• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 407
  • 97
  • 69
  • 45
  • 38
  • 33
  • 20
  • 12
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 851
  • 164
  • 99
  • 98
  • 88
  • 82
  • 72
  • 70
  • 64
  • 63
  • 59
  • 59
  • 58
  • 57
  • 57
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
331

Structuration et contrôle de l’architecture de capsules à coeur liquide à base d’hydrogel d’alginate par association de biopolymères / Structuring and control of the architecture of alginate liquid-core capsules by biopolymers association

Ben Messaoud, Ghazi 29 October 2015 (has links)
Cette thèse a pour objectif d’étudier les propriétés physico-chimiques de capsules à cœur liquide à base d'hydrogel d'alginate et de contrôler leur perméabilité et propriétés mécaniques par ajout des biopolymères. Ces capsules sont préparées par un procédé de sphérification inverse par extrusion goutte à goutte d’une solution de chlorure de calcium dans un bain à base d’alginate. Dans un premier travail, l’influence des polymères utilisés pour contrôler la viscosité du cœur liquide lors de la préparation des capsules sur la perméabilité et la stabilité mécanique a été étudiée. Les propriétés mécaniques des capsules ont été corrélées avec les propriétés viscoélastiques d’hydrogels d’alginate caractérisés par rhéologie oscillatoire aux faibles amplitudes. Un second travail, a consisté à élaborer des capsules composites avec une membrane de caséinate de sodium/alginate qui présentent une meilleure stabilité et une libération pH-dépendante d’un colorant utilisé comme molécule modèle. Comme perspective a cette étude, des hydrogels sphériques à base d’alginate et de caséinate de sodium, avec différentes architecture ont été développés et leur efficacité a été testée sur trois colorants. Enfin, l’influence de l’incorporation de la gomme laque dans la membrane ou comme revêtement externe a permis de mettre en évidence une amélioration des propriétés barrières vis-à-vis de molécules de faible masse moléculaire (riboflavine dans ce cas). Les capsules à base d’alginate ont un large spectre d’utilisation allant de la cuisine moléculaire à la biotechnologie ce qui nécessite une meilleure compréhension et contrôle de leurs propriétés physicochimiques en fonction de l’application visée / The aim of this thesis is to study the physicochemical properties of alginate liquid-core capsules and to control their permeability and mechanical properties by biopolymers blending. These millimeter-scale size capsules are prepared by a reverse spherification process by dripping a solution of calcium chloride into an alginate gelling bath. In a first work, the influence of polymers used to control capsule liquid-core viscosity (thickening agent) during capsules preparation on permeability and mechanical stability of the alginate membrane was investigated. The mechanical properties of capsules were correlated with viscoelastic properties of plane alginate hydrogels characterized by small amplitude oscillatory shear rheology. In a second work, composite capsules with a membrane of sodium caseinate / alginate were developed and showed improved stability and pH-dependent release of a dye used as a model molecule. As a perspective, composite alginate/sodium caseinate microspheres with different architectures were developed and their effectiveness was tested against three anionic dyes. This type of system has applications in the removal of dyes from industrial wastewater by an adsorption mechanism. Finally, the influence of shellac incorporation in alginate membrane or as an external coating layer resulted in enhanced physicochemical properties and decreased membrane permeability against low molecular weight molecules (riboflavin in this case). Alginate capsules have a wide range of applications ranging from molecular gastronomy to biotechnology which requires a better understanding and control of their physicochemical properties according to the target application
332

Time-dependent chemo-electromechanical behavior of hydrogelbased structures

Leichsenring, Peter, Wallmersperger, Thomas 13 August 2020 (has links)
Charged hydrogels are ionic polymer gels and belong to the class of smart materials. These gels are multiphasic materials which consist of a solid phase, a fluid phase and an ionic phase. Due to the presence of bound charges these materials are stimuli-responsive to electrical or chemical loads. The application of electrical or chemical stimuli as well as mechanical loads lead to a viscoelastic response. On the macroscopic scale, the response is governed by a local reversible release or absorption of water which, in turn, leads to a local decrease or increase of mass and a respective volume change. Furthermore, the chemo-electro-mechanical equilibrium of a hydrogel depends on the chemical composition of the gel and the surrounding solution bath. Due to the presence of bound charges in the hydrogel, this system can be understood as an osmotic cell where differences in the concentration of mobile ions in the gel and solution domain lead to an osmotic pressure difference. In the present work, a continuum-based numerical model is presented in order to describe the time-dependent swelling behavior of hydrogels. The numerical model is based on the Theory of Porous Media and captures the fluid-solid, fluid-ion and ion-ion interactions. As a direct consequence of the chemo-electro-mechanical equilibrium, the corresponding boundary conditions are defined following the equilibrium conditions. For the interaction of the hydrogel with surrounding mechanical structures, also respective jump condtions are formulated. Finaly, numerical results of the time-dependent behavior of a hydrogel-based chemo-sensor will be presented.
333

