity produced from hydropower is stable and steady because of its higher capacity, thus it can be a suitable source to work as base-load and used to balance the power fluctuations caused by varying loads. The hydropower can also be accommodated with different sources such as solar and wind system. This way of power sharing needs quick regulation as the deviation in the power grid changes rapidly. To fulfil this power demand with higher stability prompted to the development of modern turbines with more efficient, reliable and robust design. To achieve the above target, it is of prime importance to improve efficiency of hydro turbine. Nevertheless, many methods are in practice for improvement for efficiency of the turbine; though one of the prime elements which influence the turbine efficiency is surface roughness. The effect of surface roughness differs for different turbine components like stay vanes, guide vanes, runner, draft tube and spiral casing. The main purpose of this thesis is to examine the effect of surface roughness for hydro turbine step-up efficiency. It is based on reduced scale model to prototype conversion method. For this purpose, IEC_62097 has provided an excel sheet as an attachment for calculation. There has been always a need to perform model test, since performing test on the prototype itself is very accurate, and calculations too, do not yield reliable results. Therefore, the model to prototype conversion method is considered a better solution. A sensitivity analysis is conducted on a Kaplan turbine situated at the Granfors power station located along the Skellefteå river about 30 km from the city of Skellefteå. The results obtained after applying the latest step-up expressions are described and presented. These outcomes have shown significant positive impact on the hydro turbine efficiency improvement, which are presented in graphs. The most significant variations of step-up efficiency against surface roughness were observed in the runner part of the turbine. This specific characteristic makes it evident that more focus and test should be conducted on this part to improve efficiency.
|
396 |
Semi-automated Methods to Create a Hydro-flattened DEM using Single Photon and Linear Mode LiDAR PointsDeshpande, Sagar Shriram 21 September 2017 (has links)
No description available.
|
397 |
The Development Continuum: Change and Modernity in the Gayo Highlands of Sumatra, IndonesiaMinarchek, Matthew J. 14 August 2009 (has links)
No description available.
|
398 |
An Assessment of Hypocenter Errors Associated with the Seismic Monitoring of Induced Hydro-fracturing in Hydrocarbon ReservoirsGilliland, Ellen 17 November 2009 (has links)
Expanding the standard, single-well recording geometry used to monitor seismicity during hydro-fracture treatments could provide more accurate hypocenter locations and seismic velocities, improving general reservoir characterization. However, for the real, two-well data set obtained for this project, only S-wave picks were available, and testing resulted in anomalous hypocenter location behavior. This study uses a hypocenter location algorithm and both real and synthetic data sets to investigate how the accuracy of the velocity model, starting hypocenter location, recording geometry, and arrival-time picking error affect final hypocenter locations.
Hypocenter locations improved using a velocity model that closely matched the observed sonic log rather than a smoothed version of this model. The starting hypocenter location did not affect the final location solution if both starting and final locations were between the wells. Two solutions were possible when the true solution was not directly between the wells. Adding realistic random picking errors to synthetic data closely modeled the dispersed hypocenter error pattern observed in the real data results. Adding data from a third well to synthetic tests dramatically reduced location error and removed horizontal geometric bias observed in the two-well case.
Seismic event data recorded during hydro-fracture treatments could potentially be used for three-dimensional joint hypocenter-velocity tomography. This would require observation wells close enough to earthquakes to record P- and S-wave arrivals or wells at orientations sufficient to properly triangulate hypocenter locations. Simulating results with synthetic tests before drilling could optimize survey design to collect data more effectively and make analysis more useful. / Master of Science
|
399 |
Fluidic Energy Harvesting and Sensing SystemsAlrowaijeh, Jamal Salem 09 July 2018 (has links)
Smart sensors have become and will continue to constitute an enabling technology to wirelessly connect platforms and systems and enable improved and autonomous performance. Automobiles have about two hundred sensors. Airplanes have about eight thousand sensors. With technology advancements in autonomous vehicles or fly-by-wireless, the numbers of these sensors is expected to increase significantly. The need to conserve water and energy has led to the development of advanced metering infrastructure (AMI) as a concept to support smart energy and water grid systems that would respond to emergency shut-offs or electric blackouts. Through the Internet of things (IoT) smart sensors and other network devices will be connected to enable exchange and control procedure toward reducing the operational cost and improving the efficiency of residential and commercial buildings in terms of their function or energy and water use.