Elaboration de polymères naturels à base de Polysaccherides pour application à la libération controlée / Design of of polysaccharide-based biopolymers for the controlled release of their active principle

Sehil, Hafida 28 November 2017 (has links)
Ce travail a eu pour objectif la conception de nouveau matériaux à base de polysaccharide pour la libération contrôlée de principes actifs et pour d'éventuelles applications environnementales. Pour cela, des gels ont été préparés par réticulation du carboxymethylepullulane CMP et du pullulane interpénétré par l’alginate avec le sodium trimétaphosphate STMP. Les hydrogels obtenus ont été caractérisés et leurs propriétés physico-chimiques et rhéologiques ont été investiguées. La séquestration de principes actifs modèles dans les hydrogels a été réalisée par regonflement des gels dans une solution de bleu de méthylène BM ou par dispersion de la 3- aminopyridine 3AP à l’intérieur des gels. L'’influence des différents paramètres comme la nature du gel, le taux d’agent réticulant et le pH sur la libération des principes actifs a permis de conclure sur la performance des gels comme matrice à libération contrôlée. D'autre part, ces hydrogels de morphologies différentes se sont révélés être des adsorbants prometteurs, les tests sur le BM servant dans ce cas comme polluant modèle ont montré des capacités d'adsorption plus de 1000 mg/g pour les gels à base de CMP et de 500 mg/g pour les gels Pullulane/alginate. Les capacités d'adsorption étaient sensibles à la quantité du STMP, au degré de substitution du CMP et aux variations du pH. Les résultats expérimentaux étaient bien modélisés par une équation cinétique de pseudo-second ordre et l'isotherme de Freundlich décrivait d'une manière satisfaisante le phénomène. / This work has aimed at the design of new polysaccharide-based materials for the controlled release of active ingredients and for possible environmental applications. For this, gels were prepared by crosslinking the carboxymethylpullulan CMP and the pullulan interpenetrated by the alginate with the sodium trimetaphosphate STMP. The hydrogels obtained were characterized and their physicochemical and rheological properties were investigated. The sequestration of model active ingredient in the hydrogels was carried out by re-inflation gels in a solution of BM or dispersion of 3AP within the gels. The influence of the various parameters such as the nature of the gel, the level of crosslinking agent and the pH on the release of the active ingredients made it possible to conclude on the performance of the gels as a controlled-release matrix. On the other hand, these hydrogels of different morphologies have proved to be promising adsorbents, the tests on the BM used in this case as a model pollutant showed an adsorption capacity of more than 1000 mg / g for CMP-based gels and 500 mg / g for Pullulane / alginate gels. Absorption capacities were sensitive to the amount of SMTP, the degree of CMP substitution, and pH changes. The experimental results were well modeled by a pseudo-second order kinetic equation and the Freundlich isotherm satisfactorily described the phenomenon.
334

Swelling behavior of bisensitive interpenetrating polymer networks for microfluidic applications

Krause, A. T., Zschoche, S., Rohn, M., Hempel, C., Richter, A., Appelhans, D., Voit, B. 09 December 2019 (has links)
Bisensitive interpenetrating polymer network (IPN) hydrogels of temperature sensitive net-poly(Nisopropylacrylamide) and pH sensitive net-poly(acrylic acid-co-acrylamide) for microfluidic applications were prepared via a sequential synthesis using free radical polymerization. The IPN indicated a suitable reversible alteration of swelling in response to the change in pH and temperature. The adequate change of the hydrogel volume is a basic requirement for microfluidic applications. Using the introduced correction factor f, it is possible to determine the cooperative diffusion coefficient (Dcoop) of cylindrical samples at any aspect ratio. The determined cooperative diffusion coefficient allowed the evaluation of varying swelling processes of different network structures. The presence of the second sub-network of the IPN improved the swelling behaviour of the first sub-network compared to the individual networks.
335

Preparation, Processing and Characterization of Noble Metal Nanoparticle-based Aerogels

Herrmann, Anne-Kristin 10 July 2014 (has links)
New challenges in nanotechnology arise in the assembly of nanoobjects into three-dimensional superstructures, which may carry synergetic properties and open up new application fields. Within this new class of materials nanostructured, porous functional metals are of great interest since they combine high surface area, gas permeability, electrical conductivity, plasmonic behavior and size-enhanced catalytic reactivity. Even though a large variety of preparation pathways for the fabrication of porous noble metals has already been established, several limitations are still to be addressed by research developments. The new and versatile approach that is presented in this work makes use of a templatefree self-assembly process for the fabrication of highly porous, metallic nanostructures. Thereby, nanochains are formed by the controlled coalescence of noble metal NPs in aqueous media and their interconnection and interpenetration leads to the formation of a self-supported network with macroscopic dimensions. Subsequently, the supercritical drying technique is used to remove the solvent from the pores of the network without causing a collapse of the fragile structure. The resulting highly porous, low-weighted, three-dimensional nanostructured solids are named aerogels. The exceptional properties of these materials originate from the conjunction of the unique properties of nanomaterials magnified by macroscale assembly. Moreover, the combination of different metals may lead to synergetic effects regarding for example their catalytic activity. Therefore, the synthesis of multimetallic gels and the characterization of their structural peculiarities are in the focus of the investigations. In the case of the developed preparation pathways the gelation process starts from preformed, stable colloidal solutions of citrate capped, spherical noble metal (Au, Ag, Pt, Pd) NPs. In order to face various requirements several methods for the initiation of the controlled destabilization and coalescence of the nanosized building blocks were developed and synthesis conditions were optimized, respectively. Multimetallic structures with tunable composition are obtained by mixing different kinds of monometallic NP solutions and performing a joint gel formation. The characterization of the resulting materials by means of electron microscopy reveals the formation of a highly porous network of branched nanochains that provide a polycrystalline nature and diameters in the size range of the initial NPs. Furthermore, synthesis conditions for the spontaneous gel formation of glucose stabilized Au and Pd NPs were investigated. In order to gain a detailed knowledge of the structural properties of bimetallic aerogel structures a versatile set of characterization techniques was applied. A broad pore size distribution dominated by meso- and macropores and remarkably high inner surface areas were concluded from the N2 physisorption isotherms and density measurements. As investigated, a specific thermal treatment could be used to tune the ligament size of Au-Ag aerogels, whereas Au-Pd and Pt-Pd structures provide thermal stability under mild conditions. Further investigations aimed to the enlightenment of the elemental distribution and phase composition within the nanochains of multimetallic gel structures. The different approaches provide complementary and consistent results. Phase analyses based on XRD measurements revealed separated phases of each metal in the case of Ag-Pd and Au-Pd aerogels. They further proved the possibility of temperature induced phase modifications that lead to complete alloying of Au and Pd. In addition, separated domains of Pt and Pd were established from the EXAFS analysis of the corresponding aerogel. STEM EDX high resolution elemental mappings confirmed the separated domains of different metals in the case of Au-Pd and Pt-Pd aerogels. Moreover, a complete interdiffusion and alloy formation of Au and Ag within the corresponding aerogel structure is suggested from STEM EDX results. Finally, the presented investigations further promote the field of metallic aerogels by addressing the challenging issue of processability and device fabrication. Hybrid materials with organic polymers as well as various kinds of coatings on glass substrates and glassy carbon electrodes were prepared whereas the network structure was preserved throughout all processing steps. Moreover, it was illustrated that the NP-based aerogels carry metallic properties as expressed by their low Seebeck coefficients and high electrical conductivities.
336

Monodisperse Microgels based on Poly(2-Oxazoline)s for Regenerative Cell Replacement Therapy

Lück, Steffen 23 January 2017 (has links)
This work aims towards the development of a modular system for fabrication of monodisperse microgels made of poly(2-oxazoline)s for use in the field of regenerative therapy.
337

Modeling and Simulation of Components and Circuits with Intrinsically Active Polymers