Powering these smart sensors with batteries or wires poses great challenges in terms of replacing the batteries and connecting the wires especially in remote and difficult-to-reach locations. Harvesting free ambient energy provides a solution to develop self-powered smart sensors that can support different platforms and systems and integrate their functionality. In this dissertation, we develop and experimentally assess the performance of harvesters that draw their energy from air or water flows. These harvesters include centimeter-scale micro wind turbines, piezo aeroelastic harvesters, and micro hydro generators. The performance of these different harvesters is determined by their capability to support wireless sensing and transmission, the level of generated power, and power density. We also develop and demonstrate the capability of multifunctional systems that can harvest energy to replenish a battery and use the harvested energy to sense speed, flow rate or temperature, and to transmit the data wirelessly to a remote location. / PHD / Smart sensors are an essential part of planned connected communities, smart cities and buildings, structural health and pollution monitoring, and autonomous systems including air and ground vehicles. For example, these sensors can be used to monitor different buildings functions such as water flow rates, pressure and temperature, smoke detectors, HVAC and fire alarms systems. Most of the current smart sensors are powered by batteries or connected to a power source with wires. Batteries will need to be replaced frequently. Wires will add a cost and weight to the system. On the other hand, energy can be harvested locally from different sources to power these sensors. In this dissertation, we develop and experimentally assess the performance of energy harvesters that draw power from air or water flows. These devices include centimeter-scale micro wind turbines, piezo aeroelastic harvesters, and micro hydro generators. The level of generated power, and power density of these devices and their capability to support wireless sensing and transmission are evaluated. We also develop and demonstrate the capability of using one device to harvest energy to replenish a battery over specified time periods and use the harvested energy and the same device to sense speed, flow rate or temperature, and to transmit the data wirelessly to a remote location over other time periods.
|
400 |
Parameters Controlling Distribution of Diagenetic Alterations within Fluvial and Shallow Marine Sandstone Reservoirs : Evidence from the Libyan BasinsKhalifa, Muftah January 2016 (has links)
This thesis demonstrates that geological setting, depositional facies, open system flux of hot basinal brines and descending of shallow waters have a strong impact on the distribution of the diagenetic alterations within continental and paralic/shallow marine sandstones which in turn control the quality and heterogeneities of the reservoirs. Geological setting controls the mineralogical and textural maturity of sandstone, whereas depositional facies control the pore water chemistry (marine, brackish or meteoric), sedimentary texture and sand body geometry. Eogenetic alterations in the fluvial deposits are dominated by precipitation of infiltrated clays, kaolinitization of detrital silicates, whereas the shallow marine deposits are dominated by precipitation of early calcite and kaolinite. Conversely mesogenetic alterations are dominated by clay minerals transformation, quartz overgrowths and Ferroan- carbonates, barite and anhydrite. Flux of hot basinal brines is evidenced by precipitation of mesogenetic minerals that lack of internal sources (e.g. barite, anhydrite and ferroan carbonate cements), which is evidenced by: (1) restricted occurrence of these minerals in downthrown blocks. (2) The high fluid inclusion homogenization temperatures (Th) of quartz overgrowths (Th > 110-139°C), and carbonate cements (T > 80-140°C), which also have light δ18OV-PDB(-17.6‰ to -6.7‰). Flux of hot basinal brines is further evidenced by occurrence of saddle Fe-dolomite along stylolites. Fluid inclusion microthermometry further revealed a dramatic shift in pore- water chemistry from NaCl dominated brines during precipitation of quartz overgrowths to NaCl-CaCl2 dominated brines during cementation by Fe-dolomite. Presence of mixed brine (NaCl+CaCl2) systems in the fluid inclusions suggests flux of descending waters, which have circulated in the overlying carbonate-evaporite successions. The restricted occurrence of oil- filled inclusion to quartz overgrowths and methane to Fe-carbonate cements suggest migration of oil during precipitation by quartz and migration of methane during precipitation by Fe- carbonate cements. The extensive mesogenetic cements in the down thrown blocks is attributed to flux of basinal brines along deep seated faults, i.e. open system diagenesis. Integration of fluid inclusion microthermometry, isotopes, Raman spectrometry and thermal tectonic evolution of basins are essential techniques for unraveling the evolution of basinal fluids, cementation conditions and relative timing of hydrocarbons migration. / <p>Errata: Felaktigt disputationsdatum på spikbladet.</p>
|
Page generated in 0.0396 seconds