Mehner, Philipp Jan 26 February 2021 (has links)
In this work, a design platform for the modeling, simulation and optimization of fluidic components and their interactions in larger systems is developed. A hydrogel-based stimulus-sensitive microvalve is the core element of the microfluidic toolbox. Essential material properties as swelling-stimuli functions and the cooperative diffusion are extracted from measurements. The results provide necessary input data for finite element simulations in order to extract characteristic properties of the mechanical and fluid domains. Finally, the behavior of the microvalve and other fluidic library elements is implemented in Matlab Simscape for component and system simulations. Case studies and design optimization can be realized in a very short time with high accuracy. The toolbox is suitable for research and development and as software for academic education. The library elements are evaluated for a chemofluidic NAND gate, a chemofluidic decoder and a chemofluidic oscillator.:1 Introduction to Microfluidic Systems 1.1 Chemofluidic Enables Scalable and Logical Microfluidics 1.2 Focus of this Work 2 Fundamentals for Hydrogel-based Lab-on-Chip Systems 2.1 Basic Hydrogel Material Behavior 2.1.1 Basic Swelling Behavior 2.1.2 General Properties of Hydrogels 2.2 Overview of the used Microtechnology 2.2.1 Synthesis of P(NIPAAm-co-SA) 2.2.2 Microfabrication of a Microfluidic Chip 2.3 Introduction to Modeling and Simulation Techniques 2.3.1 Computer-aided Design Methodologies 2.3.2 Model Abstraction Levels for Computer-Aided Design 2.3.3 Modeling Techniques for Microvalves in a Fluidic System 3 Analytical Descriptions of Swelling 3.1 Quasi-Static Description 3.1.1 Physical Static Chemo-Thermal Description 3.1.2 Finite Element Routine for Static Thermo-Elastic Expansion 3.1.3 Static System Level Design for Hydrogel Swelling 3.2 Transient Description 3.2.1 Physical Dynamic Chemo-Thermal Description 3.2.2 Finite Element Routine for Dynamic Thermo-Elastic Expansion 3.2.3 Transient System Level Design for Hydrogel Swelling 3.3 Swelling Hysteresis Effect 3.3.1 Quasi-static Hysteresis 3.3.2 Transient Hysteresis 4 Characterization of Hydrogel 4.1 Data Acquisition through Automated Measurements 4.1.1 Measuring the Swelling of Hydrogels 4.1.2 Contactless Measurement Concept to Determine the Core Stiffness of Hydrogels 4.2 Data Evaluation with Image Recognition 4.3 Data Fitting and Model Adaption 4.3.1 Quasi-static Response 4.3.2 Transient Response 4.3.3 Hysteresis Response 5 Modeling Swelling in Finite Elements 5.1 Validity of the Model and Simulation Approach 5.2 Thermo-Mechanical Model of the Hydrogel Expansion Behavior 5.2.1 Change of the Length by Thermal Expansion 5.2.2 Stress-Strain Relationship for Hydrogels 5.2.3 Thermal Volume Expansion and Parameter Adaptation 5.2.4 Heat Transfer Coefficient 5.3 Volume Phase-Transition of a Hydrogel implemented in ANSYS 5.4 Computational Fluid Dynamics 5.4.1 Analytic Mesh Morphing 5.4.2 One-way Fluid Structure Interaction Modeling 5.4.3 Towards a Two-way Fluid Structure Interaction Model in CFX 6 Lumped Modeling 6.1 The Chemical Volume Phase-transition Transistor Model 6.1.1 Static Hysteresis 6.1.2 Equilibrium Swelling Length – Quasi-static Behavior 6.1.3 Kinematic Swelling Length - Transient Behavior 6.1.4 Stiffness and Maximum Closing Pressure 6.1.5 Calculation of the Fluidic Conductance 6.1.6 Modeling of the Fluid Flow through the Valve 6.2 Circuit Descriptions Analogy for Microfluidic Applications 6.2.1 Advantages and Limitations of Combined Simulink-Simscape Models 6.2.2 Requirements for Microfluidic Circuits 6.2.3 Graphical User Interfaces and Library Element Management 6.3 Modeling Techniques for the Chemical Volume Phase-transition Transistor (CVPT) 6.3.1 Network Description of CVPT 6.3.2 Signal Flow Description of CVPT 6.3.3 Mixed Signal Flow and Network Model for CVPT 7 Micro-Fluidic Toolbox 7.1 Microfluidic Components 7.1.1 Fluid Sources and Stimuli Sources 7.1.2 Fluidic Resistor with Bidirectional Stimulus Transport 7.1.3 Junctions 7.1.4 Chemical Volume Phase-transition Transistor 7.2 Microfluidic Matlab Toolbox 7.3 Modeling Chemofluidic Logic Circuits 7.3.1 Chemofluidic NAND Gate 7.3.2 Chemofluidic Decoder Application 7.3.3 Chemo-Fluidic Oscillator 7.4 Layout Synthesis 8 Summary and Outlook Appendix A 2D Thermo-Mechanical Solid Element for the Finite Element Method B Thermal Expansion Equation for ANSYS C Linear Regression of the Thermal Expansion Equation for ANSYS D Comparing different Mechanical Strain Definitions E Supporting Documents E.1 Analytic Static Swelling E.2 FEM - Matrix Method E.3 8 Node Finite Element Routine E.4 FEM - Script to create the CTEX table data E.5 Comparison of Solid Mechanics / In dieser Arbeit wird eine Entwurfsplattform für die Modellierung, Simulation und Optimierung von fluidischen Komponenten und deren Wechselwirkungen in größeren Systemen entwickelt. Ein Mikroventil auf der Basis von stimuli-sensitiven Hydrogelen ist das Kernelement des Entwurfstools. Wesentliche Materialeigenschaften wie das Quellverhalten und der kooperative Diffusionskoeffizient werden zu Beginn mit Messungen ermittelt. Mit Finite-Elemente-Simulationen werden aus diesen Daten charakteristische Kennwerte für das mechanische und fluidische Verhalten bestimmt. Sie bilden die Basis für komplexe Systemmodelle in Matlab Simscape, welche das Mikroventil und weitere fluidische Grundelemente in ihrem Zusammenwirken beschreiben. Verschiedene Konzepte können in kurzer Zeit und mit hoher Genauigkeit analysiert, optimiert und verglichen werden. Die Toolbox eignet sich für die Forschung und Entwicklung sowie als Software für die akademische Ausbildung. Sie wurde für den Entwurf eines chemofluidischen NAND-Gatters, für einen chemofluidischen Decoder und für einen chemofluidischen Oszillator eingesetzt.:1 Introduction to Microfluidic Systems 1.1 Chemofluidic Enables Scalable and Logical Microfluidics 1.2 Focus of this Work 2 Fundamentals for Hydrogel-based Lab-on-Chip Systems 2.1 Basic Hydrogel Material Behavior 2.1.1 Basic Swelling Behavior 2.1.2 General Properties of Hydrogels 2.2 Overview of the used Microtechnology 2.2.1 Synthesis of P(NIPAAm-co-SA) 2.2.2 Microfabrication of a Microfluidic Chip 2.3 Introduction to Modeling and Simulation Techniques 2.3.1 Computer-aided Design Methodologies 2.3.2 Model Abstraction Levels for Computer-Aided Design 2.3.3 Modeling Techniques for Microvalves in a Fluidic System 3 Analytical Descriptions of Swelling 3.1 Quasi-Static Description 3.1.1 Physical Static Chemo-Thermal Description 3.1.2 Finite Element Routine for Static Thermo-Elastic Expansion 3.1.3 Static System Level Design for Hydrogel Swelling 3.2 Transient Description 3.2.1 Physical Dynamic Chemo-Thermal Description 3.2.2 Finite Element Routine for Dynamic Thermo-Elastic Expansion 3.2.3 Transient System Level Design for Hydrogel Swelling 3.3 Swelling Hysteresis Effect 3.3.1 Quasi-static Hysteresis 3.3.2 Transient Hysteresis 4 Characterization of Hydrogel 4.1 Data Acquisition through Automated Measurements 4.1.1 Measuring the Swelling of Hydrogels 4.1.2 Contactless Measurement Concept to Determine the Core Stiffness of Hydrogels 4.2 Data Evaluation with Image Recognition 4.3 Data Fitting and Model Adaption 4.3.1 Quasi-static Response 4.3.2 Transient Response 4.3.3 Hysteresis Response 5 Modeling Swelling in Finite Elements 5.1 Validity of the Model and Simulation Approach 5.2 Thermo-Mechanical Model of the Hydrogel Expansion Behavior 5.2.1 Change of the Length by Thermal Expansion 5.2.2 Stress-Strain Relationship for Hydrogels 5.2.3 Thermal Volume Expansion and Parameter Adaptation 5.2.4 Heat Transfer Coefficient 5.3 Volume Phase-Transition of a Hydrogel implemented in ANSYS 5.4 Computational Fluid Dynamics 5.4.1 Analytic Mesh Morphing 5.4.2 One-way Fluid Structure Interaction Modeling 5.4.3 Towards a Two-way Fluid Structure Interaction Model in CFX 6 Lumped Modeling 6.1 The Chemical Volume Phase-transition Transistor Model 6.1.1 Static Hysteresis 6.1.2 Equilibrium Swelling Length – Quasi-static Behavior 6.1.3 Kinematic Swelling Length - Transient Behavior 6.1.4 Stiffness and Maximum Closing Pressure 6.1.5 Calculation of the Fluidic Conductance 6.1.6 Modeling of the Fluid Flow through the Valve 6.2 Circuit Descriptions Analogy for Microfluidic Applications 6.2.1 Advantages and Limitations of Combined Simulink-Simscape Models 6.2.2 Requirements for Microfluidic Circuits 6.2.3 Graphical User Interfaces and Library Element Management 6.3 Modeling Techniques for the Chemical Volume Phase-transition Transistor (CVPT) 6.3.1 Network Description of CVPT 6.3.2 Signal Flow Description of CVPT 6.3.3 Mixed Signal Flow and Network Model for CVPT 7 Micro-Fluidic Toolbox 7.1 Microfluidic Components 7.1.1 Fluid Sources and Stimuli Sources 7.1.2 Fluidic Resistor with Bidirectional Stimulus Transport 7.1.3 Junctions 7.1.4 Chemical Volume Phase-transition Transistor 7.2 Microfluidic Matlab Toolbox 7.3 Modeling Chemofluidic Logic Circuits 7.3.1 Chemofluidic NAND Gate 7.3.2 Chemofluidic Decoder Application 7.3.3 Chemo-Fluidic Oscillator 7.4 Layout Synthesis 8 Summary and Outlook Appendix A 2D Thermo-Mechanical Solid Element for the Finite Element Method B Thermal Expansion Equation for ANSYS C Linear Regression of the Thermal Expansion Equation for ANSYS D Comparing different Mechanical Strain Definitions E Supporting Documents E.1 Analytic Static Swelling E.2 FEM - Matrix Method E.3 8 Node Finite Element Routine E.4 FEM - Script to create the CTEX table data E.5 Comparison of Solid Mechanics
338

Modeling and simulation of a chemically stimulated hydrogel bilayer bending actuator

Sobczyk, Martin, Wallmersperger, Thomas 09 August 2019 (has links)
Stimuli-sensitive hydrogels are polymeric materials, which are able to reversibly swell in water in response to evironmental changes. Relevant stimuli include variations of pH, temperature, concentration of specific ions etc. Stacked layers composed of multiple thin hydrogels - also referred to as hydrogel-layer composites - combine the distinct sensing properties of different hydrogels. This approach enables the development of sophisticated micro uidic devices such as bisensitive valves or uid-sensitive de ectors. In order to numerically simulate the swelling of a polyelectrolyte hydrogel in response to an ion concentration change the multifield theory is adopted. The set of partial differential equations - including the description of the chemical, the electrical and the mechanical field - are solved using the Finite Element Method. Simulations are carried out on a twodimensional domain in order to capture interactions between the different fields. In the present work, the ion transport is governed by diffusive and migrative uxes. The distribution of ions in the gel and the solution bath result in an osmotic pressure difference, which is responsible for the mechanical deformation of the hydrogel-layer composite. The realized numerical investigation gives an insight into the evolution of the displacement field, the distribution of ions and the electric potential within the bulk material and the interface between gel and solution bath. The predicted behavior of the relevant field variables is in excellent agreement with results available in the literature.
339

Humidity micro switch based on humidity-sensitive polymers

Bellmann, C., Steinke, A., Frank, T., Gerlach, G. 29 August 2019 (has links)
We present recent results on a binary threshold sensor based on the binary zero-power sensor (BIZEPS) platform which is able to use the energy provided directly from the measured relative humidity of the ambient air to mechanically switch an electrical micro contact. This zero-power switch behavior is realized by using the humidity-sensitive volume swelling of a polymer layer as the detection element deflecting a mechanically deformable silicon boss structure, thus closing the electrical contacts of the switch. For the humidity-sensitive sensor switch considered here, a humidity-sensitive hydrogel blend of poly(vinyl alcohol) and poly(acryl acid) was used. The sensitive part affected by the measurand is completely separated from the electrical part, thus providing long-term stability. By using an inverse silicone stamping technique the polymer layer with a thickness of about 15 μm was patterned on test structures possessing a thin silicon flexure plate of 5 mm x 5 mm in size and 20 μm in thickness. Reproducible deformations of up to 15 … 24 μm has been measured. Investigations of the swelling kinetics showed for several discrete relative humidity values a saturation of the water load. The time to reach this saturation state is reduced from 5 hours down to approx. 20 min by increasing the relative humidity beyond the threshold value of 70% r.H. A significant influence of the temperature to the humidity load could not be observed.
340

Hydrogels physiques tubulaires pour la spermatogenèse ex vivo / Tubular physical hydrogels for ex vivo spermatogenesis

Sereni, Nicolas 09 December 2016 (has links)
Au cours des 30 dernières années, d'importants progrès ont été faits dans le domaine de l'oncologie. Les cancers pédiatriques ont été les grands bénéficiaires des progrès des thérapies anticancéreuses et aujourd'hui, le cancer de l'enfant peut être soigné, dans les pays développés, dans 75 à 80% des cas. Cependant, ces thérapies sont connues pour leurs effets gamétotoxiques, et seulement 33 % des garçons qui ont survécu à leur cancer durant l'enfance produisent du sperme de bonne qualité une fois arrivé à l'âge adulte. Actuellement, la seule mesure de préservation envisageable pour ces enfants est de procéder à un prélèvement et à une cryoconservation de tissu testiculaire. Aujourd'hui, il est donc important de mettre au point un procédé capable de produire des spermatozoïdes à partir de tissus testiculaire dans le but de restaurer leur fertilité. Pendant plusieurs décennies, les biologistes de la reproduction ont essayé de développer une technologie pour accomplir in vitro la spermatogenèse chez les mammifères. Malgré des investissements importants dans la recherche, aucune méthode n'a permis de reproduire in vitro l'ensemble de ce processus chez l'homme. Dans cette étude, la société de biotechnologie Kallistem a développée, en collaboration avec des partenaires académiques incluant le laboratoire Ingénierie des Matériaux Polymères (projet ARTIS financé par la Canceropôle Lyon Auvergne Rhône-Alpes) un système de culture tridimensionnel constitué d'un hydrogel de chitosane capable de réaliser in vitro l'ensemble de la spermatogenèse chez différents mammifères incluant l'homme. Le système de culture 3D est un hydrogel physique de chitosane sous forme de tube obtenu après neutralisation d'une solution aqueuse de chitosane, sans aucun agent réticulant. Avantageusement, le tissu testiculaire est confiné dans la lumière du tube ce qui permet de conserver l'architecture 3D in vivo des tissus. L'influence de plusieurs paramètres structuraux du chitosane et de paramètres liés au procédé d'élaboration sur la microstructure, les propriétés mécaniques et de diffusion des hydrogels a été évaluée, dans le but d'optimiser la capacité du système de culture à assurer la survie et la différentiation cellulaire / During the past 30 years, huge progress has been performed in the field of oncology. In particular, pediatric cancers have been the beneficiaries and can now achieve cure rates of 75-80% in developed countries. However, cancer therapies are known for their gametotoxic effects and only 33% of male children who have survived cancer during childhood produce sperm of normality quality when they are adults. Currently, the only feasible conservation protocol for these boys is to make a collection and cryopreservation of their testicular tissue. There is thus a need to provide a process enabling to produce spermatozoa starting from testicular tissue in order to restore fertility. For several decades, reproductive biologists have been trying to develop a technology to achieve spermatogenesis in vitro in mammals. Despite sustained investment in research, no method has now reproduced in vitro this entire process in humans. In this work, Kallistem (Biotech Company) has developed, in collaboration with academic laboratories including “Polymer Materials Engineering” laboratory (project ARTIS financed by the Cancéropôle Lyon Auvergne Rhône-Alpes) a 3D culture system made of chitosan hydrogel enabling to make a complete spermatogenesis in vitro in several mammals including human. The 3D culture system is a tube of chitosan physical hydrogel obtained from neutralization of aqueous chitosan solution, without any external cross-linking agent. Advantageously, the testicular tissue is confined in the lumen of tube which enables to reproduce in vivo 3-dimensional architecture. The impact of several material and processing parameters on microstructure, mechanical and diffusion properties of resulting hydrogels was evaluated, in order to optimize the culturing and maturation ability of 3D culture system

Page generated in 0.0422 seconds